WIENER INTEGRALS OVER THE SETS BOUNDED BY SECTIONALLY CONTINUOUS BARRIERS

C. Park and D. L. Skoug

Let $C_{w} \equiv C[0, T]$ denote the Wiener space on $[0, T]$. The Wiener integrals of various functionals $F[x]$ over the space C_{w} are well-known. In this paper we establish formulas for the Wiener integrals of $F[x]$ over the subsets of C_{w} bounded by sectionally continuous functions.

1. Introduction. Let $C_{W} \equiv C[0, T]$ be the Wiener space on $[0, T]$, i.e., the space of all real-valued continuous functions on $[0, T]$ vanishing at the origin. The standard Wiener process $\{X(t) \equiv$ $X(t, \cdot): 0 \leqq t \leqq T\}$ and C_{w} are related by $X(t, x)=x(t)$ for each x in C_{w}. Evaluation formulas for the Wiener integral

$$
\int_{C_{w}} F[x] d_{w} x \equiv E\{F[x]\}
$$

of various functionals $F[x]$ are of course well-known (for example see [7] for some of these formulas). Now, consider sets of the type

$$
\begin{aligned}
\Gamma_{f} & \equiv\left\{\sup _{0 \leqq!\leqq T} X(t)-f(t)<0\right\} \\
& =\left\{x \in C_{W}: \sup _{0 \leqq!\leqq T} x(t)-f(t)<0\right\}
\end{aligned}
$$

where $f(t)$ is sectionally continuous on $[0, T]$ and $f(0) \geqq 0$.
It is well-known that for $b \geqq 0$

$$
P\left[\Gamma_{b}\right]=2 \Phi\left(b T^{-1 / 2}\right)-1
$$

and

$$
P\left[\Gamma_{a t+b}\right]=\Phi\left[(a T+b) T^{-1 / 2}\right]-e^{-2 a b} \Phi\left[(a T-b) T^{-1 / 2}\right]
$$

where Φ is the standard normal distribution function. In [3], [5], and [6] more general functions $f(t)$ are considered and formulas given for the probabilities of the sets Γ_{f}.

The main purpose of this paper is to derive formulas for Wiener integrals over the sets Γ_{f}. In $\S 2$ we state and prove the main results, while in $\S 3$ we discuss some applications and examples.
2. Integration formulas. Our first theorem is preliminary; it plays a key role in the proof of Theorem 2.

Theorem 1. Let $0=t_{0}<t_{1}<\cdots<t_{n}=T$ be a partition of $[0, T]$. For $j=1,2, \cdots, n$ let $f_{j}(t)$ be continuous on $\left[t_{j-1}, t_{j}\right]$. Then the conditional probability

$$
\begin{aligned}
P[& \left.\sup _{t i-1 \leq I \subseteq t_{i}} X(t)-f_{j}(t)<0,1 \leqq j \leqq n \mid X\left(t_{j}\right)=u_{j}, 1 \leqq j \leqq n\right] \\
& =\prod_{j=1}^{n} P\left[\sup _{0 \leqq I \leqq \Delta t_{j}} X(t)-\left\{f_{j}\left(t+t_{j-1}\right)-u_{j-1}\right\}<0 \mid X\left(\Delta t_{j}\right)=\Delta u_{j}\right] \\
& =\prod_{j=1}^{n} P\left(\sup _{0 \leqq t<\infty} X(t)-\left\{\frac{t+t \Delta t_{j}}{\Delta t_{j}}\left[f_{j}\left(\frac{\Delta t_{j}}{1+t \Delta t_{j}}+t_{j-1}\right)-u_{j-1}\right]-\frac{\Delta u_{j}}{\Delta t_{j}}\right\}<0\right)
\end{aligned}
$$

where $\Delta t_{j}=t_{j}-t_{j-1}$ and $\Delta u_{j}=u_{j}-u_{j-1}$ with $u_{0}=0$.
Proof. First we note that

$$
\begin{gathered}
P\left[\sup _{t_{j-1} \leqq!\leqq t_{j}} X(t)-f_{j}(t)<0,1 \leqq j \leqq n \mid X\left(t_{j}\right)=u_{j}, 1 \leqq j \leqq n\right] \\
=P\left\{\sup _{t_{j-1} \leqq!\leqq t_{i}} X(t)-X\left(t_{j-1}\right)-\left[f_{j}(t)-u_{j-1}\right]<0,\right. \\
\left.1 \leqq j \leqq n \mid X\left(t_{j}\right)-X\left(t_{j-1}\right)=\Delta u_{j}, 1 \leqq j \leqq n\right\} .
\end{gathered}
$$

Now since the Wiener process has independent increments, the above expression equals

$$
\prod_{j=1}^{n} P\left\{\sup _{t_{i-1} \leq \leq \leq \leq_{i}} X(t)-X\left(t_{j-1}\right)-\left[f_{j}(t)-u_{j-1}\right]<0 \mid X\left(t_{j}\right)-X\left(t_{j-1}\right)=\Delta u_{j}\right\}
$$

Hence the first equality in the theorem follows from the fact that stationarity implies that $X(t)-X\left(t_{j-1}\right)$ is the same process as $X\left(t-t_{j-1}\right)$. To prove the second equality in the theorem, we note that $X(t)$ and $t X(1 / t)$ are identical Wiener processes for $t>0$ by checking the covariance function. Thus

$$
\begin{aligned}
& P\left\{\sup _{0 \leqq t \leqq \Delta t_{j}} X(t)-\left[f_{j}\left(t+t_{j-1}\right)-u_{j-1}\right]<0 \mid X\left(\Delta t_{j}\right)=\Delta u_{j}\right\} \\
&=P\left\{\left.\sup _{0<i \leqq \Delta t_{j}} X\left(\frac{1}{t}\right)-\frac{1}{t}\left[f_{j}\left(t+t_{j-1}\right)-u_{j-1}\right]<0 \right\rvert\, X\left(\frac{1}{\Delta t_{j}}\right)=\frac{\Delta u_{j}}{\Delta t_{j}}\right\} \\
& \quad=P\left\{\sup _{0<t \leqq \Delta t_{j}} X\left(\frac{1}{t}\right)-X\left(\frac{1}{\Delta t_{j}}\right)-\frac{1}{t}\left[f_{j}\left(t+t_{j-1}\right)-u_{j-1}\right]+\frac{\Delta u_{j}}{\Delta t_{j}}<0\right\} .
\end{aligned}
$$

The result now follows by the transformation

$$
t^{-1}-\left(\Delta t_{j}\right)^{-1} \rightarrow t
$$

Theorem 2. Let $0=t_{0}<t_{1}<\cdots<t_{n}=T$ be a partition of $[0, T]$. Let $g\left(u_{1}, \cdots, u_{n}\right)$ be a Lebesgue measurable function on R^{n} and for $x \in C_{w}$ let $G[x]=g\left(x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right)$. For $j=1,2, \cdots, n$ let $f_{j}(t)$ be a continuous function on $\left[t_{j-1}, t_{j}\right]$. Then the Wiener integral of $G[x]$ over the set

$$
\Gamma_{f} \equiv\left\{x \in C_{W}: \sup _{t,-1 \leq t \leq t, t} x(t)-f_{l}(t)<0, j=1,2, \cdots, n\right\}
$$

is given by

$$
\int_{\Gamma_{f}} G[x] d_{w} x=\int_{-\infty}^{\lambda_{1}} \cdot(n) \cdot \int_{-\infty}^{\lambda_{n}} g\left(u_{1}, \cdots, u_{n}\right) H\left(u_{1}, \cdots, u_{n}\right) d u_{n} \cdots d u_{1}
$$

in the sense the existence of either side implies that of their equality, where

$$
\begin{gathered}
\lambda_{j}= \begin{cases}\min \left\{f_{j}\left(t_{j}\right), f_{j+1}\left(t_{j}\right)\right\}, & j=1,2, \cdots, n-1 \\
f_{n}(T), & j=n\end{cases} \\
f(t)= \begin{cases}f_{j}(t), \quad t_{j-1}<t<t_{j}, & j=1,2, \cdots, n \\
f_{1}(0), & t=0 \\
\lambda_{j}, & t=t_{j},\end{cases} \\
\hline
\end{gathered}
$$

and

$$
\begin{aligned}
H\left(u_{1}, \cdots, u_{n}\right)= & \prod_{j=1}^{n}\left(2 \pi \Delta t_{j}\right)^{-1 / 2} \exp \left\{-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{l}\right)\right\} \\
& P\left[\sup _{0 \leqq I \subseteq \Delta_{t}} X(t)-\left\{f_{l}\left(t+t_{j-1}\right)-u_{j-1}\right\}<0 \mid X\left(\Delta t_{l}\right)=\Delta u_{j}\right]
\end{aligned}
$$

Proof. First consider the case where $G[x]$ is the characteristic function of a Wiener interval I. That is to say I has the form

$$
I=\left\{x \in C_{W} \mid\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right] \in E\right\}
$$

for some Lebesgue measurable set E in R^{n}. Then $G[x]=\chi_{I}(x)=$ $\chi_{E}\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right]$ and so in this case

$$
\begin{aligned}
& \int_{\Gamma_{,}} G[x] d_{w} x=\int_{\Gamma_{t}} \chi_{I}(x) d_{w} x=P\left[\Gamma_{f} \cap I\right] \\
& \quad=\int_{-\infty}^{\lambda_{1}} \cdot(n) \cdot \int_{-\infty}^{\lambda_{n}} P\left\{\sup _{t_{i}-1 \leq \leq \leq S_{j}} X(t)-f_{j}(t)<0,1 \leqq j \leqq n,\right. \\
& \left.\quad\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right] \in E \mid x\left(t_{j}\right)=u_{j}, 1 \leqq j \leqq n\right\} K(\vec{t}, \vec{u}) d u_{n} \cdots d u_{1}
\end{aligned}
$$

where

$$
K(\vec{t}, \vec{u}) \equiv \prod_{j=1}^{n}\left(2 \pi \Delta t_{j}\right)^{-1 / 2} \exp \left\{-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{j}\right)\right\} .
$$

Next we observe that

$$
\begin{aligned}
& P\left\{\sup _{i_{i-1} \leq \leq \leq \leq_{i}} X(t)-f_{j}(t)<0,1 \leqq j \leqq n,\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right] \in E \mid\right. \\
& \left.x\left(t_{j}\right)=u_{j}, 1 \leqq j \leqq n\right\}=\chi_{E}\left(u_{1}, \cdots, u_{n}\right) P\left[\sup _{i,-1 \leq \leq \leq \xi_{j}} X(t)-f_{j}(t)<0,\right. \\
& \left.1 \leqq j \leqq n \mid x\left(t_{j}\right)=u_{j}, 1 \leqq j \leqq n\right] .
\end{aligned}
$$

Next, applying Theorem 1 to the last conditional probability above gives the desired result for this case. The general case follows by the usual arguments in integration theory.

Theorem 3. Let $f(t)$ be sectionally continuous on $[0, T]$ with $f(0) \geqq 0$. Let $g\left(u_{1}, \cdots, u_{n}\right)$ be a Lebesgue measurable function on R^{n}, and let $\alpha(t) \in B V[0, T]$. Then

$$
\begin{array}{rl}
\int_{\Gamma_{f}} & g\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right] e^{\int_{\sigma}^{T} \alpha(t) d x(t)} d_{W} x \\
= & e^{1 / 2 \int_{\partial}^{T} \alpha^{2}(t) d t} \int_{\Gamma_{f(t)}-\int_{\delta \alpha}^{\prime} \alpha(s) d s} g\left[x\left(t_{1}\right)+\int_{0}^{t_{1}} \alpha(s) d s, \cdots, x\left(t_{n}\right)\right. \\
& \left.\quad+\int_{0}^{t_{n}} \alpha(s) d s\right] d_{W} x
\end{array}
$$

in the sense the existence of either side implies that of the other and their equality.

Corollary. If f and α satisfy the conditions in Theorem 3, then

$$
\int_{\Gamma,} e^{\int \delta \alpha(t) d x(t)} d_{W} x=e^{1 / \int \delta \alpha^{2}(t) d t} P\left\{\sup _{0 \leq \leq \leq T} X(t)-\left[f(t)-\int_{0}^{t} \alpha(s) d s\right]<0\right\} .
$$

Proof (of Theorem 3). Using the Cameron-Martin translation theorem (see [1] or [7]) with the translation

$$
x(t) \rightarrow x(t)+\int_{0}^{t} \alpha(u) d u
$$

we obtain

$$
\begin{array}{rl}
\int_{\Gamma_{f}} & g\left[x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right] e^{\int_{\delta}^{T} \alpha(t) d x(t)} d_{W} x \\
= & e^{-1 / 2 \int_{\sigma}^{T} \alpha^{2}(t) d t} \int_{\Gamma_{f(t)}-\int_{0}^{\delta} \alpha(s) d s} g\left[x\left(t_{1}\right)+\int_{0}^{t_{1}} \alpha(u) d u, \cdots, x\left(t_{n}\right)+\int_{0}^{t_{n}} \alpha(u) d u\right] \\
& \cdot e^{f_{\sigma}^{T} \alpha(t) d\left[x(t)+\int_{\delta}^{\alpha(u) d u}\right]} e^{-\int_{\sigma}^{T} \alpha(t) d x(t)} d_{W} x .
\end{array}
$$

The result now follows by simplifying the last expression.
Theorem 4. Assume that $g(z)=\sum_{0}^{\infty} a_{n} z^{n}$ is an entire function such that for some M, N and $\gamma \in(0,2),|g(z)| \leqq M \exp \left(N|z|^{\gamma}\right)$ for all complex numbers z. For some $r \in(2, \infty]$ and $b>0$ assume that $\theta(t, u) \in$ $L_{1 r}([0, T] \times(-\infty, b])$, i.e., $\int_{-\infty}^{b}|\theta(t, u)| d u \in L_{r}[0, T]$. Then for any $\psi(u) \in L_{1}(-\infty, b] \cup L_{x}(-\infty, b]$,

$$
\begin{equation*}
\int_{\Gamma_{b}} g\left[\int_{0}^{T} \theta(t, x(t)) d t\right] \psi(x(T)) d_{W} x=\sum_{0}^{\infty} a_{n} J_{n}(T) n! \tag{1}
\end{equation*}
$$

where for $n=0,1,2, \cdots$

$$
J_{n}(T) \equiv \int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}} \int_{-\infty}^{b} \cdot(n+1) \cdot \int_{-\infty}^{b} \psi\left(u_{n+1}\right) \prod_{j=1}^{n} \theta\left(t_{j}, u_{l}\right)
$$

$$
\begin{align*}
& \prod_{j=1}^{n+1}\left(2 \pi \Delta t_{j}\right)^{-1 / 2} \exp \left\{-\left(\Delta u_{l}\right)^{2} /\left(2 \Delta u_{j}\right)\right\} \tag{2}\\
& \cdot\left[1-\exp \left\{-2\left(b-u_{l-1}\right)\left(b-u_{j}\right) / \Delta t_{j}\right\}\right] \\
& \cdot d u_{n+1} \cdots d u_{1} d t_{1} \cdots d t_{n}
\end{align*}
$$

and where $u_{0} \equiv 0$, and $0=t_{0}<t_{1}<\cdots<t_{n+1}=T$.
Proof. Proceeding formally we obtain

$$
\begin{aligned}
\int_{\Gamma_{b}} g\left[\int_{0}^{T} \theta(t, x(t)) d t\right] \psi(x(T)) & d_{W} x \\
& =\sum_{0}^{\infty} a_{n} \int_{\Gamma_{b}}\left[\int_{0}^{T} \theta(t, x(t)) d t\right]^{n} \psi(x(T)) d_{W} x .
\end{aligned}
$$

But for $n=1,2, \cdots$

$$
\begin{aligned}
\int_{\Gamma_{b}} & {\left[\int_{0}^{T} \theta(t, x(t)) d t\right]^{n} \psi(x(T)) d_{W} x } \\
= & \int_{\Gamma_{b}}\left[\int_{0}^{T} \cdot(n) \cdot \int_{0}^{T} \prod_{j=1}^{n} \theta\left(t_{i}, x\left(t_{j}\right)\right) d t_{1} \cdots d t_{n}\right] \psi(x(T)) d_{W} x \\
= & n!\int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}}\left[\int_{\Gamma_{b}} \psi\left(x\left(t_{n+1}\right)\right) \prod_{j=1}^{n} \theta\left(t_{j}, x\left(t_{j}\right)\right) d_{w} x\right] d t_{1} \cdots d t_{n} \\
= & n!\int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}} \int_{-\infty}^{b} \cdot(n+1) \cdot \int_{-\infty}^{b} \psi\left(u_{n+1}\right) \prod_{j=1}^{n} \theta\left(t_{j}, u_{j}\right) \prod_{j=1}^{n+1}\left\{\left(2 \pi \Delta t_{j}\right)^{-1 / 2}\right. \\
& \left.\cdot \exp \left[-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{j}\right)\right]\left[1-\exp \left(-2\left(b-u_{j-1}\right)\left(b-u_{j}\right) / \Delta t_{i}\right)\right]\right\} \\
& \cdot d u_{n+1} \cdots d u_{1} d t_{1} \cdots d t_{n}
\end{aligned}
$$

where the last equality above is obtained using Theorem 2, Theorem 1, and the fact that

$$
\begin{gathered}
P\left(\sup _{0 \leq t<\infty} X(t)-\left\{\left(b_{j}-u_{j-1}\right) t+\left(b_{j}-u_{j}\right) / \Delta t_{j}\right\}<0\right) \\
\quad=1-\exp \left[-2\left(b-u_{j-1}\right)\left(b-u_{j}\right) / \Delta t_{j}\right]
\end{gathered}
$$

Thus proceeding formally we have obtained equation (1). The Theorem follows readily once the absolute convergence of the series

$$
\sum_{0}^{\infty} n!a_{n} J_{n}(T)
$$

is established.
Recall that $r \in(2, \infty]$. We will establish the absolute convergence when $2<r<\infty$ and $\psi \in L_{1}(-\infty, b]$; then other cases are similar, but easier. Let p satisfy $1 / r+1 / p=1$. Then $1<p<2$ and by Hölder's inequality we obtain

$$
\begin{aligned}
\left|J_{n}(T)\right| \leqq & \|\psi\|_{1} \int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}} \prod_{j=1}^{n}\left\|\theta\left(t_{j}, \cdot\right)\right\|_{1} \prod_{j=1}^{n+1}\left(2 \pi \Delta t_{i}\right)^{-1 / 2} d t_{1} \cdots d t_{n} \\
\leqq & \|\psi\|_{1}\left\{\int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}}\left[t_{1}\left(t_{2}-t_{1}\right) \cdots\left(t_{n+1}-t_{n}\right)\right]^{-p / 2} d t_{1} \cdots d t_{n}\right\}^{1 / p} \\
& \cdot\left\{\int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}} \prod_{j=1}^{n}\left\|\theta\left(t_{i}, \cdot\right)\right\|_{1} d t_{1} \cdots d t_{n}\right\}^{1 / r}(2 \pi)^{-(n+1) / 2}
\end{aligned}
$$

But

$$
\begin{aligned}
\left\{\int_{0}^{t_{n+1}}\right. & \left.\cdot(n) \cdot \int_{0}^{t_{2}} \prod_{j=1}^{n}\left\|\theta\left(t_{j}, \cdot\right)\right\|_{1}^{r} d t_{1} \cdots d t_{n}\right\}^{1 / r} \\
& =\left\{\frac{1}{n!} \int_{0}^{T} \cdot(n) \cdot \int_{0}^{T} \prod_{j=1}^{n}\left\|\theta\left(t_{j} \cdot\right)\right\|_{1}^{r} d t_{1} \cdots d t_{n}\right\}^{1 / r} \\
& =\left(\frac{1}{n!}\right)^{1 / r}\left(\int_{0}^{T}\|\theta(t, \cdot)\|_{1}^{r} d t\right)^{n / r} \\
& =\left(\frac{1}{n!}\right)^{1 / r}\|\theta\|_{1 r}^{n}
\end{aligned}
$$

In addition

$$
\begin{aligned}
\int_{0}^{t_{n+1}} & \cdot(n) \cdot \int_{0}^{t_{2}}\left[t_{1}\left(t_{2}-t_{1}\right) \cdots\left(t_{n+1}-t_{n}\right)\right]^{-p / 2} d t_{1} \cdots d t_{n} \\
& =\frac{T^{n(2-p) / 2}\{\Gamma(1-p / 2)\}^{n+1}}{T^{p / 2} \Gamma[(n+1)(1-p / 2)]}
\end{aligned}
$$

where $\Gamma(z)$ denotes the Gamma function.
Thus the series $\sum_{0}^{\infty}\left|a_{n} J_{n}(T)\right| n!$ is dominated by the series

$$
\sum_{0}^{\infty} \frac{n!\left|a_{n}\right|(n!)^{-1 / r}\|\theta\|_{1 r}^{n} T^{n(2-p) / 2 p}\{\Gamma(1-p / 2)\}^{(n+1) / p}}{T^{1 / 2}\{\Gamma[(n+1)(1-p / 2)]\}^{1 / p}}
$$

$$
\begin{equation*}
=\sum_{0}^{\infty} \frac{\left\lfloor a_{n} \mid\|\theta\|_{1 r}^{n} T^{n(2-p) / 2 p}\{\Gamma(1-p / 2)\}^{(n+1) / p}\right.}{T^{1 / 2}}\left\{\frac{n!}{\Gamma[(n+1)(1-p / 2)]}\right\}^{1 / p} . \tag{3}
\end{equation*}
$$

But since $g(z)$ is an entire function of order at most γ we know that

$$
\lim _{n \rightarrow \infty} \sup \left(\frac{n \ln n}{-\ln \left|a_{n}\right|}\right) \leqq \gamma<\frac{\gamma+2}{2}
$$

and so for n sufficiently large we obtain that

$$
\left|a_{n}\right|<n^{-2 n /(\gamma+2)} .
$$

But $\Gamma(z)=z^{z-1 / 2} e^{-z}(2 \pi)^{1 / 2}(1+0(1))$ and hence for positive z sufficiently large

$$
\frac{1}{\Gamma(z)}<\frac{2 e^{z} z^{1 / 2}}{(2 \pi)^{1 / 2} z^{z}}
$$

Also by Stirling's formula

$$
n!\leqq(n / e)^{n}(2 \pi n)^{1 / 2} \exp \left(\frac{1}{12 n}\right)
$$

Thus for n sufficiently large we obtain

$$
\left|a_{n}\right|\left\{\frac{n!}{\Gamma[(n+1)(1-p / 2)]}\right\}^{1 / p}
$$

(4)

$$
\begin{aligned}
\leqq & 2^{1 / p} \exp \left(\frac{12 n+1}{12 n p}\right) n^{1 / 2} e^{-(n+1) / 2}\left(\frac{2}{2-p}\right) \\
& \times[(n+1)(2-p)-1] / 2 p_{n}^{-n(2-\gamma) / 2(\gamma+2)} .
\end{aligned}
$$

Now using inequality (4) the convergence of the series (3) follows by the root test.

Corollary 1. Let $\theta(t, u)$ be as in Theorem 4. Then

$$
\int_{\Gamma_{b}} \exp \left[\int_{0}^{T} \theta(s, x(s)) d s\right] d_{W} x=\sum_{0}^{\infty} J_{n}(T)
$$

where $J_{n}(T)$ is given by (2) with $\psi \equiv 1$.
Corollary 2. Let $\alpha(t)$ be of bounded variations on $[0, T]$. Then for any $b>0$,

$$
\int_{\Gamma_{b}} e^{\int J \alpha(t) d x(t)} d_{W} x=\sum_{0}^{\infty}(-1)^{n} K_{n}(T)
$$

where

$$
K_{n}(T) \equiv \int_{0}^{t_{n+1}} \cdot(n) \cdot \int_{0}^{t_{2}} \int_{-\infty}^{b} \cdot(n+1) \cdot \int_{-\infty}^{b} e^{\alpha(T) u_{n+1}} \prod_{j=1}^{n} u_{j} \prod_{j=1}^{n+1}\left(2 \pi \Delta t_{j}\right)^{-1 / 2}
$$

$$
\begin{align*}
& \cdot \exp \left[-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{j}\right)\right]\left\{1-\exp \left[-2\left(b-u_{j-1}\right)\left(b-u_{j}\right) / \Delta t_{j}\right]\right\} \tag{5}\\
& \cdot d u_{n+1} \cdots d u_{1} d \alpha\left(t_{1}\right) \cdots d \alpha\left(t_{n}\right)
\end{align*}
$$

Proof (of Corollary 2). The Corollary follows quite readily once the absolute convergence of the series $\sum_{0}^{\infty}(-1)^{n} K_{n}(T)$ is established. Now proceeding formally we see that

$$
\begin{aligned}
\int_{\Gamma_{b}} e^{\int_{\sigma}^{T} \alpha(t) d x(t)} d_{W} x & =\int_{\Gamma_{b}} e^{\alpha(T) x(T)-\int_{O}^{T} x(t) d \alpha(t)} d_{W} x \\
& =\int_{\Gamma_{b}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} e^{\alpha(T) \times(T)}\left[\int_{0}^{T} x(t) d \alpha(t)\right]^{n} d_{W} x
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|K_{n}(T)\right| & =\left|\frac{1}{n!} \int_{\Gamma_{b}} e^{\alpha(T) x(T)}\left[\int_{0}^{T} x(t) d \alpha(t)\right]^{n} d_{W} x\right| \\
& \leqq \frac{1}{n!} \int_{C_{W}} e^{\alpha(T) \times(T)}\left|\int_{0}^{T} x(t) d \alpha(t)\right|^{n} d_{W} x
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{0}^{\infty}\left|K_{n}(T)\right| & \leqq \sum_{0}^{\infty} \frac{1}{n!} \int_{C_{W}} e^{\alpha(T) x(T)}\left|\int_{0}^{T} x(t) d \alpha(t)\right|^{n} d_{W} x \\
& =\int_{C_{w}} e^{\alpha(T) x(T)} e^{\mid \int_{J}^{J} x(t) d \alpha(t)} d_{W} x \\
& \leqq \int_{C_{w}} e^{2|\alpha(T) x(T)|} e^{\left|\int J \delta(t) d x(t)\right|} d_{W} x \\
& \leqq\left[\int_{C_{W}} e^{4|\alpha(T) \times(T)|} d_{W} x\right]^{1 / 2}\left[\int_{C_{w}} e^{2\left|J_{\sigma}^{T} \alpha(t) d x(t)\right|} d_{W} x\right]^{1 / 2} \\
& <\infty \text { since } \alpha(t) \in L^{2}[0, T]
\end{aligned}
$$

3. Applications and examples.

A. Application 1. For our first application we obtain a formula for the probability that a Wiener path always stays below the broken line segments $f_{l}(t)=a_{l} t+b_{j}, \quad t_{i-1} \leqq t \leqq t_{j}, \quad 1 \leqq j \leqq n$, where $b_{1}>0$. Using Theorems 1 and 2 we obtain

$$
\begin{aligned}
P & {\left[\sup _{t_{1}-1 \leqq i \leqq t_{l}} X(t)-\left(a_{j} t+b_{l}\right)<0,1 \leqq j \leqq n\right] } \\
& =\int_{-\infty}^{\lambda_{1}} \cdot(n) \cdot \int_{-\infty}^{\lambda_{n}} \prod_{j=1}^{n} P\left(\sup _{0 \leqq \ll \infty} X(t)-\left\{\frac { 1 + t \Delta t _ { j } } { \Delta t _ { j } } \left[a_{l}\left(\frac{\Delta t_{j}}{1+t \Delta t_{j}}+t_{j-1}\right)\right.\right.\right. \\
& \left.\left.\left.\quad+b_{j}-u_{j-1}\right]-\frac{\Delta u_{j}}{\Delta t_{j}}\right\}<0\right) K(\vec{t}, \vec{u}) d u_{n} \cdots d u_{1}
\end{aligned}
$$

where

$$
\lambda_{j}= \begin{cases}\min \left\{a_{j} t_{\jmath}+b_{j}, a_{j+1} t_{j}+b_{j+1}\right\}, & 1 \leqq j<n \\ a_{n} T+b_{n}, & j=n\end{cases}
$$

and

$$
K(\vec{t}, \vec{u})=\prod_{j=1}^{n}\left(2 \pi \Delta t_{j}\right)^{-1 / 2} \exp \left\{-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{j}\right)\right\}
$$

But the probability in the integrand simplifies into

$$
P\left(\sup _{0 \leqq t<\infty} X(t)-\left\{\left(a_{j} t_{j-1}+b_{j}-u_{j-1}\right) t+\left(a_{j} t_{j}+b_{j}-u_{j}\right) / \Delta t_{j}\right\}<0\right)
$$

which, using Doob [2, p. 397], equals the expression

$$
\left[1-\exp \left\{-2\left(a_{j} t_{j-1}+b_{j}-u_{j-1}\right)\left(a_{j} t_{j}+b_{i}-u_{j}\right) / \Delta t_{j}\right\}\right] .
$$

Thus, we finally obtain the formula

$$
\begin{aligned}
P & {\left[\sup _{t_{j-1} \leq i \leq t,} X(t)-\left(a_{j} t+b_{j}\right)<0,1 \leqq j \leqq n\right] } \\
& =\int_{-\infty}^{\lambda_{1}} \cdot(n) \cdot \int_{-\infty}^{\lambda_{n}} \prod_{j=1}^{n}\left[1-\exp \left\{-2\left(a_{j} t_{j-1}+b_{j}-u_{j-1}\right)\left(a_{j} t_{j}+b_{j}-u_{j}\right) / \Delta t_{j}\right\}\right] \\
& \cdot\left[2 \pi \Delta t_{j}\right]^{-1 / 2} \exp \left\{-\left(\Delta u_{j}\right)^{2} /\left(2 \Delta t_{j}\right)\right\} d u_{n} \cdots d u_{1} .
\end{aligned}
$$

B. Example 1. For $j=1,2, \cdots, n$ let the a_{j} and b_{j} be as above. Let

$$
E \equiv\left\{x \in C_{W} \mid \sup _{t,-1 \leqq t \leq t_{j}} X(t)-\left(a_{j} t+b_{j}\right)<0,1 \leqq j \leqq n\right\} .
$$

Let $g\left(u_{1}, \cdots, u_{n}\right)$ be Lebesgue measurable on R^{n}. Then

$$
\begin{array}{rl}
\int_{E} & g\left(x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right) d_{w} x \\
\quad= & \int_{-\infty}^{\lambda_{1}} \cdot(n) \cdot \int_{-\infty}^{\lambda_{n}} g\left(u_{1}, \cdots, u_{n}\right) \prod_{j=1}^{n}\left[2 \pi \Delta t_{j}\right]^{-1 / 2} \exp \left\{-\left(\Delta u_{J}\right)^{2} /\left(2 \Delta t_{j}\right)\right\} \\
& \cdot \prod_{j=1}^{n}\left[1-\exp \left\{-2\left(a_{j} t_{j-1}+b_{j}-u_{j-1}\right)\left(a_{j} t_{j}+b_{j}-u_{j}\right) / \Delta t_{j}\right\}\right] d u_{n} \cdots d u_{1}
\end{array}
$$

in the sense the existence of either side implies that of the other and their equality.
C. Application 2. Assume $\alpha(t)$ is of bounded variation on $[0, T]$ and let $f(t) \equiv \int_{0}^{t} \alpha(s) d s . \quad$ For $b>0$ we want to find the probability of the
set

$$
\Gamma_{f(\cdot)+b}=\left\{\sup _{0 \leqq t \leqq T} X(t)-f(t)<b\right\} .
$$

First, using the Corollary to Theorem 3, we have that

$$
P\left[\Gamma_{f(\cdot)+b}\right]=e^{-1 / 2 \int_{\sigma}^{\tau} \alpha^{2}(t) d t} \int_{\Gamma_{b}} e^{-\int_{\sigma}^{\tau} \alpha(t) d x(t)} d_{W} x .
$$

Next, using Corollary 2 of Theorem 4, we obtain

$$
P\left[\Gamma_{f(\cdot)+b}\right]=e^{-1 / 2 \int \tau} \alpha^{2}(t) d t \quad \sum_{n=0}^{\infty} K_{n}(T)
$$

where $K_{n}(T)$ is given by equation (5). This expression is an entirely different series expansion of the probability than the ones given by Park and Paranjape in [5].
D. Application 3. The Corollary to Theorem 3 is also useful to evaluate integrals of the type

$$
\int_{\Gamma_{f}} e^{\int_{J}^{T} \alpha(t) d x(t)} d_{W} x
$$

numerically for given $\alpha(t), f(t)$, and T. By the Corollary, the above integral is equal to

$$
e^{1 / 2} f^{\tau} \alpha^{2}(t) d t P\left\{\sup _{0 \leq 1 \leq T} X(t)-\left[f(t)-\int_{0}^{t} \alpha(s) d s\right]<0\right\}
$$

and the last probability can be evaluated numerically using the Park-Schuurmann method [6].

The following table was computed by an IBM/168 with the unit interval divided into 2^{9} equal subintervals.

Estimates of $\int_{\Gamma_{f}} e^{\iint \alpha(t) d x(t)} d_{w} x$

(t)	$\sin t$	e^{t}	t	$\sqrt{ } t$
$f(t)$	$t+1$	$t^{2}+t+1$	$\cos t$	$\ln (t+1)+1$
The integral	.976414	3.729278	.467819	.939285

References

1. R. H. Cameron and W. T. Martin, On transformation of Wiener integrals under translations, Ann. Math., 45 (1944), 386-396.
2. J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Stat., 20 (1949), 393-403.
3. J. Durbin, Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test, J. Appl. Probability, 8 (1971). 431-453.
4. G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: the L_{1} theory, J. Math. Anal. Appl., 50 (1975), 647-667.
5. C. Park and S. R. Paranjape, Probabilities of Wiener paths crossing differentiable curves, Pacific J. Math., 53 (1974), 579-583.
6. C. Park and F. J. Schuurmann, Evaluation of barrier crossing probabilities of Wiener paths, J. Appl. Probability, 13 (1976), 267-275.
7. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., N. Y. (1973).

Received April 2, 1976.

University of Nebraska

