RELATIONS BETWEEN CONVERGENCE OF SERIES AND CONVERGENCE OF SEQUENCES

D. LANDERS AND L. ROGGE

Let $A = (a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. For $\xi \in (0, 1)$ define

$$S_n(\xi, A) := \sum_{k=\lfloor n\xi \rfloor+1}^n a_k, \qquad n \in \mathbb{N}$$

where [x] is the greatest integer less than or equal to x. If no ambiguity can arise we write $S_n(\xi)$ instead of $S_n(\xi, A)$. In the theory of regularly varying sequences the problem arose of concluding from the convergence of the sequence $S_n(\xi)$, $n \in \mathbb{N}$, for all ξ in an appropriate set $K \subset (0, 1)$ of real numbers, that the sequence a_n , $n \in \mathbb{N}$, converges to zero. In this paper we give some positive results for the case that K consists of two elements.

In [3] it was shown that such a conclusion is not possible if K consists only of a single rational number and that the conclusion is possible if $K = \{\xi, 1 - \xi\}$ with $\xi \in (0, 1)$ irrational. The question whether such a conclusion is possible if K consists of one irrational or all rational numbers was answered negatively in [4].

DEFINITION 1. If $a_n \in \{0, 1\}$, $n \in \mathbb{N}$, and $a_n = 1$ for infinitely many $n \in \mathbb{N}$, then we call $A := (a_n)_{n \in \mathbb{N}}$ a 0-1 sequence.

Let $A = (a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that $S_n(\xi_1, A)$, $n \in \mathbb{N}$, and $S_n(\xi_2, A)$, $n \in \mathbb{N}$, are convergent for different $\xi_1, \xi_2 \in (0, 1)$. Let $\alpha = \liminf_{n \in \mathbb{N}} a_n$ and $\beta = \limsup_{n \in \mathbb{N}} \sup_{n \in \mathbb{N}} a_n$. Since $\alpha = \beta$ implies $\lim_{n \in \mathbb{N}} a_n = 0$ — as otherwise $\lim_{n \in \mathbb{N}} |S_n(\xi_1, A)| = \infty$ — the Lemma below shows that only the following three cases are possible:

(I) $\lim_{n \in \mathbb{N}} a_n = 0$

(II) $\alpha < \beta$ and each $\gamma \in (\alpha, \beta)$ is an accumulation point of a_n , $n \in \mathbb{N}$

(III) $\alpha < \beta$ and there exists a 0-1 sequence B such that $S_n(\xi_i, B)$, $n \in \mathbb{N}$ converges for i = 1, 2.

LEMMA 2. Let $A = (a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that not every point between α : = $\liminf_{n \in \mathbb{N}} a_n$ and β : = $\limsup_{n \in \mathbb{N}} a_n$ is an accumulation point of the sequence a_n , $n \in \mathbb{N}$. If $\xi_i \in (0, 1)$, $i = 1, \dots, k$, and $S_n(\xi_i, A)$, $n \in \mathbb{N}$, is convergent for $i = 1, \dots, k$, then there exists a 0–1 sequence $B = (b_n)_{n \in \mathbb{N}}$, such that $S_n(\xi_i, B)$, $n \in \mathbb{N}$, is convergent for i = $1, \dots, k$. *Proof.* Since not every point between α and β is an accumulation point of the sequence $a_n, n \in \mathbb{N}$, there exist γ, δ with $\alpha < \gamma < \delta < \beta$ such that $a_n \notin (\gamma, \delta)$ for all $n \in \mathbb{N}$. Since we can consider the sequence $(a_n)_{n \in \mathbb{N}}$ or the sequence $(-a_n)_{n \in \mathbb{N}}$, we may w.l.g. assume that $\gamma \ge 0$.

Let $b_n = 0$ if $a_n \leq \gamma$ and $b_n = 1$ if $a_n \geq \delta$. Then $B = (b_n)_{n \in \mathbb{N}}$ is a 0-1 sequence. According to our assumption there exists $n_0 \in \mathbb{N}$ such that

$$(+) \qquad |S_{n+1}(\xi_i, A) - S_n(\xi_i, A)| < \delta - \gamma \quad \text{if} \quad n \ge n_0, \quad i = 1, \cdots, k.$$

Since

$$S_{n+1}(\xi_i, A) - S_n(\xi_i, A) = \begin{cases} a_{n+1}, & \text{if } [n\xi_i] = [(n+1)\xi_i] \\ a_{n+1} - a_{[n\xi_i]+1}, & \text{otherwise} \end{cases}$$

we obtain from (+) that $S_{n+1}(\xi_i, B) = S_n(\xi_i, B)$ for all $n \ge n_0$, $i = 1, \dots, k$, whence $S_n(\xi_i, B)$, $n \in \mathbb{N}$, converges for $i = 1, \dots, k$.

Now we shall prove that for most pairs of real numbers — more exactly for all $\xi_1, \xi_2 \in (0, 1)$ with $\xi'_1 \neq \xi_2^s$ for all $r, s \in \mathbb{N}$ — case (III) cannot occur.

THEOREM 3. Let $a_n, n \in \mathbb{N}$, be a sequence of real numbers and $\xi_1, \xi_2 \in (0, 1)$ such that $S_n(\xi_i), n \in \mathbb{N}$, is convergent for i = 1, 2.

Assume that:

(*)
$$\xi_1' \neq \xi_2^s \text{ for all } r, s \in \mathbb{N}.$$

Then $a_n, n \in \mathbb{N}$, converges to zero or every real number between $\liminf_{n \in \mathbb{N}} a_n$ and $\limsup_{n \in \mathbb{N}} a_n$ is an accumulation point of $a_n, n \in \mathbb{N}$.

Proof. Assume that the assertion is false.

Hence according to Lemma 2 we may assume that $a_n, n \in \mathbb{N}$, is a 0-1 sequence. Let $\xi_1 < \xi_2$ and put $\eta_i := 1/\xi_i$.

Then there exists z > 1 with $\eta_1 = \eta_2^z$. We have to prove that z is rational. Since $S_n(\xi_i)$, $n \in \mathbb{N}$, converges for i = 1, 2 and $a_n, n \in \mathbb{N}$, is a 0–1 sequence, there exists $n_0 \in \mathbb{N}$ with

(1)
$$S_n(\xi_i) = S_{n_0}(\xi_i)$$
 for $n \ge n_0$ $(i = 1, 2)$

(2)
$$n_0(1-\eta_2^{-1/3}) > 2/(\eta_2-1)$$

where $j := \lim_{n \in \mathbb{N}} S_n(\xi_2) \in \mathbb{N}$.

Let $N_1:=\{n \in \mathbb{N}: n > n_0 \text{ and } a_n = 1\}$ and let $\langle a \rangle:=\min\{n \in \mathbb{N}: a \leq n\}$ for $n \geq 1$.

Since $\langle t \cdot \eta \rangle = \inf\{n \in \mathbb{N}: [n \cdot 1/\eta] = t\}, t \in \mathbb{N}, \eta > 1$, we have

$$S_{\langle t \cdot \eta \rangle}\left(\frac{1}{\eta}\right) - S_{\langle t \cdot \eta \rangle - 1}\left(\frac{1}{\eta}\right) = a_{\langle t \cdot \eta \rangle} - a_t \qquad (t \in \mathbb{N}, \ \eta > 1)$$

and hence we obtain from (1) that

(3)
$$t \in \mathbf{N}_1$$
 implies $\langle t \cdot \eta_i \rangle \in \mathbf{N}_1$ for $i = 1, 2$.

Define inductively for $t \in \mathbf{N}_1$, $\eta > 1$

$$\tau^0(t,\eta):=t$$

and

$$\tau^{n}(t,\eta):=\langle \tau^{n-1}(t,\eta)\cdot\eta\rangle.$$

According to (3) we directly obtain that

(4)
$$t \in \mathbf{N}_1$$
 implies $\tau^n(t, \eta_i) \in \mathbf{N}_1$ for $n \in \mathbf{N}$ and $i = 1, 2$.

Since $j = S_n(\xi_2) \in \mathbb{N}$ for all $n \ge n_0$ according to (1), there exist exactly j elements $t_i \in \mathbb{N}_1$, $i = 1, \dots, j$ with

(5)
$$n_0 < t_1 < t_2 < \cdots < t_j \leq \langle n_0 \cdot \eta_2 \rangle.$$

Since $\eta_2 > 1$, (5) implies

(6)
$$\tau^{n}(n_{0}, \eta_{2}) < \tau^{n}(t_{1}, \eta_{2}) < \cdots < \tau^{n}(t_{j}, \eta_{2}) \leq \tau^{n+1}(n_{0}, \eta_{2})$$

for all $n \in \mathbb{N}$. Now we obtain from relations (1), (4), (5) and (6) that

(7)
$$\mathbf{N}_1 = \{ \tau^n(t_i, \eta_2) : i = 1, \cdots, j, n \in \mathbf{N} \cup \{0\} \}.$$

As by (4) $\tau^n(t_1, \eta_1) \in \mathbb{N}_1$, according to (7) for each $n \in \mathbb{N}$ there exist $k(n) \in \mathbb{N}$, $i(n) \in \{1, \dots, j\}$ with

(8)
$$\tau^{n}(t_{1}, \eta_{1}) = \tau^{k(n)}(t_{i(n)}, \eta_{2}).$$

By induction it is easily proved that

(9)
$$|\tau^{n}(t,\eta)-t\eta^{n}| \leq 1+\eta+\cdots+\eta^{n-1}=(\eta^{n}-1)/(\eta-1)$$

for $t \in \mathbb{N}$ and n > 1.

Since $t_i < \eta_2 t_1$ for $i = 1, \dots, j$ (see (5)) there exist $x_i \in [0, 1]$ with

 $t_i = t_1 \eta_2^{x_i}$. Then $x_1 = 0 < x_2 < \cdots < x_j < 1 = : x_{j+1}$. Hence there exists $l \in \{1, \dots, j\}$ with

$$(10) x_{l+1} - x_l \ge \frac{1}{j} .$$

Let us now assume that z is irrational. According to ([2], p. 69) there exists an element $m \in \mathbb{N}$ with

(11)
$$x_{l} + \frac{1}{3j} < mz - [mz] < x_{l} + \frac{2}{3j}.$$

Since $\eta_1 = \eta_2^z$ we obtain from (8) and (9) that

$$|t_1\eta_2^{mz}-t_{i(m)}\eta_2^{k(m)}| \leq \frac{1}{\eta_1-1} \eta_2^{mz}+\frac{1}{\eta_2-1} \eta_2^{k(m)}$$

and hence

(12)
$$|t_1\eta_2^{mz}-t_{i(m)}\eta_2^{k(m)}| \leq \frac{2}{\eta_2-1} \eta_2^{\max(mz,k(m))}.$$

Now we distinguish four cases

(i) If mz < k(m) then $mz - k(m) \le -1/3j$ according to (10) and (11). Hence we obtain from (5) and (2) that

$$\left|t_{1}\eta_{2}^{m^{2}-k(m)}-t_{i(m)}\right| \geq t_{1}-t_{1}\eta_{2}^{m^{2}-k(m)} \geq \left|t_{1}\left(1-\eta_{2}^{-1/3}\right)\right| \geq \frac{2}{\eta_{2}-1}$$

which contradicts (12).

In the following three cases we assume that mz > k(m).

(ii) Let $i(m) \leq l$: As $mz - k(m) \geq x_i + 1/3j$ by (11) we obtain from (5) and (2) that

$$|t_1 - t_{i(m)}\eta_2^{k(m) - mz}| \ge t_1 - t_1\eta_2^{x_{i(m)} + k(m) - mz} \ge t_1(1 - \eta_2^{-1/3}) > \frac{2}{\eta_2 - 1}$$

which contradicts (12).

(iii) Let i(m) > l and [mz] = k(m): Then $mz - k(m) \le x_{l+1} - 1/3j$ by (10) and (11), and we obtain from (5) and (2) that

$$|t_1 - t_{i(m)}\eta_2^{k(m)-mz}| \ge t_{l+1}\eta_2^{-(x_{l+1}-1/3j)} - t_1 = t_1(\eta_2^{1/3j} - 1) > \frac{2}{\eta_2 - 1}$$

which contradicts (12).

(iv) If i(m) > l and [mz] > k(m), then $mz - k(m) \ge 1 + 1/3j$ by (11), and we obtain from (5) and (2)

468

$$|t_1 - t_{i(m)}\eta_2^{k(m)-mz}| \ge t_1 - t_j\eta_2^{-(1+1/3j)} \ge t_1 - t_1\eta_2^{-1/3j} = t_1(1 - \eta_2^{-1/3j}) > \frac{2}{\eta_2 - 1}$$

which contradicts (12).

Thus we have shown that the assumption of z being irrational leads to a contradiction.

If $r, s \in \mathbb{N}$ denote by (r, s) the greatest common divisor of r and s.

The following remark shows that for two rational numbers condition (*) of Theorem 3 is nearly always fulfilled.

REMARK 4. If $\xi_1, \xi_2 \in (0, 1)$ are rational numbers and $\xi'_1 = \xi_2^s$ for $r, s \in \mathbb{N}$ with (r, s) = 1 then there exist $t, u \in \mathbb{N}$ such that $\xi_1 = (t/u)^s$ and $\xi_2 = (t/u)^r$.

Proof. Let w.l.g. $\xi_i = l_i/m_i$ where $l_i, m_i \in \mathbb{N}$ and $(l_i, m_i) = 1$ for i = 1, 2. If $\xi'_1 = \xi^s_2$ i.e. $l'_1 m^s_2 = l^s_2 m'_1$, then $l'_1 = l^s_2$ and $m'_1 = m^s_2$.

We may choose r and s such that (r, s) = 1. Then by representation of l_i, m_i as a product of prime numbers we obtain $t, u \in \mathbb{N}$ with

 $t^{s} = l_{1}, \quad t^{r} = l_{2} \text{ and } u^{s} = m_{1}, \quad u^{r} = m_{2}.$

According to Theorem 3 Cases I and II can occur. According to Example 2 of [4] it is not possible to exclude Case II. Even if $S_n(\xi, A)$, $n \in \mathbb{N}$, converges for each rational number $\xi \in (0, 1)$ the sequence $a_n, n \in \mathbb{N}$, need not converge to zero.

We remark that the following questions remain unsolved:

(1) If ξ_1 and ξ_2 are two different irrational numbers, does the convergence of $S_n(\xi_i, A)$, $n \in \mathbb{N}$, (for i = 1, 2) imply that $a_n, n \in \mathbb{N}$, converges to zero?

(2) Give an exact characterization of those pairs of rational numbers ξ_1, ξ_2 for which only Case I or II is possible; is for instance the condition (*) of Theorem 3 such an exact characterization?

References

1. R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Mathematische Zeitschrift, to appear.

2. P. R. Halmos, *Measure Theory*, Van Nostrand Company, Princeton – New Jersey – London (1950).

3. R. Higgins, A note on a problem in the theory of sequences, Elemente der Mathematik, (1974), 37-39.

4. D. Landers and L. Rogge, On three problems for sequences, Manuscripta Mathematica, 17 (1975), 221–226.

Received February 11, 1976.

Universität Konstanz

Fachbereich Wirtschaftswissenschaften Statistik 7750 Konstanz Postfach 7733