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SOME RESULTS ON NORMALITY
OF A GRADED RING
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Let R =φi^0Ri be a graded domain and let p be a
homogeneous prime ideal in R. Let Rp be be the localization of R
at p and Rip) = {rjst \ rtsi E Rt and s, £ p}. If R, Π(R-p)^ 0,
then Rp is a localization of a transcendental extension of /?<P).
Thus Rp is normal (regular) if and only if i?(p) is normal
(regular). Let Proj(i?) = {p|p is a homogeneous prime ideal and
p S Θ x)^,}. Under certain conditions a Noetherian graded
domain JR is normal if R(p), is normal for each p E Proj(i^). If
R = Q)i^oRi is reduced and Fo = {Γ./M, | rh ux E jRf and w, E U
where (7 is the set of all nonzero divisors} is Noetherian, then the
integral closure of R in the total quotient ring of R is also
graded.

1. Introduct ion. Let R = φ ^ o ^ « be a graded integral do-
main. Let Spec(J?) be the set of all prime ideals in R. Let R+ = 0 / > o R,.
R+ is an ideal in R. An ideal 21 in JR is said to be irrelevant if R+ C V§ί,
the radical of SI. Let Proj(i?) = {pE Spec(JR)|pCi?+ is homogeneous
and nonirrelevant}. For each pESpec(JR), let Rp = {r/s\, sER and
sgz p}, and for each homogeneous prime ideal p, let Rip) = {r./s, | rh sf E i?,
and Sif£ p}. (Note: R(p) in [1] is defined for p E Proj(jR) only.) According
to the terminology of Seidenberg [9], Rp is called the arithmetical local
ring of i? at p and Rip) the geometrical local ring of R at p. I prove that
if Rj Π (JR - p)/ 0 then Rp is the ring of quotients of a transcendental
extension of Rip) relative to a multiplicative set, Rp is normal (regular) if
and only if R{p) is normal (regular); see Theorem 2. In the case of an
irreducible projective variety V over a field k in a projective n-space Pn

k,
V/k is normal if the geometrical local ring of V at each p E V, Dϊ(p) is
integrally closed. V is arithmetically normal if the ring of strictly
homogeneous coordinates k[V] is integrally closed. The latter implies
the former. For the converse, various cohomological criteria are de-
veloped; see [3], [8], [9]. I attempt to study the normality of a graded
domain JR if Rip) is normal for every pEProj(/?). In this paper, I also
obtain the following theorem: Let R be a Noetherian graded domain, say
R = R0[xh '' *, xn] and xh , xn are of homogeneous degree 1. Assume
that Ro contains a field k over which Ro and k(xh , xn) are linearly
disjoint and separable. Let 93 be the kernel of the canonical map from the
polynomial ring Ro[Xh , Xn]. Then R is normal if Ro is normal, R(p) is
normal for every p E Proj(JR) andcoh.d.93 K[Xh ,XB] < n — 1, where
K is the quotient field of Ro.
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In the §4, we prove that under certain conditions on a graded ring R
(not necessarily integral domain) the integral closure R of R in the total
quotient ring of R is also graded; see Theorem 6.

Our references on the elementary well known facts about graded
rings can be found in [1] and [10].

I would like to thank Professor A. Seidenberg for many valuable
discussions and suggestions during preparation of the research, while I
was on sabbatical leave visiting Berkeley.

I would like also to thank the referee for his comments.

2. Normality and regularity of local domains. Let R be
a commutative ring with identity 1. Let p be a prime ideal in R. By
height of p, we mean the supremum of the length of chains of prime
ideals \>oψ p, ^ p2 ̂  ^ pπ with p0 = p and denote it by ht(p). Let
R = Θî o^« be a graded integral domain. Let K be the quotient field of
R. We say that R is integrally closed if R is integrally closed in K. Let
κi = ifi/gj I' - / = <7 /Ί^ Rb gj ̂  Rj} κo is a field, ΣqEZKq is a subring of
K and the sum is direct, where Z stands for the set of integers. Elements
in Kq are known as homogeneous elements of K of degree q. The
following theorem was originally proved in [9] for projective varieties.
We observe that the same holds true for non-Noetherian graded domain
also.

THEOREM 1. Let R = φ,->0 Ri be a graded domain. Let p G Sρec(i?)
be nonhomogeneous. If ht(p)= 1 then Rp is integrally closed.

Proof. Let p* be the ideal generated by all the homogeneous
elements of p. By [10, Lemma 3, p. 153] p* is a prime ideal and
p ^ p* ^ 0. Since ht(p) = 1, p* = 0. Therefore p contains no homogene-
ous element. Thus every nonzero homogeneous element u is in R - p. It
follows therefore (&qξΞZKq CRP. Let / G K be integral over Rp. Then
there exists / ι E ί ? - p such that fh is integral over R. It follows from
[10, Theorem 11, p. 157] that each of the homogeneous components is
integral over R. By the preceeding, each homogeneous component of
f-h is in Rp. Therefore / h G Rp and / G Rp. Thus Rp is integrally
closed.

Let y G Kt be any nonzero element. If ξGK,, then ξ/yqEK0.
Moreover R CK0[y], K - K0(y), y is transcendental over Ko, Kq = Koy

q

and ®q(=zKq = K0[y, 1/y]. We have the following theorem.

THEOREM 2.+ Let R=(B^oRi with that Rj^O. Let p be a
homogeneous prime ideal such that there exists an element rt G Rt — p.
Then

+ Professor A. Seidenberg remarks that the present Theorem 2 strengthens Lemma 2 of [9; p.

618] and corrects its proof.
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(a) Ko is the quotient field of R(p) and Ko Π Rp = R(p).
(b) Rip) is integrally closed in Ko implies that R{p) is integrally closed

in K.
(c) JRP = (R(P)[r! ])s, where S = R - p; rt is transcendental over Rip).
(d) jRp is integrally closed in K if and only if Rip) is integrally closed

in Ko.
(e) R(p) is regular if and only if Rp is regular.

Proof. B y d e f i n i t i o n R(p)CK0. L e t x E ^ x = f/gi f o r s o m e
/„ g, E Rt and gxφ 0. Then x = fig, = (f/rtyigjr)), since fk/r\ and f/r\
are both in Rip). Therefore x is in the quotient field of Rip). Thus Ko is
the quotient field of R(p). For the second part of (a) we need only to
prove that Ko Π RpCRip). Let x E Ko Π Rp. Then x = f/gi for some /„
gι E Ri with gi^ 0. On the other hand x = (η + ri+1 + + rj+m)l
(si + s[+1 H- h s/+m) with 5/ + si+1 + 4- 5/+m ̂  p . Then there exists an
index / + t such that sι+t & p. /;• (5/ + sι+1 + + sι+m) =
gi(ri + Γ/>/ + * + rJ>fc) implies that / = /, m = k and /i sl+t = g, rι+t. Thus
x = //ft = r,+t/sl+t i.e. x E Rip). Therefore K0Π Rp= R{p).

(b) If Rip) is integrally closed in Ko, then, since X = K0{rt) and r, is
transcendental over Ko as noted in the preceeding, Ko is algebraically
closed in K and Rip) is thus integrally closed in K.

(c) As noted in (b), rt is transcendental over R(p). Let / E R be an
element. Then / = fr 4- /r+ί + + /„ where / E i?, for some nonnegative
integers r and n. But / = ( £ / / > ; 4- tfΓ+,/rr>ϊ+l+ + (/./r;)r?e Λjr,] .
Therefore i? CRip)[rj]. Thus S = ί? - p is a multiplicative set in R^ln].
Now let //g E ί?p, g E I? - p. Then for some nonnegative integer t and
m,

Therefore f/g E(Rip)[rj])s i.e. .RpCfi^p)!//])^ The other inclusion is
obvious. Thus l?p = (i?(p)[r,])s.

(d) Now, if R{p) is integrally closed in X, then clearly Rp =
CR(P)I//])S? being a localization of transcendental extension of an inte-
grally closed domain, is integrally closed. Conversely if Rp is integrally
closed in K, let / E Ko be an integral element over R(p). Then / E Rp.
Thus f£RpΓ)K0 = J?(p), and l?(p) is integrally closed.

(e) Recall that a ring A is said to be regular if Am is a regular local
ring for each maximal ideal m in A. It follows from Serre's theorem [5;
p. 139] that A is regular if and only if Ap is regular for every p E Spec(Λ).

If R{p) is a regular local ring, then by [5; Theorem 40, p. 126] the
polynomial ring R^ln] is regular. Since localization of a regular ring is
regular therefore Rp = (R(P)[rί])s is a regular local ring.
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Conversely assume that Rp - {R^ι\)s is a regular local ring. Since
^(p)[r/] *s a polynomial ring over i?(p) therefore R^in] is i?(pΓflat.
(i?(P)[rJ])s is R(P)[rj ]-flat therefore JRP is i?(p)-flat. Thus R{p) is Noetherian.
The inclusion map R(P)-^ Rp is obviously a local homomorphism. There-
fore it follows from [1; IV, 17.3.3 (i), p. 48] that R(p) is a regular local ring.

There are graded rings in which there are homogeneous prime ideals
p such that pΠ Rt^ Rt. For example: (1) graded rings which are
homogeneous coordinate rings of projective varieties. In this case
pDR^R, for pEProj(i?). (2) R = R0[R,]9 a graded ring generated
over Ro by JR, (3) Let k [X, Y] be a polynomial ring in two indeter-
minantes over a field k. Let R = k[Y] + (X Y) fc[X, Y]. R has a
graded structure R = Ro 0 JR, 0 R2 0 with Ro = k, Rt = k Y; R2 =
kY2 + k(XY), R3= kY3 + kX2Y+kXY\ etc. It follows from the
observation that (Xi-Yi)2ERy if / ^ l that p ί Ί ! ? , = ( ) for every

p G P r o j ( / ? ) .

3. Normality of a graded domain. In this section, a graded
domain R is normal if it is integrally closed in its field of fractions.

Recall [6; Theorem 8, p. 400]: Let © and ©' be two normal rings
which contain a field k. If © and ©' are separably generated over k and
if © 0 f c ©' is an integral domain, then © 0 * ©' is a normal ring.

THEOREM 3. Let Ro be a normal integral domain containing a field k
such that Ro is separable over k. Let R = R0[x] = Ro[*u '' s xn] be an
integral domain finitely generated over Ro as an Ro-algebra such that the
quotient field K of Ro and the quotient field k(x) of k[xh •• ,xn] are
linearly disjoint over fc, and k(x) separable over k. Then k [x] is normal if
and only if R is normal.

Proof Let X,, , Xn be n indeterminantes over Ro. Let ?ί be the
prime ideal in k[X] = k[Xh ,Xn] such that k[xh ,xπ] =
k[Xh - - ,Xπ]/2l and let 93 be the prime ideal in R0[X] = R,[X, ,XΠ]
such that R = Λβ[X]/93. Then 93 iC[X]| Π R0[X] = 93 and Si =
93 Π fc[X]. Since X and fc(x) are linearly disjoint over k, it is well known
that 21 K[X] = 93 K[X] and Si l?ά[X] = 93, [4; Corollary 1, p. 67]. We
shall use 8̂ in both i?0[X] and K[X] as the prime ideal determined by
(x) = (JC,, , xn). Since Ro 0 f c k [X] = Ro [X], it follows that
Ro®tk[x] = Ro[x], i.e. Λβ0*fc[^] is an integral domain. It follows
from [6; Theorem 8, p. 400] that R0[x] is normal. Conversely if R0[x] is
normal, then i?tf[x]p is normal for each p E Spec(i?4*]). Let pc =
pΠfc[χ] for pGSρec(i?o[*]) and p Π Ro = {0}. Then fc[x]p« is also
normal. Indeed let ξEίk(x) be integral over fc[x]p<. Since k[x]p< C
R0[x]P, therefore ξ E i?0[x]p. Thus ξ E R0[x]pΠ k(x). It is sufficient to
show that R0[x]PΓ) fe(x)Cfc[x]pc. Let S = Ro~{0}. K[x] = S~ιR0[x] and
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S *p is a prime ideal in K[x], 5- 1p Π k[x] = p Π fc[x]. Since K and k(x)
are linearly disjoint over fc, it follows from [4; Proposition 6, p. 92] that
K[x]s >PΓ\k(x)=k[x]p<. Thus fc[x]pcD]?o[jc]pnfc(x), and fc[jφ =
JR0[*]PΠ/C(JC). So ξ E k[x]p< and fc[x]p

c is therefore normal.
We shall finish the proof by showing that Spec(fc[jc]) =

{pίΊ fc[x]|pESρec(i?o[*]) and pΠi? 0 = 0}. Let q<r be a prime ideal.
There exists a prime ideal Q% in K[X] such that Q% Π k[X] = q%. Indeed,
using Zariski's terminology [10; pp. 21-22 and pp. 161-176], we consider
an algebraically closed field Ω containing K and Ω is of infinite
transcendence degree over K. Let A" be the n dimensional affine
space, i.e. A? = {(ah , an)\ah , an EΩ}. Every prime ideal P in
K[X] defines an irreducible algebraic variety V over K in A?. Every
irreducible algebraic variety V over K carries a generic point (ξ) =
(6,. .,£,)EA? over K, and P = {g(X)G K[X]\g(ξ) = 0}. Let (i,) =
(i7;, , ηn)E A" be a generic point of q^ over fc, i.e. q^ =
{/(X)E k[X]\f(V) = 0}. Let Qx = {F(X)E K[X]\F(η) = 0}. Then Q% is
a prime ideal and Q% Πk[X] = q%. Let Q%= Q% Π jRβ[X], O^Π ί?0 =0
and Oinfc[X] = q .̂ Since Si Cq^ Φ> 93 K[X] C O , <=> 93 CQ^, Let
O'= Oy93cJR0[x]. Then Q'Π fc[x] = q. Thus each prime ideal in k[x]
is the contraction of a prime ideal in i?0[x] intersecting Ro at 0.

As the assertion in the last part of the proof of the above theorem
will be referred later, we would like to state it as a corollary.

COROLLARY. Let Ro be an integral domain containing a field k. Let
R = R0[Xh '' , xn] be an integral domain finitely generated over Ro as an
algebra such that the quotient field K of Ro and the quotient field k{x) of
k[x] = k[xt, - - , xn] are linearly disjoint over k. Then Sptc(k[x]) =
{p Π fc[x]|pE Spec(jR0[jc]) and p Π Ro = 0}. Moreover if R is graded with
Ro as the component of homogeneous degree 0, then Proj(fc[x]) =
{ f c [ ] | ( 4 ] } { [ ] | [ ] }

Proof (of the last part). Let 2l,93,q,q<r, and Q% be the same as those
in the proof of Theorem 3. If R is a graded domain, then both 21 and 93
are homogeneous ideals. If q is a nonirrelevant and homogeneous
prime ideal in k[x], then so is q .̂ Let Q# be the ideal in K[x]
generated by the homogeneous elements belonging to Q%. Then, by
[10; Lemma 3, p. 153], Q | is a prime ideal and clearly Qί Π k[X] = q%.
Since q^ is nonirrelevant, 0 1 is also nonirrelevant, and Qί D 93. Let
Q* = O|/93. We have Q* Π k[x] = q. Therefore Proj(Jk[x]) =
{pΠfc[jc]|pEProj(i?) and p Π Ro =0}.

Let us recall some definitions and facts: Let R = 0lΊ>o Ri be a graded
integral domain. R is Noetherian if and only if Ro is Noetherian and R
is an Ro-algebra of finite type. Let J? be the integral closure of R in its
field of quotients K. Let lζ be the homogeneous component of K of
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degree i as defined in §2. Then R is graded with Rt = R Π Kh Thus if R
is normal then Ro must be normal.

Corresponding to KrulΓs characterization of a Noetherian domain
being normal [7; (12.9), p. 41], we have the following theorem for
normality of a Noetherian graded domain.

THEOREM 4. Let R be a graded Noetherian domain such that
Ri - p / 0 for each homogeneous prime ideal p of ht 1 in R. If (1) Rip) is
normal for every homogeneous prime ideal p of height 1 and (2) the
associated prime ideals of every nonzero homogeneous ideal are of height
1, then R is normal.

Proof We first note that it follows from condition (1), Theorem 1
and Theorem 2_that Rp is normal for every p E Spec(jR) and ht(p)= 1.
Let K, R and ί?, be the same as defined in the preceeding. Let aER,
a = Σ,"=m oίi for some nonnegative integers m and n and α, E Rh Let
cίi = bij/au where / - / = i, b{] E JRy and <2|7 E Rh If #l7 is a unit in R then
α, E /?. If a,/ is a nonunit, then the nonzero homogeneous principal
ideal (aa)R has a primary decomposition ΓΊ"=1q, with ph — ,pu as the
associated prime ideals. In view of [10; Theorem 9 and Corollary;
pp. 153-154] we may assume that q,'s and p,'s are homogeneous, (2)
implies that ht(pt)=ί for t = 1,2, , u. Thus i?p, is normal for t-
1,2, , u. α, is integral over R implies that α, is integral over JRP, for
t = 1,2, , u. Hence α, E Rpt for ί = 1,2, , w. Therefore bV] E
n f

M =i((α i ,)Λp i n/?)=nr=,qι = (έil7)/?. Thus ai = bii/aaER and α =
ΣΓ=mα, E R. R is therefore normal.

Let A = iί[X/, ,XΠ] be a polynomial ring over a field K The
smallest integer d such that any chain of syzygies of the A-module M
terminates at (d + l)th step is called the cohomological dimension of M
and is denoted by coh.d.(M). Let 91 C A be a homogeneous ideal such
that 91 μ (0), ^ (1). coh.d.(9ί) ^ n and it is n if and only if (Xh , Xn)A
is an associated prime ideal of 91. Let / be a form in A, and /g: K. If
91: / = 91 then coh.d.(9ί, /) = 1 + coh.d.(9ί).

THEOREM 5. Let R = 0 , i>o#« 6e α Noetherian graded integral do-
main generated over Ro by nonzero homogeneous elements xh •• ,xπ o/
degree 1. A55«me ί/iαί i?0 contains a subfield k over which Ro and
k(x) = k(xh , xπ) are linearly disjoint and Ro is normal. Assume
tr.deg*fc(jt)>0. Let R0[X] = i?tf[X/, s X ] fee ί/iβ polynomial ring over
Ro in indeterminantes Xh- -,Xn and let 93 be the ideal such that
R0[x] = R0[X]/^ Let 91 = 93 Π k[X], and let S = Ro-{0}.

(1) //, for each p E Proj(i?0[*]), ^o[*](P) is normal and
coh.d.S-133 < n - 1, then k[x] is normal.

(2) If Ro and k(x) are both separable over fc, and ifRo[x](P) is normal
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for all pEProj(i?o[x]), and coh.d.S"1^ < n - 1 then R0[x] is normal.
(3) // R{p) is normal for each pEProj(/?) and if

coh.d.93 S~*R0[X] = n - 1 then R0[x] is not normal.

Proof. (1) Both 9ί and 93 are homogeneous ideals, k[x] is graded.
As projective scheme Proj(/?e[jc]) = Proj((5~lJRe)[jc]) [1, Prop. (2.4.7), p.
30]. Therefore (S"/i?β)[x] is locally normal, i.e. (S~'Ro)[x](p) is normal for
each pGProj(5"'l?e[jc]). Since t r . d e g . S ^ x ] >0. If coh.d.S"193<
n-ί, by [9, Theorem 3, p. 619], S''R0[x] is normal. Therefore
5~'Ro[x]9 is normal for every p E Spec(S'/?4jc]). s i n c e (S''R0)[x]9n
k(x)= fc[x]P

c as shown in the preceeding, where pc = p Π k[x]. fc[x]p< is
normal. By the Corollary to Theorem 3, Spec(fc[jc]) =
{pc I E Spec(S~;i?0)[*]}, we have that k[x]q is normal for every qE
Spec(/c[jc]). Therefore k[x] is normal.

(2) By (1), k[x] is normal. Ro is normal. It follows from Theorem
3, R0[x] is normal.

(3) If coh.d.93 S~'R0[X] = n - 1, then it is well known that for a
form / in R0[X] prime to 93 i.e. 93: / = 93, coh.d.(93, /) S-'R0[X] = n.
Therefore (93, /)• S-*R0[X] has (X)-S-1R0[X] as an associated prime
ideal. Since.dim« S-/i?o[X]>0, (93, /)S-/i?0[X] has an embedded
associated prime. On the other hand, it is easy to see that
(X)S'1R0[X]nR0[X] = (X)R0[X]. Therefore it follows from [5,
Lemma 7c, p. 50] that (93, l)Rφ[X] has (X)R0[X] as an embedded
associated prime ideal. Let (l)R9[X] = (93, l)R0[X]/%. Therefore
(l)R0[x] is a principal homogeneous ideal having (x)-R0[x] as an
embedded associated prime ideal. It follows from Theorem 4 that R is
not normal.

4. Integral closure of a graded ring. In this section, we
study a generalgraded ring, R = 0 ^ o i?« v Let F be the total quotient ring
of R, and let R be the integral closure of R in F. In case of a graded
domajn, the integral closure R of R in its quotient field K is again graded
and Ri = R Π iζ for i ^ 0. We investigate 7? when R is not an integral
domain. A ring R is normal if R9 is an integral domain and integrally
closed in its quotient field for each pESpec(K).

Let /? = 0^0/?!-. Let U be the set of all nonzero divisors of
R. Let F be the total quotient ring and let f]•= {rι\u] \ r, E Rh

Uj E Rj Π U, I - j = i}. These are the notations going to be used in the
sequel.

THEOREM 6. Assume U ΠR1^0 and let M ^ I / Π i?j. Then (1) the
ring Σ/GZF t is a direct sum, and (&ιςΞzFι = F0[uul/ui\, F = F̂ W/Ji/, "l is
algebraically independent over Fo, and Fι = Fo u\ for all i E Z. // Fo is
Noetherian then so is F. (2) Fo is reduced, i.e. Fo has no nonzero nilpotent
element, if and only if R is reduced. (3) // R is reduced and Fo is
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Noetherian, then F0[ut] is integrally closed in F. (4) If R is reduced and
Fo is Noetherian, then R is a graded subring of φiezFf.

Proof. (1) It follows from the definition of fi's that each JF] is an
additive group and F) F ; C Fi+j. ΣiezFi is a ring. Let /* + 4- /, E Σ i G Z F).
Suppose fk 4- -f fs = 0. Let /m = rlm/ujm where lm - jm = m and m =
/c, , 5. Let w = Π^=fc ujm. Then w/t 4- 4- ufs - 0 in R, and ufh , w/s

are homogeneous elements of distinct degrees. Therefore ufk = =
ufs = 0. Thus /k = = /s = 0, and the sum Σ Ft is therefore a direct sum.
Let fk G Fk. Then fk/uϊEF0. Therefore fk G Fo u\ and Fk = Fo u\.
Hence φ ί G Z F, f = F0[uh 1/u,]. For any / G F ,

Therefore F = F0[w/7 ί/ui]u = Fβ[w/] ι /. wf is algebraically independent
over Fo. Indeed, let αow?+ αjMΪ" l + ' *' + α« = 0? where aι E Fo and
αoτ^ 0. Writing α, = rjw^ with £ -/, = /, we have a.uy1^ Fπ_;. Therefore
α.wΓ7 = 0, and α, = 0 for / = 0,1, , n. Therefore MJ is algebraically
independent over Fo.

If Fo is Noetherian, then so is F»[wi]. Now F = F^fw/]^ Therefore F
is also Noetherian.

(2) It is obvious that R is reduced implies that Fo is reduced.
Conversely, we note if (xm/u7)n = 0, then xm = 0. Also if ym G i?m such
that y£ = 0 then (ym/u?) = 0. Thus ym = 0 . Now let y be a nilpotent
element in R. Write y = yk 4- 4- ys. For some positive integer b,
yb = (y* 4- 4- ys)

& = 0. Thus yί = 0 and then (yk+1 4- + ys)* = 0 and
so on we get y * = y b

m+1 = = y ί = 0, so ym = = ys = 0. Therefore
y = 0 and R is reduced.

(3) Fo is reduced. It follows from that F = Fβ[Mj]ι/ and that w, is
transcendental over Fo, the nonzero divisors of Fo are the same as the
nonzero divisors of R in Fo. Let Uo be the set of all nonzero divisors of
Fo. Let u0 G [Λ, then u0 = rm/um where um G U and rm G i?m. Moreover
rm E U also. Thus wtf is a unit i.e. £/<> is a multiplicative group in
Fo. Hence the total quotient ring (F0)Uo = Fo. Since Fo is Noetherian and
reduced, therefore, Fo = φ? = 1 Gf where G f 's are fields. It follows from
[2; Proposition (6.5.2), p. 146] that Fo is normal.

It follows from [5; Proposition (1.7.8), p. 116] that Fjw,] is normal.
Since F0[uj] is a polynomial ring in uh and Fo is reduced, therefore F^W/]
is also reduced. Fo is Noetherian implies that F is Noetherian. Then
F = φΓ=i/ί where / ί ' s are fields. Thus it follows from [2; Proposition
(6.5.2), p. 146] that F0[ut] is integrally closed.

Note: Let A = Z/(4)[X], the polynomial ring in X over Z/(4). Z/(4)
is integrally closed, while A is not. Indeed, let y = (x 4- 1)/(JC - 1),
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(4) Let x £z R. Since R CR0[ut]9 x is integral over F0[w/]. By
(3), R CFolut]. The rest of the proof is practically the same argument
used in the proof of [10; Theorem 11, p. 157]. We summarize the proof:
Let x E i?, x = xk + - - + xs, k g s, xk^ 0 is called the initial homogene-
ous term. We want to show that each xh i = fc, , s, is integral over R
also. Since x E R CΣ Fh there exists um E Rm Π U for some positive
integer ra, such that umx E R. Case (a), if R is Noetherian, then R [x] is
a finite R-module. There exists an integer A > 0 such that uλ

mxι E R for
all integer / g 0. Let d - uλ

m. Then di? [x] CJR. The initial homogene-
ous term dx1 is dxk. dxi E i? implies dx*E i?. Therefore x ί E (ί/d)R, a
Noetherian i?-module. Therefore i?[x f c]Ci? Ί/d is a Noetherian /?-
submodule. Therefore xk is integral over R. Repeating that argument
to x — xk = xk+1 + -f xs, we conclude that x, E /? for / = k, , 5. There-
fore i? is graded in this case. Next we look at case (b): R is not
Noetherian. Let x E R, and x" + α/X""1 + 4- απ = 0 where
ah - , αrt E R. As in case (a), there is a homogeneous nonzero divisor
d E i? such that dx'*E i?. Let {y/5 , y^} = {d, dxk, and homogeneous
components of α,'s}. Let A = fc[yi? , y^], where k = Z or Z/(n)
according to whether J? is of characteristic 0 or n > 0 . AC/? . Let
A , = A Π i?,. Then A = Σ Afl is a graded subring of i?. ί7 Π A contains
d. Therefore A ϋ n Λ , the total quotient ring of A, contains xfc, and hence
contains x also. Thus the above integral relation takes place in AunΛ.
Since A is Noetherian, therefore case (a) is applicable. Therefore xk is
integral over A. hence xk is integral over /?.
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