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WIENER INTEGRALS OVER THE SETS BOUNDED BY
SECTIONALLY CONTINUOUS BARRIERS

C. PARK AND D. L. SKOUG

Let Cw = C[0, T] denote the Wiener space on [0, T]. The
Wiener integrals of various functionals F[x] over the space Cw

are well-known. In this paper we establish formulas for the
Wiener integrals of F[x] over the subsets of Cw bounded by
sectionally continuous functions.

1. Introduction. Let Cw = C[0, T] be the Wiener space on
[0, Γ], i.e., the space of all real-valued continuous functions on [0, T]
vanishing at the origin. The standard Wiener process {X(t) =
X(t,-):0^t^T} and Cw are related by X(t, x) = x(t) for each x in
Cw. Evaluation formulas for the Wiener integral

Jew
F[x]dwx = E{F[x]}

of various functionals F[x] are of course well-known (for example see [7]
for some of these formulas). Now, consider sets of the type

W sup X(0-/(0<θ|

= \x e Cw: sup x(t)-f(t)<θ)

where f(t) is sectionally continuous on [0, T] and
It is well-known that for b ̂  0

= 2Φ(bTm)-l

and

P[Γaΐ+b] = Φ[(aT + b)T-ιn] - e-2abΦ[(aT-b)T-1/2]

where Φ is the standard normal distribution function. In [3], [5], and [6]
more general functions f(t) are considered and formulas given for the
probabilities of the sets Γf.

The main purpose of this paper is to derive formulas for Wiener
integrals over the sets Γf. In §2 we state and prove the main results,
while in §3 we discuss some applications and examples.
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2. Integration formulas. Our first theorem is preliminary;
it plays a key role in the proof of Theorem 2.

THEOREM 1. Let 0 = t0 < tλ < < tn = T be a partition of
[0, T]. For j — 1, 2, , n let fj(t) be continuous on [tj-u ίy]. Then the
conditional probability

sup

[p\ sup
OΔ

ίy = tj - tj-ι and Δwy = u} - M7 _I wiίft w0

 = 0.

Froo/. First we note that

\ sup

sup

Now since the Wiener process has independent increments, the
above expression equals

sup X{t)-X(tj-ι)-[fi(t)-uM]<O\X(ti)-X(tM) = Δ

Hence the first equality in the theorem follows from the fact that
stationarity implies that X(t) - X(ίy-i) is the same process as
X(t - tj-λ). To prove the second equality in the theorem, we note that
X(t) and tX(l/t) are identical Wiener processes for t > 0 by checking the
covariance function. Thus

sup
O
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The result now follows by the transformation

THEOREM 2. Let 0 = t0 < tλ < < tn — T be a partition of
[0, T]. Let g(uu , un) be a Lehesgue measurable function on Rn and
forx(Ξ Cw let G[x\ = g(x(t^ , x(tn)). For j = 1,2, , n let f(t) be a
continuous function on [ί;_1? t}]. Then the Wiener integral of G[x] over
the set

Γ ^ f x E C w i sup x ( 0 - / , ( 0 < 0 , / ' = 1,2, •••,*}

is given by

J G[x]dwx = I (n) I g(uu , un)H(uu , un)dun dux

in the sense the existence of either side implies that of their equality, where

H(uu , un) = f l (2ττΔί;r
1/2exp{ - (ΔM;)

2/(2ΔO}

sup

Proo/. First consider the case where G[x] is the characteristic
function of a Wiener interval /. That is to say / has the form

for some Lebesgue measurable set E in Rn. Then
s o i n ^ i s case
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ί G[x]dwX = ί Xl(x)dwX = P[Γf Π /]
Jr, Jr,

= £ ' («) | A > { f sup( X(t) - f,{t) < 0, 1 ̂ / S n,

[x(ίt), , x(tn)] e E\x(tj) = uj, 1 Si/ ^ nj ίΓ(Γ, u)rfun • dMl

where

Next we observe that

sup X ( 0 - / ( 0 < 0 , l^/s in , [*( ί i ) , '

l ^ j ^ } ( ) p \ s u p

Next, applying Theorem 1 to the last conditional probability above gives
the desired result for this case. The general case follows by the usual
arguments in integration theory.

THEOREM 3. Let f(t) be sectionally continuous on [0, T] with
/(0)§0. Letg(uu - - , un) be a Lebesgue measurable function on Rn, and
let α ( ί ) ε B V [ 0 J ] . Then

ί g[x(tίl'",x(tn)]e^^d^dwx

= e 1 / 2 / o T a2(t)ώ \ g \x(*i)+ Γ c*

dwx

in the sense the existence of either side implies that of the other and their
equality.

COROLLARY. // / and a satisfy the conditions in Theorem 3, then

Γ esι ««)dχ«)dwX = emfτ «2(,)*p[ s u p X ( f ) _ \f(t)- [' a(s)ds] <
Jr, I o=§ί=sτ L Jo J
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Proof (of Theorem 3). Using the Cameron-Martin translation
theorem (see [1] or [7]) with the translation

\ a(u)du
Jo

we obtain

ί g[x{U),---,x(tn)]e!T°""d^dwx

g [*(*,) + ί" a(u)du,--;x(tn) + {'" a(u)du]
I JO JO JΓ/(θ-/,ό a(s)ds

. eH a(t)d[x(t)+U a{u)du}e-SZ a(t)dx(t)^ χ

The result now follows by simplifying the last expression.

T H E O R E M 4. Assume that g(z) = ΣQ anz
n is an entire function such

that for some Λί, N and y E (0,2), | g (z) | ^ M exp (N\z\y) for all complex

numbers z. For some r E (2,oo] and b>0 assume that θ(t,u)G

L l f([0,Γ]x(-oo,6]), i.e., j |fl(ί,ιι)|dMELΓ[0,Γ]. ΓΛen /or any

^ ( M ) E L,(- oo, ft] U L«( - oo, ft],

(1) ί

where for n = 0,1,2,

Λ ( Γ ) - P " " (n) P2 P -(n
JO JO J-ac

(2) Π (2τ7Δί;r
1/2exp{ - (Δ«,)2/(2ΔM/)}

• d u n + ι • • • d u x d t x ••• d t n

and where u0 = 0, and 0 = t0 < tι < • • < tn+ί = T.

Proof. Proceeding formally we obtain

L s[j' H^(0)dt]φ(x(T))dwx

= Σ a- ί \Γθ(t,x(t))dt\ψ(x(T))dwx.
0 JΓb LJO J
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But for n = 1,2, ••

= 1 I '(n)' I Π θ(tb
Jrh LJo Jo 7=1

= n! P+ 1 (n) P if (A(x(ίn+0)fl 0(4, *('/))<* J Λi' * dtn
Jθ Jo L J r b 7 = 1 J

= it! P"+1 (n) f2 P (n + 1) Γ ψ(«n+1) Π β(^ «,-) ff {^πM^
JO JO J-ao J -αo 7 = 1 7 = 1

exp[-(ΔM y)7(2Δί7)][l-exp(-2(6 - us.x){b ~ u,

-dun+ί - - diiidtx - dtn

where the last equality above is obtained using Theorem 2, Theorem 1,
and the fact that

P I sup X{t) - {(bj - Uj.^t + (bj - i

= 1 — exp [ — 2(6 — My _0 (6 — wy

Thus proceeding formally we have obtained equation (1). The Theorem
follows readily once the absolute convergence of the series

ΣnlaJΛT)
0

is established.
Recall that r E (2, oo]. We will establish the absolute convergence

when 2 < r < ° o and ψ E Lx{-oo, 6]; then other cases are similar, but
easier. Let p satisfy l/r4-l/p = l. Then Kp<2 and by Holder's
inequality we obtain

O 7

(n)

ί P"1 • («) f2 iΐ
IJo Jo 7 = 1
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But

•(")• U\\Ht,, )\\[dt
Jo / = 1

θ

l/r / ΓT \n/r

(/ )

/ 1 \ 1 / r

-Gπ) l fc
In addition

P " (n) f'2 [φ2 -/,
Jo Jo

Γ n ( 2 - p ) / 2 {Γ(l -

where Γ(z) denotes the Gamma function.
Thus the series Σo | α π / n ( T ) | n! is dominated by the series

Ϋ n! | an | (n !)-1 / r || 0 ||f ΓΓ"(2-p)/2p{Γ(l -

(3)

V
- p/2)Yn+1)' ' [ n\

But since g(z) is an entire function of order at most γ we know that

r / nlnn \ ^ γ + 2
lim sup I — —j—Γ) ^ y < J—z—

and so for n sufficiently large we obtain that

But Γ(z) = z 2 l / 2 e" 2 (2ττ) 1 / 2 (l + 0(l)) and hence for positive z sufficiently
large

1 2e2z1 / 2

Γ(z) (2τr)1/2zz
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Also by Stirling's formula

Thus for n sufficiently large we obtain

LΓ[(

(4) „„ /

ί n ! V
lΓ[(n + l)(l-p/2)]/

Now using inequality (4) the convergence of the series (3) follows by the
root test.

COROLLARY 1. Let θ(t,u) be as in Theorem 4. Then

ί expΓΓ θ(s,x(s))ds]dwx = ΣJΛT)
Jrb Uo J o

where Jn(T) is given by (2) with ψ = 1.

COROLLARY 2. Let α(ί) be of bounded variations on [0, T]. T/ien
/or any 6 > 0,

rb

i ί n ( Γ ) - P * 1 - ( π ) ί'2 Γ •(« f 1)
JO JO J-oo

(5)
•exp [ - (Διι/)

2/(2Δί/)]{1 - exp [ -

dwn+1 duλda(tx) da(tn).

Proof (of Corollary 2). The Corollary follows quite readily once the
absolute convergence of the series Σo ( - ί)nKn(T) is established. Now
proceeding formally we see that

Γ ejr ««)dX(t)dwχ = Γ e«(T)x(7 >-/ϊ

Jr b Jr b

= f S ^
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and so

Thus

\Kn(T)\ =

dwx.

0 n - JCw
x(t)da(t) dwx

= ί ea(T)x(T)eu'x(t)da(t)dwx

< j ^2!α(T)jt(T)|^|/J α(/Mx(/)| J χ

since α(ί)GL2[0J].

1/2

3. Applications and examples.

A. Application 1. For our first application we obtain a formula
for the probability that a Wiener path always stays below the broken line
segments /, (t) = a}t + bh tM ^ t ̂  tn 1 ̂  / ̂  n, where fci > 0. Using
Theorems 1 and 2 we obtain

- ΐ •<»
where

λ , =

min {a,t, + bj7 αJ+1ί, + b1+1},

anT+bn,

g / < n
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and

K(t9 u) = Π (2πΔίy)-1/2exp{ - (Δuy
7 = 1

But the probability in the integrand simplifies into

p( sup X(t)-{(ajtM+bj-uJ-ι)t + (ajtj + bj-

which, using Doob [2, p. 397], equals the expression

[1 - exp{ - 2(α, ίy_1 + bj - u

Thus, we finally obtain the formula

P\ sup X(t)-(a}t + b])<0, 1 ^ / g

= Γ (») fΛ" Π [1 - exρ{ - 2(fl///_I +
J-oo J-oo y = l

•pπΔ^-r^expί-(Δi iy^Δίy)}^ dux.

B. Example 1. For / = 1,2, , n let the α; and 6y be as
above. Let

sup

Let g(wi, , un) be Lebesgue measurable on i?π. Then

g(x(tι)r"9x(tn))dwx
JE

= Γ •(«)• Γ g(Ml,- ,Mπ)Π[27rΔ<,]-1/2exp{-(ΔM/)7(2ΔO}
J-oo J-oo y = l

• Π [1 - exp{ - 2(α/ί/_1 + 6/ - w/-i) ( α ^ + 6y - W/

in the sense the existence of either side implies that of the other and their
equality.

C. Application 2. Assume a(t) is of bounded variation on [0, T]

and let f{t) = \ a(s)ds. For b > 0 we want to find the probability of the
cot Joset
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Γf()+b = \ sup X(t)-f(t)<b}.

First, using the Corollary to Theorem 3, we have that

P [Γ ] = e-υ2ii aH*>* ί e-a - ( W ) ^ ,
Jrb

Next, using Corollary 2 of Theorem 4, we obtain

where Kn(T) is given by equation (5). This expression is an entirely
different series expansion of the probability than the ones given by Park
and Paranjape in [5].

D. Application 3. The Corollary to Theorem 3 is also useful to
evaluate integrals of the type

J eίl a(t)dx(t) dwx

numerically for given a(t), /(ί), and T. By the Corollary, the above
integral is equal to

_ Γ a
Jo

and the last probability can be evaluated numerically using the
Park-Schuurmann method [6].

The following table was computed by an IBM/168 with the unit
interval divided into 29 equal subintervals.

a(t)

no
The

integral

Estimates of j e^a(t)dx

sin t e'

, + X r ' + , + l

.976414 3.729278

0)dwx

t

cost

.467819

Vt

A.(r + 1 ) + 1

.939285
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