RELATIONS BETWEEN CONVERGENCE OF SERIES AND CONVERGENCE OF SEQUENCES

D. Landers and L. Rogge

Let $A=\left(a_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of real numbers. For $\xi \in$ $(0,1)$ define

$$
S_{n}(\xi, A):=\sum_{k=\{n \xi \mid+1}^{n} a_{k}, \quad n \in \mathbf{N}
$$

where $[x]$ is the greatest integer less than or equal to x. If no ambiguity can arise we write $S_{n}(\xi)$ instead of $S_{n}(\xi, A)$. In the theory of regularly varying sequences the problem arose of concluding from the convergence of the sequence $S_{n}(\xi), n \in \mathbf{N}$, for all ξ in an appropriate set $K \subset(0,1)$ of real numbers, that the sequence $a_{n}, n \in \mathbf{N}$, converges to zero. In this paper we give some positive results for the case that K consists of two elements.

In [3] it was shown that such a conclusion is not possible if K consists only of a single rational number and that the conclusion is possible if $K=\{\xi, 1-\xi\}$ with $\xi \in(0,1)$ irrational. The question whether such a conclusion is possible if K consists of one irrational or all rational numbers was answered negatively in [4].

Definition 1. If $a_{n} \in\{0,1\}, n \in \mathbf{N}$, and $a_{n}=1$ for infinitely many $n \in \mathbf{N}$, then we call $A:=\left(a_{n}\right)_{n \in \mathrm{~N}}$ a $0-1$ sequence.

Let $A=\left(a_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of real numbers such that $S_{n}\left(\xi_{1}, A\right)$, $n \in \mathbf{N}$, and $S_{n}\left(\xi_{2}, A\right), n \in \mathbf{N}$, are convergent for different $\xi_{1}, \xi_{2} \in(0,1)$. Let $\alpha=\liminf _{n \in \mathrm{~N}} a_{n}$ and $\beta=\limsup \operatorname{suN}_{n \in \mathrm{~N}} a_{n}$. Since $\alpha=\beta$ implies $\lim _{n \in \mathrm{~N}} a_{n}=0$ - as otherwise $\lim _{n \in \mathrm{~N}}\left|S_{n}\left(\xi_{1}, A\right)\right|=\infty_{8}$ - the Lemma below shows that only the following three cases are possible:
(I) $\lim _{n \in \mathrm{~N}} a_{n}=0$
(II) $\alpha<\beta$ and each $\gamma \in(\alpha, \beta)$ is an accumulation point of a_{n}, $n \in \mathbf{N}$
(III) $\alpha<\beta$ and there exists a $0-1$ sequence B such that $S_{n}\left(\xi_{i}, B\right)$, $n \in \mathbf{N}$ converges for $i=1,2$.

Lemma 2. Let $A=\left(a_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of real numbers such that not every point between $\alpha:=\liminf _{n \in \mathrm{~N}} a_{n}$ and $\beta:=\limsup \operatorname{sun}_{n \in \mathrm{~N}} a_{n}$ is an accumulation point of the sequence $a_{n}, n \in \mathbf{N}$. If $\xi_{1} \in(0,1), i=1, \cdots, k$, and $S_{n}\left(\xi_{1}, A\right), n \in \mathbf{N}$, is convergent for $i=1, \cdots, k$, then there exists a $0-1$ sequence $B=\left(b_{n}\right)_{n \in \mathbb{N}}$, such that $S_{n}\left(\xi_{1}, B\right), n \in \mathbf{N}$, is convergent for $i=$ $1, \cdots, k$.

Proof. Since not every point between α and β is an accumulation point of the sequence $a_{n}, n \in \mathbf{N}$, there exist γ, δ with $\alpha<\gamma<\delta<\beta$ such that $a_{n} \notin(\gamma, \delta)$ for all $n \in \mathbf{N}$. Since we can consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ or the sequence $\left(-a_{n}\right)_{n \in \mathrm{~N}}$, we may w.l.g. assume that $\gamma \geqq 0$.

Let $b_{n}=0$ if $a_{n} \leqq \gamma$ and $b_{n}=1$ if $a_{n} \geqq \delta$. Then $B=\left(b_{n}\right)_{n \in \mathbb{N}}$ is a $0-1$ sequence. According to our assumption there exists $n_{0} \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|S_{n+1}\left(\xi_{i}, A\right)-S_{n}\left(\xi_{i}, A\right)\right|<\delta-\gamma \quad \text { if } \quad n \geqq n_{0}, \quad i=1, \cdots, k \tag{+}
\end{equation*}
$$

Since

$$
S_{n+1}\left(\xi_{i}, A\right)-S_{n}\left(\xi_{i}, A\right)=\left\{\begin{array}{l}
a_{n+1}, \text { if }\left[n \xi_{i}\right]=\left[(n+1) \xi_{i}\right] \\
a_{n+1}-a_{\left[n \xi_{]}+1\right.}, \quad \text { otherwise }
\end{array}\right.
$$

we obtain from $(+)$ that $S_{n+1}\left(\xi_{i}, B\right)=S_{n}\left(\xi_{i}, B\right)$ for all $n \geqq n_{0}, i=1, \cdots, k$, whence $S_{n}\left(\xi_{i}, B\right), n \in \mathbf{N}$, converges for $i=1, \cdots, k$.

Now we shall prove that for most pairs of real numbers - more exactly for all $\xi_{1}, \xi_{2} \in(0,1)$ with $\xi_{1}^{r} \neq \xi_{2}^{s}$ for all $r, s \in \mathbf{N}$ - case (III) cannot occur.

Theorem 3. Let $a_{n}, n \in \mathbf{N}$, be a sequence of real numbers and $\xi_{1}, \xi_{2} \in(0,1)$ such that $S_{n}\left(\xi_{i}\right), n \in \mathbf{N}$, is convergent for $i=1,2$.

Assume that:

$$
\begin{equation*}
\xi_{1}^{r} \neq \xi_{2}^{s} \quad \text { for all } \quad r, s \in \mathbf{N} \tag{*}
\end{equation*}
$$

Then $a_{n}, n \in \mathbf{N}$, converges to zero or every real number between $\lim \inf _{n \in \mathrm{~N}} a_{n}$ and $\limsup \sin _{n \in \mathrm{~N}} a_{n}$ is an accumulation point of $a_{n}, n \in \mathbf{N}$.

Proof. Assume that the assertion is false.
Hence according to Lemma 2 we may assume that $a_{n}, n \in \mathbf{N}$, is a $0-1$ sequence. Let $\xi_{1}<\xi_{2}$ and put $\eta_{i}:=1 / \xi_{i}$.

Then there exists $z>1$ with $\eta_{1}=\eta_{2}^{z}$. We have to prove that z is rational. Since $S_{n}\left(\xi_{i}\right), n \in \mathbf{N}$, converges for $i=1,2$ and $a_{n}, n \in \mathbf{N}$, is a $0-1$ sequence, there exists $n_{0} \in \mathbf{N}$ with

$$
\begin{align*}
& S_{n}\left(\xi_{i}\right)=S_{n_{0}}\left(\xi_{i}\right) \text { for } n \geqq n_{0} \quad(i=1,2) \tag{1}\\
& n_{0}\left(1-\eta_{2}^{-1 / 3}\right)>2 /\left(\eta_{2}-1\right) \tag{2}
\end{align*}
$$

where $j:=\lim _{n \in \mathbf{N}} S_{n}\left(\xi_{2}\right) \in \mathbf{N}$.
Let $N_{1}:=\left\{n \in \mathbf{N}: n>n_{0}\right.$ and $\left.a_{n}=1\right\}$ and let $\langle a\rangle:=\min \{n \in \mathbf{N}: a \leqq$ $n\}$ for $n \geqq 1$.

Since $\langle t \cdot \eta\rangle=\inf \{n \in \mathbf{N}:[n \cdot 1 / \eta]=t\}, t \in \mathbf{N}, \eta>1$, we have

$$
S_{\langle(\cdot \eta\rangle}\left(\frac{1}{\eta}\right)-S_{\langle(\cdot, \eta)-1}\left(\frac{1}{\eta}\right)=a_{\langle t \cdot \eta\rangle}-a_{t} \quad(t \in \mathbf{N}, \eta>1)
$$

and hence we obtain from (1) that

$$
\begin{equation*}
t \in \mathbf{N}_{1} \quad \text { implies } \quad\left\langle t \cdot \eta_{i}\right\rangle \in \mathbf{N}_{1} \quad \text { for } \quad i=1,2 . \tag{3}
\end{equation*}
$$

Define inductively for $t \in \mathbf{N}_{1}, \eta>1$

$$
\tau^{0}(t, \eta):=t
$$

and

$$
\tau^{n}(t, \eta):=\left\langle\tau^{n-1}(t, \eta) \cdot \eta\right\rangle .
$$

According to (3) we directly obtain that
(4) $t \in \mathbf{N}_{1}$ implies $\tau^{n}\left(t, \eta_{i}\right) \in \mathbf{N}_{1}$ for $n \in \mathbf{N}$ and $i=1,2$.

Since $j=S_{n}\left(\xi_{2}\right) \in \mathbf{N}$ for all $n \geqq n_{0}$ according to (1), there exist exactly j elements $t_{i} \in \mathbf{N}_{\mathrm{l}}, i=1, \cdots, j$ with

$$
\begin{equation*}
n_{0}<t_{1}<t_{2}<\cdots<t_{j} \leqq\left\langle n_{0} \cdot \eta_{2}\right\rangle . \tag{5}
\end{equation*}
$$

Since $\eta_{2}>1$, (5) implies

$$
\begin{equation*}
\tau^{n}\left(n_{0}, \eta_{2}\right)<\tau^{n}\left(t_{1}, \eta_{2}\right)<\cdots<\tau^{n}\left(t_{i}, \eta_{2}\right) \leqq \tau^{n+1}\left(n_{0}, \eta_{2}\right) \tag{6}
\end{equation*}
$$

for all $n \in \mathbf{N}$. Now we obtain from relations (1), (4), (5) and (6) that

$$
\begin{equation*}
\mathbf{N}_{1}=\left\{\tau^{n}\left(t_{i}, \eta_{2}\right): i=1, \cdots, j, n \in \mathbf{N} \cup\{0\}\right\} . \tag{7}
\end{equation*}
$$

As by (4) $\tau^{n}\left(t_{1}, \eta_{1}\right) \in \mathbf{N}_{1}$, according to (7) for each $n \in \mathbf{N}$ there exist $k(n) \in \mathbf{N}, i(n) \in\{1, \cdots, j\}$ with

$$
\begin{equation*}
\tau^{n}\left(t_{1}, \eta_{1}\right)=\tau^{k(n)}\left(t_{i(n)}, \eta_{2}\right) \tag{8}
\end{equation*}
$$

By induction it is easily proved that

$$
\begin{equation*}
\left|\tau^{n}(t, \eta)-t \eta^{n}\right| \leqq 1+\eta+\cdots+\eta^{n-1}=\left(\eta^{n}-1\right) /(\eta-1) \tag{9}
\end{equation*}
$$

for $t \in \mathbf{N}$ and $n>1$.
Since $t_{i}<\eta_{2} t_{1}$ for $i=1, \cdots, j$ (see (5)) there exist $x_{i} \in[0,1]$ with
$t_{i}=t_{1} \eta_{2}^{x_{i}}$. Then $x_{1}=0<x_{2}<\cdots<x_{j}<1=: x_{j+1}$. Hence there exists $l \in\{1, \cdots, j\}$ with

$$
\begin{equation*}
x_{l+1}-x_{l} \geqq \frac{1}{j} \tag{10}
\end{equation*}
$$

Let us now assume that z is irrational. According to ([2], p. 69) there exists an element $m \in \mathbf{N}$ with

$$
\begin{equation*}
x_{l}+\frac{1}{3 j}<m z-[m z]<x_{l}+\frac{2}{3 j} \tag{11}
\end{equation*}
$$

Since $\eta_{1}=\eta_{2}^{z}$ we obtain from (8) and (9) that

$$
\left|t_{1} \eta_{2}^{m z}-t_{i(m)} \eta_{2}^{k(m)}\right| \leqq \frac{1}{\eta_{1}-1} \eta_{2}^{m z}+\frac{1}{\eta_{2}-1} \eta_{2}^{k(m)}
$$

and hence

$$
\begin{equation*}
\left|t_{1} \eta_{2}^{m z}-t_{i(m)} \eta_{2}^{k(m)}\right| \leqq \frac{2}{\eta_{2}-1} \eta_{2}^{\max (m z, k(m))} \tag{12}
\end{equation*}
$$

Now we distinguish four cases
(i) If $m z<k(m)$ then $m z-k(m) \leqq-1 / 3 j$ according to (10) and (11). Hence we obtain from (5) and (2) that

$$
\left|t_{1} \eta_{2}^{m_{z}-k(m)}-t_{i(m)}\right| \geqq t_{1}-t_{1} \eta_{2}^{m_{z}-k(m)} \geqq \left\lvert\, t_{1}\left(1-\eta_{2}^{-1 / 3}\right)>\frac{2}{\eta_{2}-1}\right.
$$

which contradicts (12).
In the following three cases we assume that $m z>k(m)$.
(ii) Let $i(m) \leqq l$: As $m z-k(m) \geqq x_{i}+1 / 3 j$ by (11) we obtain from (5) and (2) that

$$
\left|t_{1}-t_{i(m)} \eta_{2}^{k(m)-m z}\right| \geqq t_{1}-t_{1} \eta_{2}^{x_{1}(m)+k(m)-m z} \geqq t_{1}\left(1-\eta_{2}^{-1 / 3\rangle}\right)>\frac{2}{\eta_{2}-1}
$$

which contradicts (12).
(iii) Let $i(m)>l$ and $[m z]=k(m)$: Then $m z-k(m) \leqq x_{l+1}-1 / 3 j$ by (10) and (11), and we obtain from (5) and (2) that

$$
\left|t_{1}-t_{i(m)} \eta_{2}^{k(m)-m z}\right| \geqq t_{l+1} \eta_{2}^{-\left(x_{l+1}-1 / 3 j\right)}-t_{1}=t_{1}\left(\eta_{2}^{1 / 3 j}-1\right)>\frac{2}{\eta_{2}-1}
$$

which contradicts (12).
(iv) If $i(m)>l$ and $[m z]>k(m)$, then $m z-k(m) \geqq 1+1 / 3 j$ by (11), and we obtain from (5) and (2)

$$
\left|t_{1}-t_{i(m)} \eta_{2}^{k(m)-m z}\right| \geqq t_{1}-t_{i} \eta_{2}^{-(1+1 / 3 j)} \geqq t_{1}-t_{1} \eta_{2}^{-1 / 3 j}=t_{1}\left(1-\eta_{2}^{-1 / 3)}\right)>\frac{2}{\eta_{2}-1}
$$

which contradicts (12).
Thus we have shown that the assumption of z being irrational leads to a contradiction.

If $r, s \in \mathbf{N}$ denote by (r, s) the greatest common divisor of r and s.
The following remark shows that for two rational numbers condition $\left(^{*}\right)$ of Theorem 3 is nearly always fulfilled.

Remark 4. If $\xi_{1}, \xi_{2} \in(0,1)$ are rational numbers and $\xi_{1}^{r}=\xi_{2}^{s}$ for $r, s \in \mathbf{N}$ with $(r, s)=1$ then there exist $t, u \in \mathbf{N}$ such that $\xi_{1}=(t / u)^{s}$ and $\xi_{2}=(t / u)^{r}$.

Proof. Let w.l.g. $\xi_{i}=l_{i} / m_{i}$ where $l_{i}, m_{i} \in \mathbf{N}$ and $\left(l_{i}, m_{i}\right)=1$ for $i=1,2$. If $\xi_{1}^{r}=\xi_{2}^{s}$ i.e. $l_{1}^{r} m_{2}^{s}=l_{2}^{s} m_{1}^{r}$, then $l_{1}^{r}=l_{2}^{s}$ and $m_{1}^{r}=m_{2}^{s}$.

We may choose r and s such that $(r, s)=1$. Then by representation of l_{i}, m_{i} as a product of prime numbers we obtain $t, u \in \mathbf{N}$ with

$$
t^{s}=l_{1}, \quad t^{r}=l_{2} \quad \text { and } \quad u^{s}=m_{1}, \quad u^{r}=m_{2}
$$

According to Theorem 3 Cases I and II can occur. According to Example 2 of [4] it is not possible to exclude Case II. Even if $S_{n}(\xi, A)$, $n \in \mathbf{N}$, converges for each rational number $\xi \in(0,1)$ the sequence $a_{n}, n \in \mathbf{N}$, need not converge to zero.

We remark that the following questions remain unsolved:
(1) If ξ_{1} and ξ_{2} are two different irrational numbers, does the convergence of $S_{n}\left(\xi_{i}, A\right), n \in \mathbf{N}$, (for $i=1,2$) imply that $a_{n}, n \in \mathbf{N}$, converges to zero?
(2) Give an exact characterization of those pairs of rational numbers ξ_{1}, ξ_{2} for which only Case I or II is possible; is for instance the condition $\left(^{*}\right)$ of Theorem 3 such an exact characterization?

References

1. R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Mathematische Zeitschrift, to appear.
2. P. R. Halmos, Measure Theory, Van Nostrand Company, Princeton - New Jersey - London (1950).
3. R. Higgins, A note on a problem in the theory of sequences, Elemente der Mathematik, (1974), 37-39.
4. D. Landers and L. Rogge, On three problems for sequences, Manuscripta Mathematica, 17 (1975), 221-226.

Received February 11, 1976.
Universität Konstanz
Fachbereich Wirtschaftswissenschaften Statistik
7750 Konstanz
Postfach 7733

