QUASITRIANGULAR OPERATOR ALGEBRAS

Joan K. Plastiras

Fix a sequence $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ of finite dimensional projections increasing to the identity on a separable Hilbert space \mathscr{H} and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded operators on \mathscr{H}. The quasitriangular algebra associated with \mathscr{P} and denoted as $\mathscr{2} \mathscr{T}(\mathscr{P})$ is defined to be the set of those operators T in $\mathscr{L}(\mathscr{H})$ for which $\left\|P_{n}^{\perp} T P_{n}\right\| \rightarrow 0$.

In this paper we will examine the structure of the $\mathscr{2 T}(\mathscr{P})$ algebras. Specifically, if $\mathscr{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$ is another sequence of finite dimensional projections increasing to the identity on the same Hilbert space, when is $\mathscr{2} \mathscr{T}(\mathscr{R})$ equal to $\mathscr{\mathscr { T }}(\mathscr{P})$? By an algebraic isomorphism between two algebras we shall mean a bijection which preserves algebraic structure: that is to say - addition, scalar multiplication, multiplication, but we do not impose any topological condition. When are two quasitriangular algebras isomorphic?

In [5] we asked the same questions of $\mathscr{D}(\mathscr{E})+\mathscr{C}(\mathscr{H})=\{T+K: T$ belongs to the commutant of E and K is compact $\}$ and answered them completely by arguments very different from those presented here; the conclusions were different too. The concept of quasitriangularity for operators was first isolated for systematic study in [3]. The quasitriangular algebra was introduced later in [1] and a formula expressing the distance from such an algebra to an arbitrary operator was obtained. We begin our discussion with an algebraic property:

Definition 1. A subset \mathscr{S} of $\mathscr{L}(\mathscr{H})$ is said to be inverse-closed if whenever T in \mathscr{S} is invertible in $\mathscr{L}(\mathscr{H})$ then T^{-1} belongs to \mathscr{S}.

Lemma 2. $2 \mathscr{T}(\mathscr{P})$ is inverse-closed for every sequence $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ of finite dimensional projections increasing to the identity on a Hilbert space.

Before verifying Lemma 2 we remark that the assumption that the P_{k} be finite dimensional is essential.

Proof. From [1, Corollary following 2.2] we know that $\mathscr{2 T}(\mathscr{P})=$ $\mathscr{T}(\mathscr{P})+\mathscr{C}(\mathscr{H})$, where $\mathscr{T}(\mathscr{P})$ is the set of operators T such that $P_{n}^{+} T P_{n}=0$ for all n. Hence, it suffices to assume that S belongs to $\mathscr{T}(\mathscr{P})+\mathscr{C}(\mathscr{H})$ and is invertible in $\mathscr{L}(\mathscr{H})$ and show that S^{-1} belongs to $\mathscr{2 T}(\mathscr{P})$. So, $S=T+C$, where $T \in \mathscr{T}(\mathscr{P})$ and $C \in \mathscr{C}(\mathscr{H})$. Since $S_{m}=T+P_{m} C P_{m}$ tends in norm to S, S_{m} is invertible for all m greater than a positive
integer l. Fix $m>l$ and note that $S_{m} P_{n}=P_{n} S_{m} P_{n}$ for all $n \geqq m$, and since $\operatorname{dim} P_{n}<\infty, S_{m}$ maps $P_{n} \mathscr{H}$ onto itself, so that $P_{n} S_{m}^{-1} P_{n}=S_{m}^{-1} P_{n}$ (or equivalently, $P_{n}^{\perp} S_{m}^{-1} P_{n} \equiv 0$). Hence, S_{m}^{-1} belongs to $2 \mathscr{T}(\mathscr{P})$ by definition. As S_{m}^{-1} tends in norm to $(T+C)^{-1}$ and $\mathscr{2} \mathscr{T}(\mathscr{P})$ is norm-closed [1, Proposition 2.1], we conclude that $(T+C)^{-1}$ belongs to $2 \mathscr{T}(\mathscr{P})$.

Theorem 3. Suppose that T is an invertible operator in $\mathscr{L}(\mathscr{H})$. Then Timplements an automorphism of $\mathscr{2 T}(\mathscr{P})$ (i.e. $\left.T \mathscr{2} \mathcal{T}(\mathscr{P}) T^{-1}=\mathscr{2 T}(\mathscr{P})\right)$ if and only if T belongs to $\mathscr{2} \mathscr{T}(\mathscr{P})$.

Proof. \Leftarrow : Assume that T belongs to $2 \mathscr{T}(\mathscr{P})$. To show that T implements an inner automorphism of $\mathscr{2} \mathscr{T}(\mathscr{P})$ it will suffice to show that T^{-1} also belongs to $2 \mathscr{T}(\mathscr{P})$. But that is immediate from Lemma 2.
\Rightarrow : Assume that T implements an automorphism of $\mathscr{2 T}(\mathscr{P})$. First we conclude from [1, Theorem 3.3] that T admits a factorization $T=U A$, where A belongs to $\mathscr{T}(\mathscr{P})$ and U is a partial isometry. Note that $A=U^{*} T$ has closed range; since ker $A=\{0\}, A$ is semi-Fredholm by definition. Since A belongs to $2 \mathscr{T}(\mathscr{P})$ the index of A is nonnegative [2] so that ker $A^{*}=\{0\}$ and A is consequently invertible. This forces U to be unitary. Since $A \in \mathscr{2 T}(\mathscr{P})$ is invertible, then by the previous argument, A implements an automorphism of $\mathscr{2 T}(\mathscr{P})$ so that we are reduced to showing that if U is a unitary operator which implements an automorphism of $\mathscr{2 T}(\mathscr{P})$, then U belongs to $2 \mathscr{T}(\mathscr{P})$.

So, we assume that U does not belong to $\mathscr{2 T}(\mathscr{P})$ and arrive at a contradiction. Since U does not belong to $\mathscr{2} \mathscr{T}(\mathscr{P})$ then by the definition of $\mathscr{Q} \mathscr{T}(\mathscr{P})$ there is an $\alpha>0$ and a subsequence $\left\{P_{n(k)}\right\}_{k=1}^{\infty}$ of \mathscr{P} for which $\underline{\lim }_{k}\left\|P_{n(k)}^{\perp} U P_{n(k)}\right\| \geqq \alpha$. From Lemma 2 we know that U^{*} does not belong to $\mathscr{2 T}\left(\left\{P_{n(k)}\right\}_{n=1}^{\infty}\right)$, so that by definition, there is $\beta>0$ and a subsequence $\{m(k)\}_{k=1}^{\infty}$ of $\{n(k)\}_{k=1}^{\infty}$ for which $\underline{\lim }_{k}\left\|P_{m(k)}^{\perp} U^{*} P_{m(k)}\right\| \geqq \beta$. If we let $\epsilon=\min (\alpha, \beta) / 2$, then we can conclude that $\left\|P_{n}^{\perp} U P_{n}\right\|$ and $\left\|P_{n} U P_{n}^{\perp}\right\|$ $\left(=\left\|P_{n}^{\perp} U^{*} P_{n}\right\|\right)$ are both greater than ϵ for all n in an infinite subset M of N.

We will obtain a sequence $\left\{m_{i}, n_{i}\right\}_{i=1}^{\infty}$ of positive integers such that $0<m_{1}<n_{1}<m_{2}<n_{2}<\cdots$ and projections $\left\{F_{k}, E_{k}\right\}_{k=1}^{\infty}$ such that $F_{k}=$ $P_{m_{k}} P_{n_{k-1}}^{\perp}$ and $E_{k}=P_{n_{k}} P_{m_{k}}^{\perp}$ for which $\left\|F_{k} U E_{k}\right\|$ and $\left\|E_{k} U F_{k}\right\|$ are both greater than $\epsilon / 2$. We do so inductively.

For $k=1$, define $F_{1}=P_{m_{1}}$, where m_{1} is the first integer in M. Let n_{1} be the first integer such that $\left\|P_{n_{1}} P_{m_{1}}^{\perp} U P_{m_{1}}\right\|$ and $\left\|P_{m_{1}} U P_{m_{1}}^{\perp} P_{n_{1}}\right\|$ are both greater than $\epsilon / 2$ (such an n_{1} exists because $\left\|P_{m_{1}}^{\perp} U P_{m_{1}}\right\|$ and $\left\|P_{m_{1}} U P_{m_{1}}^{\perp}\right\|$ are greater than ϵ and the P_{n} tend strongly to the identity).

Assume that we have obtained $\left\{E_{k}, F_{k}\right\}_{k=1}^{l}$. To obtain m_{l+1} and n_{l+1}, note that $U P_{n t}$ and $P_{n_{l}} U$ are compact; hence, there is a positive integer j such that $\left\|P_{n}^{\perp} U P_{n_{1}}\right\|$ and $\left\|P_{n_{1}} U P_{n}^{\perp}\right\|$ are both less than $\epsilon / 4$ for all $n \geqq j$. Let m_{l+1} be the first integer in M greater than j.

Then

$$
\begin{aligned}
\left\|P_{m_{l+1}}^{\perp} U P_{m_{l+1}} P_{n_{1}}^{\perp}\right\| & \geqq\left\|P_{m_{l+1}}^{\perp} U P_{m_{l+1}}\right\|-\left\|P_{m_{l+1}}^{\perp} U P_{m_{l+1}} P_{m_{l}}\right\| \\
& \geqq \epsilon-\left\|P_{m_{l+1}}^{\perp} U P_{n_{i}}\right\| \\
& \geqq \epsilon-\epsilon / 4=\frac{3}{4} \epsilon .
\end{aligned}
$$

Similarly, $\left\|P_{m_{l+1}} P_{n_{l}}^{\perp} U P_{m_{l+1}}^{\perp}\right\| \geqq 3 \epsilon / 4$ by the same argument. Let n_{l+1} be the first positive integer greater than m_{l+1} for which $\left\|P_{n_{t+1}} P_{m_{t+1}}^{\perp} U P_{m_{t+1}} P_{n_{1}}^{\perp}\right\|$ and $\left\|P_{m_{l+1}} P_{n_{l}}^{\perp} U P_{m_{l+1}}^{\perp} P_{n_{l+1}}\right\|$ are both greater than $\epsilon / 2$. Let $F_{l+1}=P_{m_{l+1}} P_{n_{l}}^{\perp}$ and let $E_{l+1}=P_{m_{l+1}} P_{m_{l+1}}^{\perp}$. Continue inductively.

We select a subsequence $\left\{E_{i,}, F_{i j}\right\}_{j=1}^{\infty}$ of $\left\{E_{i}, F_{i}\right\}_{i=1}^{\infty}$ as follows: first, we let $\left\{\alpha_{i j}\right\}_{i, j=1}^{\infty}$ be any sequence of positive real numbers such that $\sum_{i, j} \alpha_{i j}^{2} \leqq$ $\epsilon^{2} / 16$. Let $i_{1}=1$. Assuming that we have obtained i_{k}, let i_{k+1} be the next positive integer such that for all $l \not \equiv k+1,\left\|E_{i_{k+1}} U F_{i i}\right\|$ and $\left\|F_{i_{k+1}} U E_{i i}\right\|$ are less than $\alpha_{k+1, l}$ while $\left\|E_{i l} U F_{i k+1}\right\|$ and $\left\|F_{i l} U E_{i k+1}\right\|$ are less than $\alpha_{l, k+1}$. This is possible because $U F_{i i}, F_{i i} U$ (respectively $U E_{i,}, E_{i i} U$) are compact and the E_{i} (respectively F_{i}) tend weakly to zero. Continue inductively. Now for each i_{k} there is a rank one partial isometry $T_{i k} \in \mathscr{L}\left(E_{i k} \mathscr{H}, F_{i k} \mathscr{H}\right)$ such that $\left\|E_{i k} U T_{i k} U^{*} F_{i k}\right\| \geqq \epsilon^{2} / 4$. Clearly, $T=\sum_{k=1}^{\infty} T_{i k}$ is a partial isometry in $\mathscr{T}(\mathscr{P})$. So, for arbitrary l in \mathbf{N},

$$
E_{i i}\left(U T U^{*}\right) F_{i l}=\sum_{k=1}^{\infty} E_{i k} U T_{i k} U^{*} F_{i i}=E_{i i} U T_{i i} U^{*} F_{i i}+\sum_{\substack{k=1 \\ k \neq 1}}^{\infty} E_{i i} U T_{i k} U^{*} F_{i i} .
$$

Hence,

$$
\begin{aligned}
& \left\|E_{i l}\left(U T U^{*}\right) F_{i l}\right\|+\left\|\sum_{\substack{k=1 \\
k \neq l}}^{\infty} E_{i i} U T_{i k} U^{*} F_{i l}\right\| \geqq\left\|E_{i l} U T_{i \iota} U^{*} F_{i l}\right\| . \\
& \left\|E_{i i}\left(U T U^{*}\right) F_{i l}\right\|+\sum_{\substack{k=1 \\
k \neq 1}}^{\infty}\left\|E_{i l} U T_{i_{k}} U^{*} F_{i l}\right\| \geqq(\epsilon / 2)^{2}=\epsilon^{2} / 4 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mid E_{i l}\left(U T U^{*}\right) F_{i u} \| & \geqq \frac{\epsilon^{2}}{4}-\sum_{k \neq l}\left\|E_{i i} U F_{i k}\right\| \cdot\left\|E_{i k} U^{*} F_{i l}\right\| \\
& \geqq \frac{3 \epsilon^{2}}{16}
\end{aligned}
$$

Since i_{l} was arbitrary, it follows from the construction that

$$
\frac{3 \epsilon^{2}}{16} \leqq\left\|E_{i i}\left(U T U^{*}\right) F_{i i}\right\| \leqq\left\|P_{m_{i}}^{\perp}\left(U T U^{*}\right) P_{m_{i}}\right\|
$$

Hence,

$$
\varlimsup_{k}\left\|P_{k}^{\perp}\left(U T U^{*}\right) P_{k}\right\|>0
$$

and it follows by definition of $\mathscr{Q T}(\mathscr{P})$ that $U T U^{*}$ does not belong to $2 \mathscr{T}(\mathscr{P})$. This contradicts our assumption that U implements an automorphism of $\mathscr{\mathscr { T }}(\mathscr{P})$ and thus concludes the argument of the proof of Theorem 3.

Definition 4. Let $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite dimensional projections increasing to the identity on a Hilbert space \mathscr{H}. An operator T is said to be strictly upper triangular for \mathscr{P} if $P_{n}^{\perp} T P_{n+1}=0$ for all n in \mathbf{N}.

Remark 5. Note that in the proof of Theorem 3 we showed that if U does not belong to $\mathscr{Q} \mathscr{T}(\mathscr{P})$ then there is an operator T, which is strictly upper triangular for \mathscr{P}, and such that $U T U^{*}$ does not belong to $2 \mathscr{T}(\mathscr{P})$.

Remark 6. Let $\mathscr{\mathscr { S }}=\left\{S_{n}\right\}_{n=1}^{\infty}$ be any sequence of finite dimensional projections increasing to the identity on \mathscr{H}. Let $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ be a subsequence of \mathscr{S}. Then $\mathscr{2 T}(\mathscr{S}) \subseteq \mathscr{Q} \mathscr{T}(\mathscr{P})$. Equality may fail; however, if T is strictly upper triangular for \mathscr{P} then T belongs to $\mathscr{2 T}(\mathscr{Y})$.

Definition 7. A sequence of projections $\mathscr{G}=\left\{S_{n}\right\}_{n=1}^{\infty}$ increasing to the identity on a Hilbert space \mathscr{H} is said to be a defining sequence for a quasitriangular algebra \mathscr{A} if and only if $\mathscr{A}=\left\{T \in \mathscr{L}(\mathscr{H}):\left\|S_{n}^{\perp} T S_{n}\right\| \rightarrow 0\right\}$.

Remark 8. Suppose that U is a unitary operator which implements an isomorphism $T \rightarrow U T U^{*}$ from $\mathscr{2 T}(\mathscr{P})$ onto $\mathscr{2}(\mathscr{T})$. Then U maps defining sequences of $\mathscr{2 T}(\mathscr{P})$ to defining sequences of $\mathscr{2 T}(\mathscr{Y})$.

Lemma 9. Suppose that $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ and $\mathscr{S}=\left\{S_{n}\right\}_{n=1}^{\infty}$ are sequences of finite dimensional projections increasing to the identity such that $\mathscr{P} \cup \mathscr{S}$ is totally ordered by inclusion. Then $2 \mathscr{T}(\mathscr{P})=2 \mathscr{T}(\mathscr{G})$ if and only if there exist positive integers m_{0} and n_{0} such that $P_{m_{0}+k}=S_{n_{u}+k}$ for all k in \mathbf{N}.

Proof. \Leftarrow : This conclusion is clear.
\Rightarrow : Assume that $\mathscr{2 T}(\mathscr{P})=\mathscr{2} \mathscr{T}(\mathscr{Y})$. Then $\mathscr{\mathscr { T }}(\mathscr{P})=\mathscr{2} \mathscr{T}(\mathscr{P} \cup \mathscr{Y})$. We assert that \mathscr{P} contains all but perhaps finitely many of the projections in $\mathscr{P} \cup \mathscr{S}$. Contrapositively, assume not. Let $\mathscr{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$ be a total ordering of $\mathscr{P} \cup \mathscr{S}$ and choose an infinite subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ for which $R_{n k} \notin \mathscr{P}$ but $R_{n k+1} \in \mathscr{P}$. Let T_{k} be any rank one partial isometry with initial space $\left(R_{n k} \ominus R_{n k-1}\right) \mathscr{H}$ and final space $\left(R_{n k+1} \ominus R_{m_{k}}\right) \mathscr{H}$. Then $T=\sum_{k=1}^{\star} T_{k}$ is a partial isometry which belongs to $\mathscr{2 T}(\mathscr{P})$ but not to $\mathscr{2 T}(\mathscr{P} \cup \mathscr{Y})$.

Hence, $\mathscr{2} \mathscr{T}(\mathscr{P} \cup \mathscr{S}) \varsubsetneqq \mathscr{Q} \mathscr{T}(\mathscr{P})$. We conclude that \mathscr{P} contains all but perhaps finitely many of the projections in $\mathscr{P} \cup \mathscr{S}$.

By symmetry, \mathscr{S} contains all but perhaps finitely many of the projections in $\mathscr{P} \cup \mathscr{S}$. So there exists a positive integer k such that $\left\{P_{n}: \operatorname{dim} P_{n} \geqq k\right\} \subseteq \mathscr{S}$ and $\left\{S_{n}: \operatorname{dim} S_{n} \geqq k\right\} \subseteq \mathscr{P}$. Let m_{0} be the first positive integer such that $\operatorname{dim}\left(P_{m_{0}}\right) \geqq k$ and let n_{0} be the first integer such that $\operatorname{dim}\left(S_{n_{0}}\right) \geqq k$. Then $P_{m_{0}+k}=S_{n_{0}+k}$ for all $k \in \mathbf{N}$.

Theorem 10. $\mathscr{S}=\left\{S_{n}\right\}_{n=1}^{\infty}$ is a defining sequence for $\mathscr{2 T}(\mathscr{P})$ if and only if there exist positive integers m_{0} and n_{0} such that $\lim _{k}\left\|P_{m_{0}+k}-S_{n_{0}+k}\right\|=0$.

Proof. $\Leftarrow:$ We note that $\mathscr{2 T}(\mathscr{S}) \subseteq \mathscr{2} \mathscr{T}(\mathscr{P})$ since for T in $\mathscr{2} \mathscr{T}(\mathscr{S})$,

$$
\begin{aligned}
\left\|P_{m_{0}+k}^{\perp} T P_{m_{0}+k}\right\| \leqq & \left\|S_{n_{0}+k}^{\perp} T S_{n_{0}+k}\right\|+\left\|\left(P_{m_{0}+k}^{\perp}-S_{n_{0}+k}^{\perp}\right) T S_{n_{0}+k}\right\| \\
& +\left\|P_{m_{0}+k}^{\perp} T\left(P_{m_{0}+k}-S_{n_{0}+k}\right)\right\| \\
\leqq & \left\|S_{n_{0}+k}^{\perp} T S_{n_{0}+k}\right\|+\left\|P_{m_{0}+k}^{\perp}-S_{n_{0}+k}^{\perp}\right\| \cdot\|T\| \\
& +\|T\| \cdot\left\|P_{m_{0}+k}-S_{n_{0}+k}\right\|,
\end{aligned}
$$

and the other inclusion follows by symmetry.
\Rightarrow : We assume that $\mathscr{S}=\left\{S_{n}\right\}_{n=1}^{\infty}$ is a defining sequence for $\mathscr{2}(\mathscr{T})$. Let V be any unitary operator such that $\left\{V S_{n} V^{*}\right\}_{n=1}^{\infty} \cup\left\{P_{n}\right\}_{n=1}^{\infty}$ is a sequence of projections totally ordered by set inclusion.

Let $\mathscr{W}=\left\{W_{n}\right\}_{n=1}^{\infty}$ with $W_{n}=V S_{n} V^{*}$ for each n. We assert that V belongs to $2 \mathscr{T}(\mathscr{W})$. So assume that T is strictly upper triangular for \mathscr{W}; it suffices to show that $V T V^{*}$ belongs to $2 \mathscr{T}(\mathscr{W})$ by Remark 5. By Remark 6, T belongs to $2 \mathscr{T}(\mathscr{P} \cup \mathscr{W}) \subseteq \mathscr{2} \mathscr{T}(\mathscr{P})$ so that it remains to observe that $\quad V \mathscr{O}(\mathscr{P}) V^{*} \subseteq \mathscr{2} \mathscr{T}(\mathscr{W})$: $\quad W_{n}^{\perp}\left(V T V^{*}\right) W_{n}=$ $\left(V S_{n}^{\perp} V^{*}\right)\left(V T V^{*}\right)\left(V S_{n} V^{*}\right)=V S_{n}^{\perp} T S_{n} V^{*}$, so that $\left\|W_{n}^{\perp}\left(V T V^{*}\right) W_{n}\right\|=$ $\left\|V S_{n}^{\perp} T S_{n} V^{*}\right\|=\left\|S_{n}^{\perp} T S_{n}\right\| \rightarrow 0$.

Hence, we conclude that V belongs to $2 \mathscr{T}(\mathscr{W})$. Since $2 \mathscr{T}(\mathscr{W})$ is inverse-closed by Lemma 2, it follows that $\left\|W_{n}^{\perp} V W_{n}\right\| \rightarrow 0$ and $\left\|W_{n} V W_{n}^{\perp}\right\|=\left\|W_{n}^{\perp} V^{*} W_{n}\right\| \rightarrow 0$.
(1) Since $W_{n} V=V S_{n}$, we have that $W_{n} V W_{n}^{\perp}=V S_{n} W_{n}^{\perp}$ so that $\left\|W_{n} V W_{n}^{\perp}\right\|=\left\|V S_{n} W_{n}^{\perp}\right\|=\left\|S_{n} W_{n}^{\perp}\right\| \rightarrow 0$ and
(2) Since $W_{n}^{\perp} V=V S_{n}^{\perp}$, we have that $W_{n}^{\perp} V W_{n}=V S_{n}^{\perp} W_{n}$ so that $\left\|W_{n}^{\perp} V W_{n}\right\|=\left\|V S_{n}^{\perp} W_{n}\right\|=\left\|S_{n}^{\perp} W_{n}\right\| \rightarrow 0$.

Since $\left\|S_{n}-W_{n}\right\|=\max \left\{\left\|S_{n}^{\perp} W_{n}\right\|,\left\|S_{n} W_{n}^{\perp}\right\|\right\}[5$, Lemma 6] it follows that $\lim _{n}\left\|S_{n}-W_{n}\right\|=0$ and by a previous argument that \mathscr{W} is a defining sequence for $\mathscr{2} \mathscr{T}(\mathscr{P})$. It follows from Lemma 9 that there are integers m_{0} and n_{0} such that $W_{n 0+k}=P_{m_{0}+k}$ for all k in N. Hence

$$
\lim _{k}\left\|S_{n_{0}+k}-P_{m_{0}+k}\right\|=0
$$

which concludes the proof.
Example 11. As an easy consequence of Theorem 10, it follows that there exist defining sequences $\mathscr{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ and $\mathscr{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$ for a quasitriangular algebra \mathscr{A} such that $\left\{P_{n} \vee R_{n}\right\}_{n=1}^{\infty}$ is not a defining sequence for \mathscr{A} (" v " denotes the supremum of two projections). This phenomenon is suggested by an example in [3, p. 285].

We shall say that two subsets of $\mathscr{L}(\mathscr{H}), \mathscr{S}$ and \mathscr{T}, are locally isomorphic if each operator in \mathscr{S} is unitarily equivalent to an operator in \mathscr{T} and conversely. Because every quasitriangular operator is a compact perturbation of a triangular operator, it follows that any two quasitriangular algebras are locally isomorphic; from Theorem 12 we conclude that they are not necessarily isomorphic.

Theorem 12. Let $\mathscr{2} \mathscr{T}(\mathscr{P})$ and $2 \mathscr{T}(\mathscr{S})$ be quasitriangular algebras. Then $2 \mathscr{T}(\mathscr{P})$ and $2 \mathscr{T}(\mathscr{S})$ are algebraically isomorphic if and only if there exist positive integers j_{0} and l_{0} such that $\operatorname{dim}\left(P_{j 0^{+}+k}\right)=\operatorname{dim}\left(S_{l_{0}+k}\right)$ for all k in N.

Proof. \Leftarrow : If we assume that there exist positive integers j_{0} and l_{0} such that $\operatorname{dim}\left(P_{j_{0}+k}\right)=\operatorname{dim}\left(S_{l_{0}+k}\right)$ for all k in \mathbf{N}, then we can define a unitary operator U such that $U P_{j++k} U^{*}=S_{k+k}$ for all k in \mathbf{N}. We assert that U implements an isomorphism from $2 \mathscr{T}(\mathscr{P})$ to $\mathscr{2 T}(\mathscr{Y})$.
\Rightarrow : Assume that there is a map α from $\mathscr{2 T}(\mathscr{P})$ to $\mathscr{2 T}(\mathscr{S})$ which preserves algebraic structure. Since $2 \mathscr{T}(\mathscr{P})$ and $2 \mathscr{T}(\mathscr{P})$ are Banach algebras, each of which contains the set of finite rank operators, it follows from [6, Theorem 2.5.19] that there exists an invertible operator S such that $\alpha(T)=S T S^{-1}$ for all T in $2 \mathscr{T}(\mathscr{P})$.

We conlude from [1, Theorem 3.3] that S has a factorization $S=U A$ where A belongs to $\mathscr{T}(\mathscr{P})$ and U is unitary. Then we note that $R_{n}=U P_{n} U^{*}$ is a defining sequence for $\mathscr{2 T}(\mathscr{S})$; by Theorem 10 , we note that there exist positive integers m_{0} and n_{0} such that $\left\|R_{m_{0}+k}-S_{n_{0}+k}\right\| \rightarrow 0$. So, there exists a positive integer d such that $\left\|R_{m_{0}+d+k}-S_{n_{0}+d+k}\right\|<1$ for all k in \mathbf{N}. Hence, $\operatorname{dim}\left(R_{m_{0}+d+k}\right)=\operatorname{dim}\left(S_{n_{0}+d+k}\right)$ for all k in \mathbf{N}. Since $\operatorname{dim}\left(P_{n}\right)=\operatorname{dim}\left(R_{n}\right)$ for all n in \mathbf{N}, let $j_{0}=m_{0}+d$ and let $l_{0}=n_{0}+d$ to obtain the theorem.

References

1. W. B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis, 20 (1975), 208-233.
2. R. G. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J., 37 (1970), 177-188.
3. P. R. Halmos, Quasitriangular operators, Acta Sci. Mat. (Szeged), 29 (1968), 283-293.
4. - Ten problems in Hilbert space, Bulletin Amer. Math. Soc., 76 (1970), 887-933.
5. J. K. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc., (to appear).
6. C. E. Rickart, General Theory of Banach Algebras, D. van Nostrand Company, Inc. (1960).
7. B. Sz.-Nagy, Specktraldarstellung linearer Transformation des Hilbertschen Raumes, Berlin, (1942).

Received February 23, 1976.

University of Pennsylvania

