SOME RESULTS ON NORMALITY OF A GRADED RING

Wei-Eihn Kuan

Let $R = \bigoplus_{i \ge 0} R_i$ be a graded domain and let p be a homogeneous prime ideal in R. Let R_p be be the localization of R at p and $R_{(p)} = \{r_i/s_i \mid r_i s_i \in R_i \text{ and } s_i \notin p\}$. If $R_I \cap (R - p) \neq \emptyset$, then R_p is a localization of a transcendental extension of $R_{(p)}$. Thus R_p is normal (regular) if and only if $R_{(p)}$ is normal (regular). Let $\operatorname{Proj}(R) = \{p \mid p \text{ is a homogeneous prime ideal and}$ $p \not\subseteq \bigoplus_{i \ge 0} R_i\}$. Under certain conditions a Noetherian graded domain R is normal if $R_{(p)}$, is normal for each $p \in \operatorname{Proj}(R)$. If $R = \bigoplus_{i \ge 0} R_i$ is reduced and $F_0 = \{r_i/u_i \mid r_i, u_i \in R_i \text{ and } u_i \in U$ where U is the set of all nonzero divisors} is Noetherian, then the integral closure of R in the total quotient ring of R is also graded.

Introduction. Let $R = \bigoplus_{i \ge 0} R_i$ be a graded integral do-1. main. Let Spec(R) be the set of all prime ideals in R. Let $R_{+} = \bigoplus_{i>0} R_{i}$. R_{\pm} is an ideal in R. An ideal \mathfrak{A} in R is said to be irrelevant if $R_{\pm} \subset \mathcal{N}\mathfrak{A}$, the radical of \mathfrak{A} . Let $\operatorname{Proj}(R) = \{\mathbf{p} \in \operatorname{Spec}(R) | \mathbf{p} \subset R_{+} \text{ is homogeneous } \}$ and nonirrelevant}. For each $\mathbf{p} \in \operatorname{Spec}(R)$, let $R_{\mathbf{p}} = \{r/s \mid s \in R \text{ and } r/s \in R \}$ $s \notin \mathbf{p}$, and for each homogeneous prime ideal \mathbf{p} , let $R_{(\mathbf{p})} = \{r_i / s_i \mid r_i, s_i \in R_i\}$ and $s_i \notin \mathbf{p}$. (Note: $R_{(\mathbf{p})}$ in [1] is defined for $\mathbf{p} \in \operatorname{Proj}(R)$ only.) According to the terminology of Seidenberg [9], $R_{\rm p}$ is called the arithmetical local ring of R at **p** and $R_{(p)}$ the geometrical local ring of R at **p**. I prove that if $R_t \cap (R - \mathbf{p}) \neq \emptyset$ then $R_{\mathbf{p}}$ is the ring of quotients of a transcendental extension of $R_{(p)}$ relative to a multiplicative set, R_{p} is normal (regular) if and only if $R_{(p)}$ is normal (regular); see Theorem 2. In the case of an irreducible projective variety V over a field k in a projective n-space P_k^n , V/k is normal if the geometrical local ring of V at each $\mathbf{p} \in V$, $\mathfrak{O}_k^v(\mathbf{p})$ is integrally closed. V is arithmetically normal if the ring of strictly homogeneous coordinates k[V] is integrally closed. The latter implies the former. For the converse, various cohomological criteria are developed; see [3], [8], [9]. I attempt to study the normality of a graded domain R if $R_{(p)}$ is normal for every $p \in Proj(R)$. In this paper, I also obtain the following theorem: Let R be a Noetherian graded domain, say $R = R_0[x_1, \dots, x_n]$ and x_1, \dots, x_n are of homogeneous degree 1. Assume that R_0 contains a field k over which R_0 and $k(x_1, \dots, x_n)$ are linearly disjoint and separable. Let \mathfrak{B} be the kernel of the canonical map from the polynomial ring $R_{\theta}[X_1, \dots, X_n]$. Then R is normal if R_{θ} is normal, $R_{(\mu)}$ is normal for every $\mathbf{p} \in \operatorname{Proj}(R)$ and $\operatorname{coh.d.} \mathfrak{B} \cdot K[X_1, \dots, X_n] < n-1$, where K is the quotient field of R_{0} .

In the §4, we prove that under certain conditions on a graded ring R (not necessarily integral domain) the integral closure \overline{R} of R in the total quotient ring of R is also graded; see Theorem 6.

Our references on the elementary well known facts about graded rings can be found in [1] and [10].

I would like to thank Professor A. Seidenberg for many valuable discussions and suggestions during preparation of the research, while I was on sabbatical leave visiting Berkeley.

I would like also to thank the referee for his comments.

2. Normality and regularity of local domains. Let R be a commutative ring with identity 1. Let **p** be a prime ideal in R. By height of **p**, we mean the supremum of the length of chains of prime ideals $\mathbf{p}_0 \ge \mathbf{p}_1 \ge \mathbf{p}_2 \ge \cdots \ge \mathbf{p}_n$ with $\mathbf{p}_0 = \mathbf{p}$ and denote it by $ht(\mathbf{p})$. Let $R = \bigoplus_{i\ge 0} R_i$ be a graded integral domain. Let K be the quotient field of R. We say that R is integrally closed if R is integrally closed in K. Let $K_q = \{f_i/g_j \mid i - j = q; f_i \in R_i, g_j \in R_j\}$. K_0 is a field, $\sum_{q \in Z} K_q$ is a subring of K and the sum is direct, where Z stands for the set of integers. Elements in K_q are known as homogeneous elements of K of degree q. The following theorem was originally proved in [9] for projective varieties. We observe that the same holds true for non-Noetherian graded domain also.

THEOREM 1. Let $R = \bigoplus_{i \ge 0} R_i$ be a graded domain. Let $\mathbf{p} \in \text{Spec}(R)$ be nonhomogeneous. If $ht(\mathbf{p}) = 1$ then $R_{\mathbf{p}}$ is integrally closed.

Proof. Let \mathbf{p}^* be the ideal generated by all the homogeneous elements of \mathbf{p} . By [10, Lemma 3, p. 153] \mathbf{p}^* is a prime ideal and $\mathbf{p} \not\ge \mathbf{p}^* \ge 0$. Since $ht(\mathbf{p}) = 1$, $\mathbf{p}^* = 0$. Therefore \mathbf{p} contains no homogeneous element. Thus every nonzero homogeneous element u is in $R - \mathbf{p}$. It follows therefore $\bigoplus_{q \in \mathbb{Z}} K_q \subset R_p$. Let $f \in K$ be integral over R_p . Then there exists $h \in R - \mathbf{p}$ such that fh is integral over R. It follows from [10, Theorem 11, p. 157] that each of the homogeneous components is integral over R. By the preceeding, each homogeneous component of $f \cdot h$ is in R_p . Therefore $f \cdot h \in R_p$ and $f \in R_p$. Thus R_p is integrally closed.

Let $y \in K_1$ be any nonzero element. If $\xi \in K_q$, then $\xi/y^q \in K_0$. Moreover $R \subset K_0[y]$, $K = K_0(y)$, y is transcendental over K_0 , $K_q = K_0y^q$ and $\bigoplus_{q \in Z} K_q = K_0[y, 1/y]$. We have the following theorem.

THEOREM 2.[†] Let $R = \bigoplus_{i \ge 0} R_i$ with that $R_1 \ne 0$. Let **p** be a homogeneous prime ideal such that there exists an element $r_1 \in R_1 - \mathbf{p}$. Then

⁺ Professor A. Seidenberg remarks that the present Theorem 2 strengthens Lemma 2 of [9; p. 618] and corrects its proof.

(a) K_{θ} is the quotient field of $R_{(p)}$ and $K_{\theta} \cap R_{p} = R_{(p)}$.

(b) $R_{(p)}$ is integrally closed in K_0 implies that $R_{(p)}$ is integrally closed in K.

(c) $R_{\mathbf{p}} = (R_{(\mathbf{p})}[r_{I}])_{s}$, where $S = R - \mathbf{p}$; r_{I} is transcendental over $R_{(\mathbf{p})}$.

(d) R_p is integrally closed in K if and only if $R_{(p)}$ is integrally closed in K_{0} .

(e) $R_{(p)}$ is regular if and only if R_p is regular.

Proof. By definition $R_{(p)} \subset K_{\theta}$. Let $x \in K_{\theta}$, $x = f_i/g_i$ for some $f_i, g_i \in R_i$ and $g_i \neq 0$. Then $x = f_i/g_i = (f_i/r_i^i)/(g_k/r_i^i)$, since f_k/r_i^i and f_i/r_i^i are both in $R_{(p)}$. Therefore x is in the quotient field of $R_{(p)}$. Thus K_{θ} is the quotient field of $R_{(p)}$. For the second part of (a) we need only to prove that $K_{\theta} \cap R_p \subset R_{(p)}$. Let $x \in K_{\theta} \cap R_p$. Then $x = f_i/g_i$ for some f_i , $g_i \in R_i$ with $g_i \neq 0$. On the other hand $x = (r_i + r_{j+1} + \cdots + r_{j+m})/(s_i + s_{i+1} + \cdots + s_{i+m})$ with $s_i + s_{i+1} + \cdots + s_{i+m} \notin p$. Then there exists an index l + t such that $s_{l+i} \notin p$. $f_i \cdot (s_l + s_{l+1} + \cdots + s_{l+m}) = g_i(r_i + r_{j+1} + \cdots + r_{j+k})$ implies that l = j, m = k and $f_i \cdot s_{l+i} = g_i \cdot r_{l+i}$. Thus $x = f_i/g_i = r_{l+i}/s_{l+i}$ i.e. $x \in R_{(p)}$. Therefore $K_{\theta} \cap R_p = R_{(p)}$.

(b) If $R_{(p)}$ is integrally closed in K_{θ} , then, since $K = K_{\theta}(r_1)$ and r_1 is transcendental over K_{θ} as noted in the preceeding, K_{θ} is algebraically closed in K and $R_{(p)}$ is thus integrally closed in K.

(c) As noted in (b), r_i is transcendental over $R_{(p)}$. Let $f \in R$ be an element. Then $f = f_r + f_{r+1} + \cdots + f_n$ where $f_i \in R_i$ for some nonnegative integers r and n. But $f = (f_r/r_i^r)r_i^r + (f_{r+1}/r_1^{r+1})r_i^{r+1} + \cdots + (f_n/r_n^n)r_i^n \in R_{(p)}[r_i]$. Therefore $R \subset R_{(p)}[r_i]$. Thus $S = R - \mathbf{p}$ is a multiplicative set in $R_{(p)}[r_i]$. Now let $f/g \in R_p$, $g \in R - \mathbf{p}$. Then for some nonnegative integer t and m,

$$\frac{f}{g} = \frac{f_t}{g} + \cdots + \frac{f_m}{g} = \frac{1}{g} \left(\left(\frac{f_t}{r^t} \right) r_1^t + \left(\frac{f_{t+1}}{r^{t+1}} \right) r_1^{t+1} + \cdots + \left(\frac{f_m}{r_1^m} \right) r_1^m \right).$$

Therefore $f/g \in (R_{(p)}[r_1])_s$ i.e. $R_p \subset [R_{(p)}[r_1])_s$. The other inclusion is obvious. Thus $R_p = (R_{(p)}[r_1])_s$.

(d) Now, if $R_{(p)}$ is integrally closed in K, then clearly $R_p = (R_{(p)}[r_1])_s$, being a localization of transcendental extension of an integrally closed domain, is integrally closed. Conversely if R_p is integrally closed in K, let $f \in K_0$ be an integral element over $R_{(p)}$. Then $f \in R_p$. Thus $f \in R_p \cap K_0 = R_{(p)}$, and $R_{(p)}$ is integrally closed.

(e) Recall that a ring A is said to be regular if A_m is a regular local ring for each maximal ideal m in A. It follows from Serre's theorem [5; p. 139] that A is regular if and only if A_p is regular for every $\mathbf{p} \in \operatorname{Spec}(A)$.

If $R_{(p)}$ is a regular local ring, then by [5; Theorem 40, p. 126] the polynomial ring $R_{(p)}[r_1]$ is regular. Since localization of a regular ring is regular therefore $R_p = (R_{(p)}[r_1])_s$ is a regular local ring.

Conversely assume that $R_p = (R_{(p)}[r_1])_s$ is a regular local ring. Since $R_{(p)}[r_1]$ is a polynomial ring over $R_{(p)}$ therefore $R_{(p)}[r_1]$ is $R_{(p)}$ -flat. $(R_{(p)}[r_1])_s$ is $R_{(p)}[r_1]$ -flat therefore R_p is $R_{(p)}$ -flat. Thus $R_{(p)}$ is Noetherian. The inclusion map $R_{(p)} \rightarrow R_p$ is obviously a local homomorphism. Therefore it follows from [1; IV, 17.3.3 (i), p. 48] that $R_{(p)}$ is a regular local ring.

There are graded rings in which there are homogeneous prime ideals **p** such that $\mathbf{p} \cap R_I \neq R_I$. For example: (1) graded rings which are homogeneous coordinate rings of projective varieties. In this case $\mathbf{p} \cap R_I \neq R_I$ for $\mathbf{p} \in \operatorname{Proj}(R)$. (2) $R = R_{\theta}[R_I]$, a graded ring generated over R_{θ} by R_I ; (3) Let k[X, Y] be a polynomial ring in two indeterminantes over a field k. Let $R = k[Y] + (X \cdot Y) \cdot k[X, Y]$. R has a graded structure $R = R_{\theta} \bigoplus R_I \bigoplus R_2 \bigoplus \cdots$ with $R_{\theta} = k, R_I = k \cdot Y$; $R_2 = kY^2 + k(X \cdot Y), R_3 = kY^3 + kX^2Y + kXY^2$, etc. It follows from the observation that $(X^i \cdot Y^j)^2 \in Ry$ if $j \ge 1$ that $\mathbf{p} \cap R_I = 0$ for every $\mathbf{p} \in \operatorname{Proj}(R)$.

3. Normality of a graded domain. In this section, a graded domain *R* is normal if it is integrally closed in its field of fractions.

Recall [6; Theorem 8, p. 400]: Let \mathfrak{O} and \mathfrak{O}' be two normal rings which contain a field k. If \mathfrak{O} and \mathfrak{O}' are separably generated over k and if $\mathfrak{O} \otimes_k \mathfrak{O}'$ is an integral domain, then $\mathfrak{O} \otimes_k \mathfrak{O}'$ is a normal ring.

THEOREM 3. Let R_0 be a normal integral domain containing a field k such that R_0 is separable over k. Let $R = R_0[x] = R_0[x_1, \dots, x_n]$ be an integral domain finitely generated over R_0 as an R_0 -algebra such that the quotient field K of R_0 and the quotient field k(x) of $k[x_1, \dots, x_n]$ are linearly disjoint over k, and k(x) separable over k. Then k[x] is normal if and only if R is normal.

Proof. Let X_1, \dots, X_n be *n* indeterminantes over R_0 . Let \mathfrak{A} be the prime ideal in $k[X] = k[X_1, \dots, X_n]$ such that $k[x_1, \dots, x_n] \cong$ $k[X_1, \dots, X_n]/\mathfrak{A}$ and let \mathfrak{B} be the prime ideal in $R_0[X] = R_0[X, \dots, X_n]$ such that $R = R_0[X]/\mathfrak{B}$. Then $\mathfrak{B} \cdot K[X] \cap R_0[X] = \mathfrak{B}$ and $\mathfrak{A} =$ $\mathfrak{B} \cap k[X]$. Since K and k(x) are linearly disjoint over k, it is well known that $\mathfrak{A} \cdot K[X] = \mathfrak{B} \cdot K[X]$ and $\mathfrak{A} \cdot R_{\theta}[X] = \mathfrak{B}$, [4; Corollary 1, p. 67]. We shall use \mathfrak{B} in both $R_{\theta}[X]$ and K[X] as the prime ideal determined by $(x) = (x_1, \cdots, x_n).$ Since $R_{\theta} \bigotimes_{k} k[X] = R_{\theta}[X],$ it follows that $R_0 \bigotimes_k k[x] = R_0[x]$, i.e. $R_0 \bigotimes_k k[x]$ is an integral domain. It follows from [6; Theorem 8, p. 400] that $R_0[x]$ is normal. Conversely if $R_0[x]$ is normal, then $R_0[x]_p$ is normal for each $p \in \operatorname{Spec}(R_0[x])$. Let $p^c =$ $\mathbf{p} \cap k[x]$ for $\mathbf{p} \in \operatorname{Spec}(R_{\theta}[x])$ and $\mathbf{p} \cap R_{\theta} = \{0\}$. Then $k[x]_{\mathbf{p}^{\epsilon}}$ is also normal. Indeed let $\xi \in k(x)$ be integral over $k[x]_{p^c}$. Since $k[x]_{p^c} \subset$ $R_{\theta}[x]_{p}$, therefore $\xi \in R_{\theta}[x]_{p}$. Thus $\xi \in R_{0}[x]_{p} \cap k(x)$. It is sufficient to show that $R_{\theta}[x]_{p} \cap k(x) \subset k[x]_{p^{c}}$. Let $S = R_{\theta} - \{0\}$. $K[x] = S^{-1}R_{\theta}[x]$ and

 $S^{-1}\mathbf{p}$ is a prime ideal in K[x]. $S^{-1}\mathbf{p} \cap k[x] = \mathbf{p} \cap k[x]$. Since K and k(x) are linearly disjoint over k, it follows from [4; Proposition 6, p. 92] that $K[x]_{S^{-1}\mathbf{p}} \cap k(x) = k[x]_{\mathbf{p}^c}$. Thus $k[x]_{\mathbf{p}^c} \supset R_0[x]_{\mathbf{p}} \cap k(x)$, and $k[x]_{\mathbf{p}^c} = R_0[x]_{\mathbf{p}} \cap k(x)$. So $\xi \in k[x]_{\mathbf{p}^c}$ and $k[x]_{\mathbf{p}^c}$ is therefore normal.

We shall finish the proof by showing that Spec(k[x]) = $\{\mathbf{p} \cap k[x] | \mathbf{p} \in \operatorname{Spec}(R_0[x]) \text{ and } \mathbf{p} \cap R_0 = 0\}$. Let \mathbf{q}_x be a prime ideal. There exists a prime ideal Q_x in K[X] such that $Q_x \cap k[X] = \mathbf{q}_x$. Indeed, using Zariski's terminology [10; pp. 21-22 and pp. 161-176], we consider an algebraically closed field Ω containing K and Ω is of infinite transcendence degree over K. Let A_n^{Ω} be the *n* dimensional affine space, i.e. $A_n^{\Omega} = \{(a_1, \dots, a_n) | a_1, \dots, a_n \in \Omega\}$. Every prime ideal P in K[X] defines an irreducible algebraic variety V over K in A_n^{Ω} . Every irreducible algebraic variety V over K carries a generic point (ξ) = $(\xi_1, \dots, \xi_n) \in A_n^{\Omega}$ over K, and $P = \{g(X) \in K[X] | g(\xi) = 0\}$. Let $(\eta) =$ $(\eta_1, \dots, \eta_n) \in A_n^{\Omega}$ be a generic point of $\mathbf{q}_{\mathscr{X}}$ over k, i.e. $\mathbf{q}_{\mathscr{X}} =$ $\{f(X) \in k[X] | f(\eta) = 0\}$. Let $Q_x = \{F(X) \in K[X] | F(\eta) = 0\}$. Then Q_x is a prime ideal and $Q_{\mathfrak{X}} \cap k[X] = \mathbf{q}_{\mathfrak{X}}$. Let $Q'_{\mathfrak{X}} = Q_{\mathfrak{X}} \cap R_{\theta}[X], Q'_{\mathfrak{X}} \cap R_{\theta} = 0$ and $Q'_{\mathscr{X}} \cap k[X] = q_{\mathscr{X}}$. Since $\mathfrak{A} \subset q_{\mathscr{X}} \Leftrightarrow \mathfrak{B} \cdot K[X] \subset Q_{\mathscr{X}} \Leftrightarrow \mathfrak{B} \subset Q'_{\mathscr{X}}$. Let $Q' = Q'_{\ast} / \mathfrak{B} \subset R_0[x]$. Then $Q' \cap k[x] = \mathbf{q}$. Thus each prime ideal in k[x]is the contraction of a prime ideal in $R_0[x]$ intersecting R_0 at 0.

As the assertion in the last part of the proof of the above theorem will be referred later, we would like to state it as a corollary.

COROLLARY. Let R_0 be an integral domain containing a field k. Let $R = R_0[x_1, \dots, x_n]$ be an integral domain finitely generated over R_0 as an algebra such that the quotient field K of R_0 and the quotient field k(x) of $k[x] = k[x_1, \dots, x_n]$ are linearly disjoint over k. Then $\text{Spec}(k[x]) = \{\mathbf{p} \cap k[x] | \mathbf{p} \in \text{Spec}(R_0[x]) \text{ and } \mathbf{p} \cap R_0 = 0\}$. Moreover if R is graded with R_0 as the component of homogeneous degree 0, then $\text{Proj}(k[x]) = \{\mathbf{p} \cap k[x] | \mathbf{p} \in \text{Proj}(R_0[x])\} = \{\mathbf{p} \cap k[x] | \mathbf{p} \in \text{Proj}(K[x])\}$.

Proof (of the last part). Let $\mathfrak{A}, \mathfrak{B}, \mathbf{q}, \mathbf{q}_{\mathfrak{X}}$, and $Q_{\mathfrak{X}}$ be the same as those in the proof of Theorem 3. If R is a graded domain, then both \mathfrak{A} and \mathfrak{B} are homogeneous ideals. If \mathbf{q} is a nonirrelevant and homogeneous prime ideal in k[x], then so is $\mathbf{q}_{\mathfrak{X}}$. Let $Q_{\mathfrak{X}}^*$ be the ideal in K[x]generated by the homogeneous elements belonging to $Q_{\mathfrak{X}}$. Then, by [10; Lemma 3, p. 153], $Q_{\mathfrak{X}}^*$ is a prime ideal and clearly $Q_{\mathfrak{X}}^* \cap k[X] = \mathbf{q}_{\mathfrak{X}}$. Since $\mathbf{q}_{\mathfrak{X}}$ is nonirrelevant, $Q_{\mathfrak{X}}^*$ is also nonirrelevant, and $Q_{\mathfrak{X}}^* \supset \mathfrak{B}$. Let $Q^* = Q_{\mathfrak{X}}^*/\mathfrak{B}$. We have $Q^* \cap k[x] = \mathbf{q}$. Therefore $\operatorname{Proj}(k[x]) = \{\mathbf{p} \cap k[x] | \mathbf{p} \in \operatorname{Proj}(R)$ and $\mathbf{p} \cap R_{\mathfrak{q}} = 0\}$.

Let us recall some definitions and facts: Let $R = \bigoplus_{i \ge 0} R_i$ be a graded integral domain. R is Noetherian if and only if R_{θ} is Noetherian and Ris an R_{θ} -algebra of finite type. Let \overline{R} be the integral closure of R in its field of quotients K. Let K_i be the homogeneous component of K of degree *i* as defined in §2. Then \overline{R} is graded with $\overline{R}_i = \overline{R} \cap K_i$. Thus if R is normal then R_0 must be normal.

Corresponding to Krull's characterization of a Noetherian domain being normal [7; (12.9), p. 41], we have the following theorem for normality of a Noetherian graded domain.

THEOREM 4. Let R be a graded Noetherian domain such that $R_1 - \mathbf{p} \neq \emptyset$ for each homogeneous prime ideal \mathbf{p} of ht 1 in R. If (1) $R_{(\mathbf{p})}$ is normal for every homogeneous prime ideal \mathbf{p} of height 1 and (2) the associated prime ideals of every nonzero homogeneous ideal are of height 1, then R is normal.

Proof. We first note that it follows from condition (1), Theorem 1 and Theorem 2 that R_p is normal for every $\mathbf{p} \in \operatorname{Spec}(R)$ and $ht(\mathbf{p}) = 1$. Let K, \overline{R} and $\overline{R_i}$ be the same as defined in the preceeding. Let $\alpha \in \overline{R}$, $\alpha = \sum_{i=m}^{n} \alpha_i$ for some nonnegative integers m and n and $\alpha_i \in \overline{R_i}$. Let $\alpha_i = b_{ij}/a_{il}$ where j - l = i, $b_{ij} \in R_j$ and $a_{il} \in R_l$. If a_{il} is a unit in R then $\alpha_i \in R$. If a_{il} is a nonunit, then the nonzero homogeneous principal ideal $(a_{il})R$ has a primary decomposition $\bigcap_{i=1}^{u} \mathbf{q}_i$ with $\mathbf{p}_1, \dots, \mathbf{p}_u$ as the associated prime ideals. In view of [10; Theorem 9 and Corollary; pp. 153–154] we may assume that \mathbf{q}_i 's and \mathbf{p}_i 's are homogeneous, (2) implies that $ht(\mathbf{p}_i) = 1$ for $t = 1, 2, \dots, u$. Thus $R_{\mathbf{p}_i}$ is normal for t = $1, 2, \dots, u$. α_i is integral over R implies that α_i is integral over $R_{\mathbf{p}_i}$ for $t = 1, 2, \dots, u$. Hence $\alpha_i \in R_{\mathbf{p}_i}$ for $t = 1, 2, \dots, u$. Therefore $b_{ij} \in$ $\bigcap_{i=1}^{u} ((a_{il})R_{\mathbf{p}_i} \cap R) = \bigcap_{i=1}^{u} \mathbf{q}_i = (a_{il})R$. Thus $\alpha_i = b_{ij}/a_{il} \in R$ and $\alpha =$ $\sum_{i=m}^{n} \alpha_i \in R$. R is therefore normal.

Let $A = K[X_1, \dots, X_n]$ be a polynomial ring over a field K. The smallest integer d such that any chain of syzygies of the A-module M terminates at (d + 1)th step is called the cohomological dimension of M and is denoted by coh.d.(M). Let $\mathfrak{A} \subset A$ be a homogeneous ideal such that $\mathfrak{A} \neq (0), \neq (1)$. coh.d. $(\mathfrak{A}) \leq n$ and it is n if and only if $(X_1, \dots, X_n)A$ is an associated prime ideal of \mathfrak{A} . Let l be a form in A, and $l \notin K$. If $\mathfrak{A}: l = \mathfrak{A}$ then coh.d. $(\mathfrak{A}, l) = 1 + \text{coh.d.}(\mathfrak{A})$.

THEOREM 5. Let $R = \bigoplus_{i \ge 0} R_i$ be a Noetherian graded integral domain generated over R_0 by nonzero homogeneous elements x_1, \dots, x_n of degree 1. Assume that R_0 contains a subfield k over which R_0 and $k(x) = k(x_1, \dots, x_n)$ are linearly disjoint and R_0 is normal. Assume tr.deg_k k(x) > 0. Let $R_0[X] = R_0[X_1, \dots, X_n]$ be the polynomial ring over R_0 in indeterminantes X_1, \dots, X_n and let \mathfrak{B} be the ideal such that $R_0[X] \cong R_0[X]/\mathfrak{B}$. Let $\mathfrak{A} = \mathfrak{B} \cap k[X]$, and let $S = R_0 - \{0\}$.

(1) If, for each $\mathbf{p} \in \operatorname{Proj}(R_0[x])$, $R_0[x]_{(\mathbf{p})}$ is normal and $\operatorname{coh.d.} S^{-1}\mathfrak{B} < n-1$, then k[x] is normal.

(2) If R_{θ} and k(x) are both separable over k, and if $R_{\theta}[x]_{(p)}$ is normal

for all $\mathbf{p} \in \operatorname{Proj}(R_{\theta}[x])$, and $\operatorname{coh.d.} S^{-1}\mathfrak{B} < n-1$ then $R_{\theta}[x]$ is normal. (3) If $R_{(p)}$ is normal for each $\mathbf{p} \in \operatorname{Proj}(R)$ and if $\operatorname{coh.d.} \mathfrak{B} \cdot S^{-1}R_{\theta}[X] = n-1$ then $R_{\theta}[x]$ is not normal.

Proof. (1) Both \mathfrak{A} and \mathfrak{B} are homogeneous ideals, k[x] is graded. As projective scheme $\operatorname{Proj}(R_{\theta}[x]) \cong \operatorname{Proj}((S^{-i}R_{\theta})[x])[1, \operatorname{Prop.}(2.4.7), p.$ 30]. Therefore $(S^{-i}R_{\theta})[x]$ is locally normal, i.e. $(S^{-i}R_{\theta})[x]_{(p)}$ is normal for each $\mathbf{p} \in \operatorname{Proj}(S^{-i}R_{\theta}[x])$. Since tr.deg. $S^{-i}R_{\theta}[x] > 0$. If coh.d. $S^{-i}\mathfrak{B} < n-1$, by [9, Theorem 3, p. 619], $S^{-i}R_{\theta}[x]$ is normal. Therefore $S^{-i}R_{\theta}[x]_{p}$ is normal for every $\mathbf{p} \in \operatorname{Spec}(S^{-i}R_{\theta}[x])$. Since $(S^{-i}R_{\theta})[x]_{p} \cap k(x) = k[x]_{p^{c}}$ as shown in the preceeding, where $\mathbf{p}^{c} = \mathbf{p} \cap k[x]$. $k[x]_{p^{c}}$ is normal. By the Corollary to Theorem 3, $\operatorname{Spec}(k[x]) = \{\mathbf{p}^{c} | \in \operatorname{Spec}(S^{-i}R_{\theta})[x]\}$, we have that $k[x]_{q}$ is normal for every $\mathbf{q} \in \operatorname{Spec}(k[x])$. Therefore k[x] is normal.

(2) By (1), k[x] is normal. R_0 is normal. It follows from Theorem 3, $R_0[x]$ is normal.

(3) If coh.d. $\mathfrak{B} \cdot S^{-l}R_{\theta}[X] = n - 1$, then it is well known that for a form l in $R_{\theta}[X]$ prime to \mathfrak{B} i.e. $\mathfrak{B}: l = \mathfrak{B}$, coh.d. $(\mathfrak{B}, l) \cdot S^{-l}R_{\theta}[X] = n$. Therefore $(\mathfrak{B}, l) \cdot S^{-l}R_{\theta}[X]$ has $(X) \cdot S^{-l}R_{\theta}[X]$ as an associated prime ideal. Since dim $\mathfrak{B} \cdot S^{-l}R_{\theta}[X] > 0$, $(\mathfrak{B}, l)S^{-l}R_{\theta}[X]$ has an embedded associated prime. On the other hand, it is easy to see that $(X)S^{-l}R_{\theta}[X] \cap R_{\theta}[X] = (X)R_{\theta}[X]$. Therefore it follows from [5, Lemma 7c, p. 50] that $(\mathfrak{B}, l)R_{\theta}[X]$ has $(X)R_{\theta}[X]$ as an embedded associated prime ideal. Let $(\bar{l})R_{\theta}[X] = (\mathfrak{B}, l)R_{\theta}[X]/\mathfrak{B}$. Therefore $(\bar{l})R_{\theta}[x]$ is a principal homogeneous ideal having $(x) \cdot R_{\theta}[x]$ as an embedded associated prime ideal. It follows from Theorem 4 that R is not normal.

4. Integral closure of a graded ring. In this section, we study a general graded ring, $R = \bigoplus_{i \ge 0} R_i$. Let F be the total quotient ring of R, and let \overline{R} be the integral closure of R in F. In case of a graded domain, the integral closure \overline{R} of R in its quotient field K is again graded and $\overline{R_i} = \overline{R} \cap K_i$ for $i \ge 0$. We investigate \overline{R} when R is not an integral domain. A ring R is normal if R_p is an integral domain and integrally closed in its quotient field for each $\mathbf{p} \in \text{Spec}(R)$.

Let $R = \bigoplus_{i \ge 0} R_i$. Let U be the set of all nonzero divisors of R. Let F be the total quotient ring and let $F_i = \{r_i/u_j \mid r_i \in R_i, u_j \in R_j \cap U, l-j=i\}$. These are the notations going to be used in the sequel.

THEOREM 6. Assume $U \cap R_1 \neq \emptyset$ and let $u_1 \in U \cap R_1$. Then (1) the ring $\sum_{i \in \mathbb{Z}} F_i$ is a direct sum, and $\bigoplus_{i \in \mathbb{Z}} F_i = F_0[u_1, 1/u_1]$, $F = F_0[u_1]_U$, u_1 is algebraically independent over F_0 , and $F_i = F_0 \cdot u_1'$ for all $i \in \mathbb{Z}$. If F_0 is Noetherian then so is F. (2) F_0 is reduced, i.e. F_0 has no nonzero nilpotent element, if and only if R is reduced. (3) If R is reduced and F_0 is

WEI-EIHN KUAN

Noetherian, then $F_0[u_1]$ is integrally closed in F. (4) If R is reduced and F_0 is Noetherian, then \overline{R} is a graded subring of $\bigoplus_{i \in \mathbb{Z}} F_i$.

Proof. (1) It follows from the definition of F_i 's that each F_i is an additive group and $F_i
edot F_j
otin F_{i+j}$. $\sum_{i \in \mathbb{Z}} F_i$ is a ring. Let $f_k + \dots + f_s
otin \sum_{i \in \mathbb{Z}} F_i$. Suppose $f_k + \dots + f_s = 0$. Let $f_m = r_{l_m}/u_{j_m}$ where $l_m - j_m = m$ and $m = k, \dots, s$. Let $u = \prod_{m=k}^s u_{j_m}$. Then $uf_k + \dots + uf_s = 0$ in R, and uf_k, \dots, uf_s are homogeneous elements of distinct degrees. Therefore $uf_k = \dots = uf_s = 0$. Thus $f_k = \dots = f_s = 0$, and the sum $\sum F_i$ is therefore a direct sum. Let $f_k \in F_k$. Then $f_k/u_1^k \in F_0$. Therefore $f_k \in F_0 \cdot u_1^k$ and $F_k = F_0 \cdot u_1^k$. Hence $\bigoplus_{i \in \mathbb{Z}} F_i = F_0[u_1, 1/u_1]$. For any $f \in F$,

$$f = (f_k + \cdots + f_s)/u = \frac{1}{u} \left(\frac{f_k}{u_1^k} u_1^k + \cdots + \frac{f_s}{u_1^s} u_1^s \right).$$

Therefore $F = F_0[u_1, 1/u_1]_U = F_0[u_1]_U$. u_1 is algebraically independent over F_0 . Indeed, let $a_0u_1^n + a_1u_1^{n-1} + \cdots + a_n = 0$, where $a_i \in F_0$ and $a_0 \neq 0$. Writing $a_i = r_{l_i}/u_{j_i}$ with $l_i - j_i = i$, we have $a_iu_1^{n-1} \in F_{n-i}$. Therefore $a_iu_1^{n-1} = 0$, and $a_i = 0$ for $i = 0, 1, \cdots, n$. Therefore u_1 is algebraically independent over F_0 .

If F_{θ} is Noetherian, then so is $F_{\theta}[u_1]$. Now $F = F_{\theta}[u_1]_{U}$. Therefore F is also Noetherian.

(2) It is obvious that R is reduced implies that F_0 is reduced. Conversely, we note if $(x_m/u_1^m)^n = 0$, then $x_m = 0$. Also if $y_m \in R_m$ such that $y_m^n = 0$ then $(y_m/u_1^m) = 0$. Thus $y_m = 0$. Now let y be a nilpotent element in R. Write $y = y_k + \cdots + y_s$. For some positive integer b, $y^b = (y_k + \cdots + y_s)^b = 0$. Thus $y_k^b = 0$ and then $(y_{k+1} + \cdots + y_s)^b = 0$ and so on we get $y_m^b = y_{m+1}^b = \cdots = y_s^b = 0$, so $y_m = \cdots = y_s = 0$. Therefore y = 0 and R is reduced.

(3) F_0 is reduced. It follows from that $F = F_0[u_1]_U$ and that u_1 is transcendental over F_0 , the nonzero divisors of F_0 are the same as the nonzero divisors of R in F_0 . Let U_0 be the set of all nonzero divisors of F_0 . Let $u_0 \in U_0$, then $u_0 = r_m/u_m$ where $u_m \in U$ and $r_m \in R_m$. Moreover $r_m \in U$ also. Thus u_0 is a unit i.e. U_0 is a multiplicative group in F_0 . Hence the total quotient ring $(F_0)_{U_0} = F_0$. Since F_0 is Noetherian and reduced, therefore, $F_0 = \bigoplus_{i=1}^{s} G_i$ where G_i 's are fields. It follows from [2; Proposition (6.5.2), p. 146] that F_0 is normal.

It follows from [5; Proposition (1.7.8), p. 116] that $F_{\theta}[u_1]$ is normal. Since $F_{\theta}[u_1]$ is a polynomial ring in u_i , and F_{θ} is reduced, therefore $F_{\theta}[u_1]$ is also reduced. F_{θ} is Noetherian implies that F is Noetherian. Then $F = \bigoplus_{i=1}^{n} H_i$ where H_i 's are fields. Thus it follows from [2; Proposition (6.5.2), p. 146] that $F_{\theta}[u_1]$ is integrally closed.

Note: Let A = Z/(4)[X], the polynomial ring in X over Z/(4). Z/(4) is integrally closed, while A is not. Indeed, let y = (x + 1)/(x - 1), $y^2 - 1 = 0$, $y \notin A$.

(4) Let $x \in \overline{R}$. Since $R \subset R_0[u_1]$, x is integral over $F_0[u_1]$. Bv (3), $\overline{R} \subset F_{\theta}[u_1]$. The rest of the proof is practically the same argument used in the proof of [10; Theorem 11, p. 157]. We summarize the proof: Let $x \in \overline{R}$, $x = x_k + \cdots + x_s$, $k \leq s$, $x_k \neq 0$ is called the initial homogeneous term. We want to show that each x_i , $i = k, \dots, s$, is integral over R also. Since $x \in \overline{R} \subset \Sigma F_i$, there exists $u_m \in R_m \cap U$ for some positive integer m, such that $u_m x \in R$. Case (a), if R is Noetherian, then R[x] is a finite R-module. There exists an integer $\lambda > 0$ such that $u_m^{\lambda} x^i \in R$ for all integer $i \ge 0$. Let $d = u_m^{\lambda}$. Then $dR[x] \subset R$. The initial homogeneous term dx^i is dx^i_k . $dx^i \in R$ implies $dx^i_k \in R$. Therefore $x^i_k \in (1/d)R$, a Noetherian R-module. Therefore $R[x_k] \subset R \cdot 1/d$ is a Noetherian Rsubmodule. Therefore x_k is integral over R. Repeating that argument to $x - x_k = x_{k+1} + \cdots + x_s$, we conclude that $x_i \in \overline{R}$ for $i = k, \cdots, s$. Therefore \overline{R} is graded in this case. Next we look at case (b): R is not and $x^{n} + a_{1}x^{n-1} + \cdots + a_{n} = 0$ Noetherian. Let $x \in R$, where $a_1, \dots, a_n \in R$. As in case (a), there is a homogeneous nonzero divisor $d \in R$ such that $dx_k \in R$. Let $\{y_1, \dots, y_N\} = \{d, dx_k\}$ and homogeneous components of a_i 's}. Let $A = k[y_1, \dots, y_N]$, where k = Z or Z/(n)according to whether R is of characteristic 0 or n > 0. $A \subset R$. Let $A_a = A \cap R_a$. Then $A = \sum A_a$ is a graded subring of R. $U \cap A$ contains d. Therefore $A_{U\cap A}$, the total quotient ring of A, contains x_k , and hence contains x also. Thus the above integral relation takes place in $A_{U \cap A}$. Since A is Noetherian, therefore case (a) is applicable. Therefore x_k is integral over A. hence x_k is integral over R.

REFERENCES

2. ____, Eléments de Géométrie Algébrique I, Springer-Verlag, Berlin-Heidelberg-New York (1971).

3. R. Hartshorne, *Introduction to Algebraic Geometry*, Chapter III, Lecture Notes, University of California, Berkeley (1973).

4. S. Lang, Introduction to Algebraic Geometry, Interscience, New York (1964).

5. H. Matsumura, Commutative Algebra, W. A. Benjamin Inc., New York (1970).

6. M. Nagata, A general theory of algebraic geometry over Dedekind domains II, Amer. J. Math., **80** (1958), pp. 382–420.

7. ____, Local rings, Interscience, New York, 1962.

8. Y. Nakai, On the arithmetic normality of hyperplane sections of algebraic varieties, Memoirs of the College of Science, University of Kyoto, Series A, 29 (1955), 159–163, Corrections, 30 (1957), 201.

9. A. Seidenberg, The hyperplane sections of arithmetically normal varieties, Amer. J. Math., 94 (1972), 609-630.

10. O. Zariski, P. Sammuel, *Commutative Algebra II*, Van Nostrand, Princeton-Toronto-London-New York (1960).

Received November 10, 1975 and in revised form December 2, 1975.

MICHIGAN STATE UNIVERSITY

^{1.} A. Grothendieck, J. Dieudonné, *Eléments de Géométrie Algébrique II*, IV Inst. Hautes Études Sci. Publ. Math. No. 8 (1961), No. 20 (1964).