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PLUS AND TIMES

R. F. ARNOLD AND A. P. MORSE

Postulated here are very general but nevertheless concrete
notions of plus and times. The generality achieved lessens the
need for abstract linear spaces. The addition and multiplication
are universally associative and commutative and multiplication
rather widely distributes over addition.

The addable entities are of three general types: numbers,
functions, and classes. The numbers are the finite complex
numbers along with certain infinities. The addable functions are
addable valued nonvacuous functions. The addable classes are
free of numbers and ordered pairs; they are structured nonvacu-
ous classes of addable entities. Many addable classes arise, as in
§5, as congruence classes from an equivalence relation. In
particular, the usual complex Lebesgue classes are among the
addable classes.

Foremost in our minds when deciding which classes would be
addable and how they should be added and multiplied were certain
traditional equivalence classes. Suppose for example we regard as
equivalent any two complex finite valued functions which are on the unit
interval and are there almost everywhere equal. We notice here: that the
sum and the product of two corresponding equivalence classes can be
calculated combinatorially0; nonzero scalar multiplication can be
achieved in the natural combinatorial manner; whereas zero scalar
multiplication of a class is the combinatorial difference of the class with
itself. Accordingly the algebra of these classes does not depend on how
they arose. In keeping with this we wish to stress that, in general, the
addability of classes will depend solely on the behavior of their members
and not on how the classes arose. To smooth our path we insist at the
outset that each numerical valued function in an addable class be finite
valued. If we meet a tentative candidate of finite value somewhere and of
infinite value somewhere then we recommend its restriction in domain to
the points where it is of finite value.

The set theory we use is given by J. L. Kelley in the appendix to his
General Topology, except that his ordered pair is to be revised in the
spirit of §3. The empty set is 0, the universe is U, and it is important to
realize that

0 This particular addition permits cancellation, but combinatorial addition for nonvacuous
closed subsets of the unit interval does not.
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whenever / is a function and xg: domain /. It is also important to realize
that

{x} = U whenever x ^ U .

We agree
scsr x = x U{x}.

We agree:

0 = the empty set;

1 = scsrO;

2 = scsr 1

3 = scsr 2;

We agree that ω is the set of all these natural numbers.
Of course 0 is a function with domain 0 = 0 and

0(x) = U for each x.

If the result, in a given instance, of an operation is U, then, in that
instance, we think of the operation as unperformable. We shall have

x + U = U = x U.

To guide the reader we suggest:

the pure imaginary unit = i;

the extended real number system = rl;

the real finite numbers = rf

real infinity = °c;

— oc — oc1'•

the finite complex numbers = kf

complex infinity = Φ;

the directed infinities = dinfin;

the complex extension = kt.
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In matters of order and arithmetic we assign:

completely traditional properties to rf and kf; widely
accepted arithmetical properties to the extended complex
plane,

kfU{Φ};

generally accepted properties of order, but not yet of
arithmetic, to rl.

The foundation of our whole construction is kf.
Traditionally addition and multiplication have involved oo and

Φ. We shall uphold this tradition but since

i (i oo) = (i i) oo = -oo,

we are forced to recognize that i oo must be palpable or, in other words,
different from U.

The calculation

00 -f ^00 — Oθ) = (OO + OO) — 00 = 00 — 00

persuades us that

oo — oo = U ;

the possibility that

0 0 — 0 0 = 0 0 O Γ 0 0 — 0 0 = — 0 0

leads us to the contradiction that

00 = — 00.

We think of the directed infinities as the rays emanating from the
origin of kf and we think of Φ as kf. Addition of infinities is U unless both
infinities are the same directed infinity; a directed infinity added to itself
is itself; a scalar added to an infinity is the infinity; multiplication of
infinities is combinatorial; nonzero scalar multiplication of an infinity is
to be achieved in the obvious combinatorial manner; zero multiplication
of an infinity is U.

The addition and multiplication of nonvacuous functions is given in
1.14.3 and 1.14.4. We want to stress here that 0 is never the answer.

We close the paper in §6 with a brief discussion of linear spaces.
Although unpublished, all of the results in §2 have been for many

years known to A. P. Morse and his students.
We are grateful to Trevor J. McMinn for helpful suggestions.
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1. Postulates. We regard the expressions

'rcprx', 'Sup A', ϊ \ '(x + y)\ '(x y)'

as those forms which primitively enter our postulates. In these

'rcpr\ 'Sup', T, ' + ',

are constants. In AM1 we have shown that these constants can be so
fixed by definitions that all our postulates become theorems. Some of our
postulates first emerged from a long inductive construction described in
AM. Notable among these are: 1.6, 1.12.1, 1.13.2, 1.14. In §2 of AM we
have shown that, in a reasonable sense, our postulates uniquely describe
our addition and multiplication.

We think it noteworthy that Postulates 1.0-1.3 do not involve plus
and times.

The postulates of structure which involve the actual makeup of
members of kt are: 1.2, 1.9.0, 1.9.1, 1.10.2, 1.10.3, 1.12.3.

In 1.6.3 we have addable classes in mind.
If x and y are complex Lebesgue classes for the unit interval then, in

the sense of 1.6.5,

x = + = y,

and x ~ y in the event that x Π y ^ O . Because of this we find 4.5 and the
sentence preceding 4.6 of particular interest.

1.0 POSTULATED DEFINITIONS.

.0 (x ^ y ) iff Sup{xy}= y ^ U .

.1 (x < y) iff x ^ y and x^ y.

.2 ή = {x: x^x}.

.3 oo = Suprl.

.4 oo' = Sup 0.

.5 rf = {x: oc'<χ < oc}.

.6 rfp = {x: 0 < x < oc}.

.7 rp = {x: 0<x}.

1.1 POSTULATES.

.0 A Crl iff Sup A E rl iff Sup A ^ U / rl.

.1 If A Crl and t E rl then

Sup A ^t

1 R. F. Arnold, Plus and Times, Thesis, University of California at Berkeley, 1969.



PLUS AND TIMES 301

iff

y ^ t whenever y E A.

.2 If {xy} = A Crl then Sup A E A.

1.2 POSTULATES.

.0 oo = { χ : O ^ J C <oc}.

.1 ωCrf.

1.3 POSTULATED DEFINITIONS.

.0 Φ = rcprO.

.1 kt = {x: r c p r x ^ U } .

.2 infin = {x: rcpr x = 0}.

.3 k f = k t ( Ί -infin.

.4 dinfin = infin Π ~ {Φ}.

1.4 POSTULATED DEFINITION, (JC — y) = x + (i i) y.

1.5 POSTULATED DEFINITIONS.

.0 (A + + β ) = {JC + y: x G A and y E £ } .

.1 (A J3) = {x y: x E A and y E £ } .

.2 (A B) = {x— y : x E A and y E B}.

1.6 POSTULATED DEFINITIONS.

.0 Reverted x iff

0 + x = x = x + ( x — x ) ^ U .

. 1 reverted = {x: Reverted x}.

.2 Add'x iff x is such a nonvacuous function that

O + Jt(ί) = *(O for each t.

.3 Add"x iff

0/ x Creverted Π - kt,

x + 4- (JC x) C JC,

{λ} (x x)Cx x whenever O^λEkf.

.4 Add x iff

x E kt or Add'x or Add"x.
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.5 (x = + =y) iff

Add"x and Add"y and x x = y y.

.6 (JC = = y ) iff

x - + = y

and

w z — + = x whenever w — + = x and z = + = x.

1.7 POSTULATES.

.0 rcpr x ^ U iff rcpr x G kt iff x E kt.

.1 If x + y ^ U then

x + y E kt iff JC E kt and y E kt.

2 If JC y ^ U then

JC y E kt iff JC E kt and y E kt.

.3 If x E rf and y E rf then

x + y E rf and JC y G rf.

.4 If x E rp and y E rp then

x + y E rp and x - y E rp.

1.8 POSTULATE. If JC E rl and y E rl then

x < y iff y — x E rp.

1.9 POSTULATES.

.0 If 0 ^ x E kt then 0 E x.

.1 Φ = kf = {x: x — x =0}.

.2 dinfin = {z u: u = & and 0 ^ z E kf}.

1.10 POSTULATES.

.0 If x E kf and y E infin then x + y = y.

.1 If x E infin and y E infin then

iff x + y = y iff x = y E dinfin.

.2 If 0 φ x E kf and y E infin then

x y ={x} y.

.3 If x E infin and y E infin then
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x y = x - - y.

1.11 POSTULATES.

.0 z E kf iff for some x E rf and some y E rf,

z = JC + i y.

.1 If x E rf and y E rf then

x + i y = 0 iff x = 0 and y = 0.

1.12 POSTULATES.

.0 If x E kt then 0 + x = x.

.1 0 + JC = 1 JC.

.2 If 0 ̂  x E kf then x rcpr x = 1.

.3 If x E ω then scsr JC = JC + 1.

1.13 POSTULATES.

.0 x + y = y + x and x y = y x.

.1 x + (y + z ) = (x + y ) + z and x (y z ) = (x y) z.

.2 If Reverted z then z (x + y ) = z x + z y.

1.14 POSTULATES.

.0 I f x + y ^ U o r x y ^ U then Add x.

.1 If x E kt and Add'y and z is such a function that

( ) y() for each ί

then:

if ZT^ 0 then x + y = z;

if z = 0 then x + y - U.

.2 If x E kt and Add'y and z is such a function that

z ( t ) = x - y ( t ) for each t

then:

if zj^ 0 then x y = z

if z = 0 then x y = U.

.3 If Add'x and Add'y and z is such a function that

z(t) = x(t)+y(t) for each t

then:
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if z ^ 0 then x + y = z;

if z = 0 then JC + y = U.

.4 If Add'x and Add'y and z is such a function that

z ( ί ) = x(t)-y(t) for each t

then:

if z^ 0 then JC y = z ;

if z = 0 then x y = U.

.5 If JC E infin and if Add"y then x + y = U = x y.

.6 If JC G kf and if Add"y then x + y = {JC} + + y.

.7 If 0 ^ x E kf and if Add"y then x y = {JC} y.

.8 0 x = x — x .

.9 If Add'x and Add"y then x + y = U = x y.

.10 If Add"x and Add"y then:

iff x + y = x + + y iff x = + = y ;

x y ^ U iff x y = x y iff JC = = y.

1.15 POSTULATED DEFINITION.

grp x = {y E reverted: x E reverted and y — y = x —x}.

With some reluctance we add Postulate 1.16 which is a consequence
of the others. The proof of 1.16, we have in mind, is somewhat
lengthy, and although independent of ordinal theory, is strongly
dependent on the Axiom of Regularity and the ordered pair theory given
by A. P. Morse in 2.55-2.63 of A Theory of Sets. An intuitively pleasant
consequence of 1.16 is 6.4. No other use is made of 1.16.

1.16 POSTULATE, grp x E U.

1.17 DEFINITIONS.

.0 - x = (i i) x.

.1 x/y = x rcpr y.

2. T h e c o m p l e x extens ion. Many properties of the (ex-
tended) real numbers, rl, can be proved using only 1.0, 1.1, and 1.2.
Among these are Theorems 2.0 below.

2.0 THEOREMS.

.0 If x^y then x E rl and y E rl.
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Proof. From 1.0.0 and 1.1.0 we see

and {jcy}Crl.

.1 If A Crl then

y ^ Sup A whenever y E A.

Proof Using 1.1.0 and 1.0.2 we see

Sup A Eή

and so

Sup A ^ Sup A.

Because of this and 1.1.1

y ^ S u p A whenever y E A.

.2 If b E rl and y ^ b whenever y E A then Sup A ^ b.

Proof Use .0 to conclude A Crl. Now use 1.1.1.

.3 If A CB Crl then SupΛ ^ Sup B.

Proof Use .1, .2, and 1.1.0.

.4 rl = {x: oo' ̂  * ^ oo}.

Proo/. After noting that

0 C {x} C rl whenever x E rl,

use 1.0.3, 1.0.4, .3, 1.1.2, and .0.

.5 rl = rf U {oo'oo}.

.6 If x E rl and y E rl then x ^ y or y ^ x.

Proof Use 1.1.2 and 1.0.0.

.7 x ^y iff x <y or x = y Eή.

.8 If x ^ y and y i z ίften x ^ z.

H/nί. Let Λ = {xy} and use 1.1.1.
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.9 If x ^Ξ y and y ^ x then x = y.

.10 OGrf and 1 G rf.

Proof. Use 1.2.1.

.11 rfpCrfCrl.

.12 rp = rfpU{oo}.

.13 rfpCrpCrl.

2.1 THEOREMS.

.0 kt = kfUinfin.

.1 kf = {jc:O x =0}.

Proof. Use 1.9.1 and 1.14.8.

.2 i G kf.

Proof Because of 2.0.10, 1.11.0, .0, 1.7.1, and 1.7.2 we have

0 + i 1 G kf

and

i e k t .

From this, 1.13.0, 1.12.1, and 1.12.0 we see

i = 0 + i = 0 + M G k f .

.3 ωCrfCkfCkt.

Proof. From 1.2.1 and .0 we have

ωCrf and kfCkt.

Furthermore, if x G rf then, because of 2.0.10, 1.11.0, .2, .1,
1.7.1, and 1.12.0,

and so
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rfckf.

.4 kfC reverted.

Proof. Use 1.9.1, 1.12.0, and 1.13.0.

. 5 If z E. k f t h e n z (x + y ) - z • x + z • y .

.6 i i = - 1 and - x = - 1 x.

Proof. Use 1.17.0, 1.13.1, 1.13.0, .2, .0, 1.12.1, and 1.12.0 to see

- l = (i i) l = i (i l) = i (l i) = i i.

Consequently,

- 1 = i i and - x = (i i) x = - 1 x.

.7 x — y = x -\— y.

.8 x G kf iff - x G kf.

Proof. Because of .1 and .2 we see

0 x = (0 i) x = ((0 i) i) x = 0 (i i x) = 0 - x.

Thus
0 x = 0 iff 0 - x = 0

and so

x G kf iff - x G kf.

.9 - 1 - 1 = 1.

Proof. Relying on .3, .8, .7, and .1 we have

1 = 1 + 0 = 1 + — 1 - O = 1 H — 1 - ( 1 + — 1 )

= 1 H 1 - l H 1 - — 1 = ( 1 H 1 ) H 1 - — 1

= 0 + - l - 1 = - l - 1 .

.10 Ifx G kt then x = x.

Proof Use .6, .9, 1.12.1, and 1.12.0.

.11 x<Ξktiff - x G k t .
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Proof. On the one hand, from .10 and .6, we have

x = x = — 1 — JC whenever x E kt

and so because of 1.7.2

- x E kt whenever x E kt.

On the other hand, if - x E kt then from .6

- 1 x E kt

and so because of 1.7.2, x E kt.

.12 x Erf iff - x E r f .

Proof. Assume x E rf and using .3, .8, and 1.11.0, so choose α E rf
and b E rf that

- x = a + i b

and check that

O = JC+ -JC = JC + (α + i 6) = (x + α) + i 6.

But, because of 1.7.3

x + a E rf

and so, because of 1.11.1

6 = 0

and

- χ = <2 + i 0 = α + 0 = α E r f .

Consequently,

— JC E rf whenever x E rf.

Because of this, .10, .3, and .11 we also have

x = x E rf whenever — x E rf.

.13 Ifx E kt and y E kt then - x - y = x y.

Proo/. Use .6 and .9.
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.14 0<x iff x Erp.

.15 0 £ r p and 1 Erp.

Proof. Because of 2.0.6

0 < 1 or 1< 0

and consequently, from .14 we have

1 E rp or 1< 0.

But, because of 1.8, if K 0 then

- 1 = 0+ - 1 = 0 — l E r p

and so, using 1.7.4 and .9 we infer

1 = - 1 - 1 E rp.

.16 - 1 ^ 0 .

Proof. If - 1 = 0 then because of .9 and .1,

2.2 THEOREMS.

.0 ΦE infin Π-dinfin.

Proof. Using 1.3.0, 1.7.0, and 2.1.3 we see

Φ = rcprOE kt.

From this, 1.9.1, 1.3.1, 1.3.2, and 1.3.3 we obtain

Φ = kf£kf and ΦEktίΊ ~kf=infin.

Now use 1.3.4.

.1 infin = dinfin U{Φ}.

.2 oo E dinfin.

Proof. From 2.0.12 and 2.1.15 we have

oo E rp and 1 E rp
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and so, because of 1.7.4,

1 oo e rp.

Thus

1 oo E U and 1 °° E dinfin.

But then, because of .1, 2.1.0, and 1.7.2

1 oo G kt and oo E kt.

Employing 1.12.1 and 1.12.0 we conclude

oo = l oo E dinfin.

.3 rp C kt.

.4 oo' = - oo E dinfin.

Proof. Since oo'<0 we see, helped by 1.8 and .3, that

0 — oo'= 0 + —OO'E rp and - ^ Έ r p .

But, because of 2.1.12

oo' E rf iff - oo' e rf

and so

- αo'E rp Π ~ rf = {oc}

and

— oo' = oo.

Now, using .3, 2.1.11, 2.1.10, 2.1.16, and 1.9.2 we conclude

oo' = oo' = - 0 0 = - l o o E d i n f i n .

.5 rlCkt.

.6 rf = kf Π rl.

.7 x ε rl iff - x G rl.

.8 x < 0 iff - x E rp.

Proof. Use 2.0.0, 1.8, 2.1.7, .7, .5, .3, and 1.12.0.

.9 x E infin iff - x E infin.
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Proof. Use 2.1.11 and 2.1.8.

.10 ί / x E dinfin then x ̂  - x.

Proof. Using 1.9.2 so choose z that

0/ z E kf and x = z oo.

Accordingly,

- χ = - z o c ^ ^ . - o o ^ z oo'.

Now if x = - x then

Z oo = z * o°',

(rcpr z) z oo = (rcpr z) z <»',

1 . oo = l . oo'.

oo = oo' < oo.

Thus x / -jc.

.11 If x Einfin ί/ẑ n x—x = U = 0 x.

Proof. Use 1.10.1, .9, .10, and 1.14.8.

.12 0 x = 0 iffx E kf ijff 0 x E kt.

Proo/. Use 1.7.2, 1.3.3, 2.1.1, and .11.

.13 x + y E kf i# JC E kf and y E kf iff x y E kf.

Froo/. Recall first that

and then use 1.7.1, 1.7.2, and .12.

.14 If x E dinfin ί/iβn x + x = x.

.15 00 + 00 = 00.

.16 7/ x E infin ί/zen x + Φ = U.

.17 // O ^ x Ekf then x Φ = Φ.
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Proof. Using 1.10.2, 1.9.1, and .13 we see

x Φ = {x} kfCkf.

Furthermore, in the light of 1.12.2, if y G kf then

y = 1 y = x rcpr jc yG{jc} k f - χ φ

and so

kfCjc Φ.

Thus x φ = kf = Φ .

.18 oo φ = φ.

Proof. From 1.2.0 we learn

leoockf .

Because of this, 1.10.3 and .17 we have

oo . φ = oo φ C kf

and

kf={l} -kfCoo . . φ

and so

oo φ = kf = Φ.

..19 Φ Φ = Φ.

.20 I / O ^ x E kt then x Φ = Φ.

.21 If 0 < x then x oo = oo.

Proof. Using 2.1.14, 2.0.12, and 1.7.4 we see that

x oo G rp = rfp U {oo}.

But, from 2.0.11, 2.2.6, and .13 we learn

if JC oo G rfp then oo G kf

contrary to 2.2.2, 1.3.3, and 1.3.4. Thus

X oo = oo.
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.22 If x <0 then x oo = - oo.

Proof. Use .8, 2.1.14, and .21 to conclude

- x oc = oo.

Now, helped by 2.1.6, 2.1.13, 1.12.0, and 1.12.1, we see

_ o o = -

.23 If x Eή and y E rl and JC + y ̂  U then x + y E rl.

.24 // JC E rl and y E rl and x y / U ί/ι̂ n JC y E rl.

.25 0 ̂  λ E kf iff 0 ̂  rcpr λ E kf.

Proof. Use: 1.12.2, 2.2.13, 2.1.1; 1.3.1, 1.3.2, 1.3.3, 1.3.0, 2.2.0.

3. Integrity. Some of the ordered pairs of Norbert Wiener are
functions.2 Free from this blemish is the ordered pair given by A. P.
Morse in 2.57.1 of A Theory of Sets. It turns out that

if x is an ordered pair then 0 {£ x and {{0}} E x.

Using this and 1.9.0 we prove the Theorems of Integrity below. These
theorems help us verify that two intuitively different things are actually
different.

3.0 THEOREMS OF INTEGRITY.

.0 // 0 7̂  x E kt then x is not a relation.

Proof Because of 1.9.0, OE x. But 0 is not an ordered pair since

.1 If x is a relation then x is not an ordered pair.

Proof. If x is an ordered pair then: {{0}} E x but since {{0}} £ {{0}} it
follows that {{0}} is not an ordered pair; thus x is not a relation.

.2 // x is an ordered pair then xgί kt.

2 An example is {{{0}}}.
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Proof. Clearly 0 is not an ordered pair. Furthermore, because of

1.9.0, if 0 -φ x E kt then 0 E x and so x is not an ordered pair.

4. Generalities.

4.0 THEOREMS.

.0 // Addjc then x / U .

.1 x + U = U = x U.

.2 ί / x G U and y EU then:

if x + y ^ U then x + y E U;

// x y ^ U Λen x y E U .

/. Use 1.7.1, 1.7.2, 1.14, and set-theoretic considerations.

.3 / / A d d x then 0 + x = JC = 1 x.

Proo/. Use 1.6.4, 1.12.1, 1.12.0, 1.6.2, 1.14.1, 1.6.3, and 1.14.6.

.4 θ + jc + y = jc + y = l (jc + y) and θ + jc y = j t y = l jc

Proof Because of .1 , x + y = U and x y = U then

0 + jt + y = 0 + JC y = 0 + U = U = jc + y = x y.

Employing 1.14.0 and .3 we infer

if x + y ^ U or x y ^ U then Add x

and so

0 + x + y = (0 + x ) + y = x + y

and

l x y = (l x) y = x y.

T h e desired conclusion now follows from 1.12.1.

.5 // A d d x then x = x.

Proof Helped by .3 we infer
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X = - l ' - l ' X = l ' X = X .

.6 J/x + y ^ U then Add(x + y).

Proof. Using .4 and 1.14.0 we see

(x + y) + 0 = 0 + (jt + y) = x + y ^ U and Add(x + y).

.7 Ifxy^υ then Add(x y).

.8 // Reverted x then Add JC.

Proof. Use 1.6.0 and 1.14.0.

For those dismayed by .9 below we first agree that

(x,y) = {(l,x)(2,y)}.

Next we notice that

Add'(x, y) whenever x E k t and y E kt.

Accordingly,

(3,2)+ (5,7) =(8,9).

.9 // x is an ordered pair then ~ Add x.

Proof From 3.0.2 we see x£ kt.

From 3.0.1 we see ~ Add'x.
Now suppose Add"*. Since

x C reverted Π ~ kt,

and, since x is an ordered pair, helped by .8 we see

{{0}} E JC, {{0}} E reverted ΓΊ ~ kt, Add{{0}}.

Now 0 E {0} and so {0} is not an ordered pair. Consequently,

{{0}} is not a relation, ~ Add'{{0}}.

Furthermore

{{0}} = {1} £ reverted Π - kt, ~ Add"{{0}}.

Contradictorily we conclude ~ Add{{0}}.
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Thus ~Add"x and ~ Add x.

.10 If xEkt then ~ Add'* and ~ Add"*.

Proof Use 3.0.0, 1.6.2, 1.6.3, and 1.9.0.

.11 If Add'x then - Add"*.

Proof Use 1.6.3, 1.6.2, .8, and .9.

An alternative but less enlightening proof of .11 shuns .9 but
depends on 1.14.9 and on .12 below.

.12 // Add'x and z and w are such functions that, for t E U,

z(t) = 0 and w ( ί ) = l ,

then

Add'z and Add'w and z + x = x = w x.

.13 Ifx + y^υ and Add'x then Add'(x + y).

Proof Use 1.7.1 and .10 to conclude x + yg: kt.
Choose z in accordance with .12 and use .12 and 1.14.9 to see

and so

~Add"(x + y).

Consequently, because of 1.14.0, Add'(x + y).

.14 // x y / U and Add'x then Add'(x y).

.15 // x + y fέ u and Add"x then Add"(x + y).

Proof Use 1.7.1 and .10 to conclude x + ygi kt.

Again choose z in accordance with .12 and use .12, 1.14.9, and .1 to
see

z + ( x - h y ) = ( z + x ) + y = U + y = U

and hence, because of .12, ~ Add'(x + y).
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Because of 1.14.0 the desired conclusion is now at hand.

.16 If x -y^U and Add"* then Add"(x y).

.17 // Add"y then x y = x + + - y.

.18 // A d d * and O ^ λ Gkf then λ x ^ U .

Proof. Helped by 1.12.2 and .1 we see

U ^ j c = l jc = (λ rcprλ) x = (rcpr λ) (λ x)

and λ x ^ U .

.19 J / O ^ A E kf and Add'x ί/ien Add'(λ JC).

Proof Use .14 and .18.

.20 // Add"* then x = + = x.

.21 // JC = 4- = y ί/ien y = 4- = x.

.22 If x = + = y and y = + = z ί/ien x = + = z.

.23 If x = - = y then y = = x. .

.24 // x = = y and y = = z then x = = z.

A theorem is not obtained from .20 by replacing ' + ' by '•'.
Nevertheless if x = = y then x = = x.

.25 7/ Add"x then x = 4- = - x.

Proof. Use .18 and .16 to conclude Add"-χ. Then use .17.

.26 If x = + = y then U ^ x — y = x y.

Proo/. Use .25, 1.14.10, and .17.

.27 If λ E k f tfzen A (JC — x ) = λ x — λ x = x — x .

Proof Using 2.1.5 and 1.14.8 we see
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A • ( * — x ) = λ x — A x = 0 ( λ x ) = ( 0 λ ) x

= 0 x = x — x .

.28 // λ E kf and Add"* then Add"(A JC).

Proof. Use .26 and .16 to conclude

O.jc = j c _ j t ^ u and Add"(0 x)

and hence because of .18 and .16

Add"(λ x).

.29 // Add"* and A E kf then x = + = A x.

Proof. Helped by .28, .26, and .27 we see

λ jt A JC = A JC —A x = x — x = x x

and

x = + = A x.

.30 // x C reverted and x + + x x Cx then

x + + x x = x.

Proof. Evidently if u E x then

u = u + u — w E x + + x x

and hence x Cx + + JC x.

.31 // Add"* Λen x + JC — x = x.

Proof. Helped by 1.14.8, .29, 1.14.10, .26, and .30 we see

jc + j c — X = J C + 0 X = J C + + O JC

= JC+ + (JC J C ) = J C + +JC X=JC.

.32 // Add"x then Reverted x.

.33 // x + y^ U and Add"x tfien (x + y) = + = x.

.34 1/ x y έ U and Add"x and Add"y ώβn (x y) = = x.
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.35 J/jt y ^ U and Add"x then (x y) = + = JC.

4.1 THEOREMS.

.0 // Reverted x and Reverted y and Jc + y ^ U then
Reverted(x + y).

.1 // Reverted x and Reverted y and jt y ^ U then
Reverted(x y).

.2 // Reverted x and λ E kf then Reverted(λ x).

.3 // x E reverted D - kt ί/ien Add"grp *•

.4 // Reverted x and x — x = y — y then x + y / U.

fVoo/. Helped by 1.6.0 and 4.0.1 we see

u ^ x = x + ( x — * ) = * + (y — y) = (^ + y ) — y

and

4.2 THEOREM. // Add/rx and Add"y and 0 ^ x + + y

Add"(x+ +.y).

4.3 THEOREM OF CANCELLATION. If x + y = η and Reverted x
then (x + η) — (x + η)= η — η.

Proof Using 1.13 and 1.14.8 we have

= O J C + O T/

= θ j c + θ (jc + y )

= O JC+O j c + O y.

= (0 + 0) x + 0 y

= θ jc+θ y

= 0 (x + y)

= 0 - 1 ,
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4.4 THEOREM OF SHIFT. // Add"x and η E x — x then there is such
aξ E JC that ξ — ξ = η — η.

Proof. So choose w, t>, and ξ that

u E x, v E x, Ύ] — u — ϋ,

and

f = U + 7J.

Then, from 1.6.3 and 4.3 we have

u E reverted and ξ — ξ = η—η.

Now, helped by 4.0.2 and 4.0.30 we see

(M + W — υ ) — u = (u + u — u)—v

= u —ί) = η E U ,

u + u — υ ^ U , U + U — ϋ G U,

and

ξ = u + η = u + u — U E J C + + x x = x.

4.5 THEOREM. If x = + = y and x Cy then x = y.

Proof Assume z E y. Then since y C reverted,

z = z + z — z .

Thus,

z — Z T ^ U and z — z E y y — x x.

C o n s e q u e n t l y , w e so c h o o s e u E x a n d D £ X t h a t

z — z = u — v

a n d infer

Z = Z + Z Z = Z + U V = Z ϋ + M.

B u t , s i n c e x C y,

υ E y a n d z — i ^ U a n d z — vEy y = x x.

We now so choose r E x and 5 E x that

z — ϋ = r — s
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and conclude

z = z — ϋ + M = r — s + u — r 4- u — s E x - f + JC x C JC.

Thus z E x. The arbitrary nature of z assures us that x = y.
In connection with 4.5 we note that if

η=«(θ,o)H(U)}},

then

4.6 THEOREMS.

.0 If xE kf Λen grp x = kf.

.1 // Add'* then g r p x = { y : y is on domain x and for each
t E domain x, y (t) E grp x (f)}.

Here grp x is a Cartesian product.

.2 // Add"* then grp JC = {y: y = + = x}.

4.7 CONJECTURE. If Add"x, s E JC, and ί E grp 5, then there is a y
for which

t E y = + = JC.

5. Equivalence relations.

5.0 DEFINITION. Relation"/? iff R is such an equivalence relation
that:

domain R C reverted Π ~ kt;

(5 + u, t + t>) E i? whenever 5, ί, «, and υ are such that

(5, ί)GjR, ( M , D ) G R , 5 + w ^ U ^ ί - h u ;

(A 5, λ ί )E JR whenever 5, ί, and λ are such that

( M ) e JR, λ Ekf.

5.1 THEOREM. // Relation"/? and 0 ^ x = {u: (u,a)E R} then
Add"*.
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We give the proof in 4 parts.

Part 0. 0 ^ x C reverted Π - kt.

P a r t i . JC++X xCx.

Proof. Suppose u E JC, v E JC, w E JC, and

w + u — w E x + +JC x.

Thus (w, α)Ei?, (v,a)ER, (w,a)ER, ( - w, - α ) E i ? , and

(w + υ — w, α) = (u + v — w,a + a — α)E JR.

Consequently,

u + v — w E x.

Part 2. {λ} (JC JC)CJC x whenever 0 ^ A Ekf.

Proof. Suppose u E x, v E JC, 0 ^ A E kf, and

A -(w — u ) E { λ } ( J C — — JC).

Thus

.0 (M,α)EJR, (A M, A α ) E J R , and ( - A v, - A a)E R

and because of 4.0.27

.1 υ/λ '(u — υ ) = λ w — A υ

= λ - (u + u — u) — A v

- A u + A (u — u) — A υ

= λ w + w — u — λ - υ

= (w + λ u — A υ) — u.

Thus

u + A u—λ - v^\]

and hence because of .0

(u + A u — A D,fl) = (M + A M —λ - v,a + a — a)

= (u + A u — λ - υ, a + λ - a — λ α ) E i ? .

Accordingly,
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U + A U — A ' V E X

and, because of .1

A (u — v)E x x.

Part 3. Add"*.

Proof. Use 1.6.3 and Parts 0, 1, and 2.

5.2 THEOREM. // Relation"/?, 0 ̂  x = {u: (w, a) E !?}, and
0 φ λ G kf

A x ={w: (κ,λ a)ER}.

Proof. Use 2.2.25, 1.12.2, and 5.0 to check that

(u,a)<ΞR iff (λ'U,λ a)ER.

Now use 5.1 and 1.14.7.

5.3 THEOREM. // Relation"!?,

0/x ={u: (u,a)ER}9

Oέy ={u:(u,b)GR},

and

corresponding to each s E x there is such a w Ey that

w — w = s — 5,

then:

.0 (a — a, b — b)ER;

.1 x jcCy y.

Proof. R e c a l l first t h a t if q E x U y t h e n q + q—q = q a n d
q-qGU.

So choose w E y that

w — w = α — a.

Thus

(w, £ ) E J R , ( - W , -b)ER9 and

(α — α, b — b) = (w — w, 6 — 6) E !?.
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The proof of .0 is now complete. Next assume

s E x , t E x , s — t E x x

and note that

( s , a ) E R , ( t , a ) E R , (s — t,a — a ) E

and because of .0,

.2 (s — t^b — b)ER.

Now so choose w that

.3 (w, b)ER and w — w = s — 5.

Hence

.4 U ^ 5 — ί = s + s — s — t

= s + w — w — t

= (W + 5 ί) W,

and so

w + 5 — ί / U .

Because of this, .2, and .3

( w + s — t , b ) = ( w + s — t,b + b — b ) E R .

Accordingly,

w + s — t E y

and, because of .4

s — t Ey y.

The proof of .1 is now complete.

5.4 THEOREM. If Relation"]?,

O^x = {U: (u,a)ER},

0/y={u:(u,b)ER},

and

corresponding to each s and tinx U y is such a

w that
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(w,t)ER and w — w = s — 5,

then
x = 4- = y.

5.5 THEOREM. // Relation"/?, a + bφ U,

z ={w: (κ,α+ &)£/?},

corresponding to each s and tinx U y U z
/s suc/i a w that

(w,t)ER and w — w = s — s

then

x + y = z.

Proof. Helped by 5.4, 4.0.33, and 1.14.10 we see

x = + = y, JC= + = Z ,

x + y = x + + y , x = + = ( x + y),

.0 z = + =(jc + y).

Evidently

x + y = x + + y C z

and consequently, because of .0 and 4.5,

JC + y = z.

For many applications a more pleasant equivalence relation is
available.

5.6 DEFINITION. Relation + JR iff R is such an equivalence rela-
tion that for each 5, ί, w, v in domain R and each λ E kf:

domain R Creverted Π — kt;

if (5, t)ER and (M, ι>) e /? then

(s + u,t + v ) E R a n d ( λ 5, λ t ) E R

for some w
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(w, t)GR and w — w = s — s;

grp s C domain R.

5.7 THEOREM. // Relation 4- R then Relation"/?.

5.8 THEOREM. // Relation"/?, D = domain R, and

grp x = D whenever x E D,
then

Relation + R.

Proof Use 5.0, 5.6, and 4.1.4.

5.9 THEOREM. // Relation + i?,

then

x = + = y.

Proof Use 5.4 and 5.6.

5.10 THEOREM. If Relation + /?,

O ^ x ={U: (M, α ) E

0 ^ y = { i ι : ( w , & ) ε

z ={«:(«,fl + ί)

x + y = z.

Proof Use 5.5, 5.6, and 5.7.

5.11 LEMMA. // Relation + R, s E domain JR, t E domain R, and
(s — t,t — t)ER then

(s,t)E:R.

Proof Evidently, because of 5.6,

(s — ί + ί, f — f + f) ε JR, (s + t — t,t)ER.

Also, by 5.6 and 5.3,
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(s — s, t — t) E R, (s + s — s,s + t — t)ER,

(s,s + t — t)ER.

Consequently, by transitivity,

(s,t)ER.

5 . 1 2 T H E O R E M . // R e l a t i o n + R a n d b E y = + = x =
{u: (u,a)ER) then

y={u:(u,b)<ER}.

Proof. Assume

z ={u: (u,b)ER}

and divide the rest of the proof into 3 parts.

Part 0. y C domain R.

Proof. If t E y then, helped by 5.2, 5.10, and 5.6, we see

t — tEy— y = x— x ={u:(u, a — a)E R},

{t — Ua — a)ER,

t — t E domain R,

t E grp(ί — t) C domain i?,

t E domain R.

Part 1. y Cz.

Proof Assume t Ey. Using Part 0, 5.3.0, and 5.11 we see

t — b E y — y = x — x = {u: (w, a — a)E R},

(t — b,a — a)ER,

(t — b,b — b)ER,

(t,b)ER,

tEz.

Part 2. y = z.

Proof. Use 5.9 and 4.5.
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5.13 CONJECTURE. If Relation"!?, bEy = + = x =
{u:(u,a)ER}, z ={u: (u,b)ER}7 and

corresponding to each s and t in x U y U z
is such a w that

(w,t)ER and w — w = s — s,

then

y = z.

5.14 DEFINITION. Relation R iff Relation + R and for each 5, ί, w,
and f in domain R :

if ( M ) £ # and (u,v)ER then (5 iι,ί ϋ ) 6 I?;

if ( M , r ί ) E l ? then, for some p and q

u=p q, (p9s)eR, and (q,t)ER.

5.15 LEMM^. // Relation /?,

Oy x = { u : ( M , α ) e J R } ,

z ={u:(u,a -b)ER},

then

x - - y = z.

5.16 THEOREM. If Relation /?,

Oέx={u:(u,a)ER},

Oϊy ={u:(u,b)ER},

z={u:(u,a b)eR}9

then

x - y = z.

Proof. According to 5.14, 5.9, and 5.15

x = + = y and x y = z.

Now suppose

w = + = x and v = + = x
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and note that 0 ̂  w and 0 ̂  υ. Assume c E w and d E v and use 5.12 to
see that

w ={w: (U,C)ER} and v = {u: {u,d)ER}

and so, because of 5.15

w v = {u: (u, c d)ER}.

Because of this and 5.9

w v = + = x

and consequently from 1.6.6 we have

x = = y.

Now use 1.14.10.

5.17 THEOREM. / / / is the unit interval,

D = {x: x is on J to kf},

R is the set of points of the form (x, y) where x E D and y E D and

x ( 0 = y ( 0 for almost all t E 7,

then

Relation R.

Of course 5.10 and 5.16 apply. Here the equivalence classes are
Lebesgue classes of the coset type.

5.18 THEOREM. // / is the unit interval, and Δ consists of those
functions x for which

domain x C / and range x Ckf,

R is the set of points of the form (x, y) where x E Δ and y E Δ and

x(t) — y(t) = 0 for almost all t E /,

then

Relation R.
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Again 5.10 and 5.16 apply but now the equivalence classes are
Lebesgue classes which are not of the coset type.

5.19 THEOREM. // P consists of those functions x for which

0 E domain x E U and range xCkf,

R is the set of points of the form (x, y) where x E P and y E P and

x(0)=y(0),

then
Relation R.

Still again 5.10 and 5.16 apply but now each equivalence class has the
power of the universe.

6. Linear spaces.

6.0 DEFINITION. 5 is a linear space iff

S C reverted

and, for each x E S, each y E S, and each λ E kf,

0 x = 0 y, x + y E S, and A x E S.

6.1 THEOREM. S is a linear space iff

for each x E 5, each y E 5, eαc/i λ E kf, and eac/i μ E kf,

0 x = 0 y,

x + y E 5,

A x E S,

( λ - f - μ ) jc = λ JC-l-μ x.

In connection with 6.1 recall 1.13, 2.1.4, 1.14.0 and 4.0.3. In mild
departure from custom we have insured that 0 is a linear space.

6.2 THEOREM, grp x is a linear space.

6.3 THEOREM. // 5 is a linear space and x E 5 then S Cgrp x.

6.4 THEOREM. If S is a linear space then S E U.
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It interests us that if ξ E grp x, η E grp x, ξ η E grp x, then grp x is
a commutative ring.

6.5 REMARKS. Our linear spaces have a certain integrity. By a
lengthy set-theoretic argument it can be shown, for example, that if 5 is a
linear space and x E S then no point in range x belongs to S. Because of
this and §3 it is possible, with proper choice of x and y, for

to consistently be either an instance of multiplication of scalars, or
function evaluation, or composition, or a rather general inner product, or
matrix multiplication, or the left application of a matrix to a vector, or the
right application of a matrix to a vector. The operation we here have in
mind is not universally associative.

We shall now be a bit more specific. If x and y are matrices and y
does not properly receive x then

If x is a function and y E domain x then (xy) is the value of x at y. For
convenience we agree that x is spanic iff x is a function, domain x is
included in some linear space, and domain x is not a subset of

{/Eω: 1^/}.

If x is spanic and y is a function for which y£ domain x, and C is the
composition of x and y, then:

if CVO then (xy)=C;

if C = 0 then (xy) = {(0,0)}.

If n E ω and x and y are on

{/Eω: 1 ^ / ^ n }

then

n

(xy) = Σ (*/ •?/)•

It can easily happen here that

(xy)G ~kt.
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Because of the integrity of linear spaces it is easy to see that if x is spanic
and y is a function for which

range y Π domain x^ 0,

then (xy) is the composition of x and y. Since the domain of a matrix is
a relation, it follows from 4.0.9 that no matrix is spanic. We do not object
to the convention that

(xy =

In this connection we note that if x = 0 and y = 1, then

We wish also to point out that if a is a nonvacuous matrix then

Oα = 0 ^ 0 α.
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