RINGS WHOSE ADDITIVE SUBGROUPS ARE SUBRINGS

John D. O'Neill

Abstract

In this paper the class (subclass) of associative rings whose additive subgroups are subrings (ideals) is completely characterized by defining relations. An exact description is also given of those rings in these classes which are commutative, regular, Artinian, Noetherian, or with identity. The only integral domains in either class are the ring of integers Z and $Z /(p)$ for prime p.

0. Introduction. A ring which has the property, called S, that all its additive subgroups are subrings is called a S-ring. A ring R is a S-ring if and only if, for every x and y in $R, x y$ is a linear combination of x and y. This fact will be used constantly in this paper. All rings herein are associative, all groups are abelian, and all constants are integers. A ring R will be primary, torsion, torsion-free, mixed, etc. exactly if its additive group, R^{+}, is primary, etc. By the rank of $R, r(R)$, we mean the rank of R^{+}. Occasionally, when the meaning is perfectly clear, distinction will not be made between R and R^{+}. Other terminology is essentially that of [4]. Our chief results are found in Theorems $1.4,1.5,1.6,2.6,3.5$, and 3.6. Special S-rings are described in $\S 4$.
1. Torsion rings. In this section all rings are torsion. We begin with primary rings.

Proposition 1.1. If R is a p-primary S-ring, R is bounded or R is a zero-ring.

Proof. (a) Let B be a basic subgroup of R^{+}and assume B is unbounded. We prove $R^{2}=0$, Suppose $x^{2}=r x \neq 0$ for some x in B and $o(x)=p^{n}$. Choose z independent of x such that $o(z) \geqq p^{2 n}$. Then $\left(x+p^{n} z\right)^{2}=r x+p^{2 n} z=k\left(x+p^{n} z\right)$ for some k. This implies p^{n} divides k and $0=k x=r x$, a contradiction. Thus $x^{2}=0$, for every x in B. Suppose x and y are linearly independent in B and $x y=a x+b y$, $b y \neq 0$. If $o(x)=p^{n}$ and $o(y)=p^{m}$, choose z in B such that z is independent of x and y and p^{n+m} divides $o(z)$. Write $x z=$ $c x+d z$. Then $x(y+z)=(a+c) x+(b y+d z)$. The right-hand term must be a multiple of $y+z$ which implies $d y=b y \neq 0$. But $p^{n} d z=$ $p^{n}(x z)=0$ and p^{m} divides d which implies $d y=0$. Therefore, $x y=0$ and $B^{2}=0$. It follows easily that $R^{2}=0$ (see Theorem 120.1 of
[4]). (b) Assume, then, B is bounded and write $R^{+}=D \bigoplus B$ where D is divisible. Since R is primary, $D^{2}=R D=D R=0$. It will suffice to show $B^{2}=0$ when $D \neq 0$. If B is bounded by p^{n}, we select z in D such that $o(z) \geqq p^{2 n}$. Using this z we repeat the proof given in (a) and again deduce $B^{2}=0$. This completes the proof.

If R is a bounded primary ring, we wish to know when it has property S. The answer is given in the next proposition for which we need a lemma.

Lemma 1.2. Let R be a p-primary S-ring. If x, y are linearly independent in $R, o(x) \leqq o(y), x^{2}=r x$, and $y^{2}=s y$, then $x y+y x=$ $s x+r y+e(x+y)$ for some constant e. If $e x \neq 0$, then $p=2,2 e x=0$, and $o(x)=o(y)$.

Proof. We write $(x+y)^{2}=k(x+y)$ and $(x+2 y)^{2}=1(x+2 y)$ where k and 1 are constants. Solving simultaneously, we obtain $2 k \equiv$ $2(s+r)(\bmod o(x))$. If we set $k=s+r+e$, then $x y+y x=$ $s x+r y+e(x+y)$. If $e x \neq 0$, then $p=2$ and $2 e x=0$. In this event, $(x+2 y)^{2}=(r+2 s)(x+2 y)+2 e y$. Here $2 e y$ must be a multiple of $x+2 y$ which implies $o(x)=o(y)$.

Proposition 1.3. Let R be a ring on $G=\bigoplus\left\langle x_{i}\right\rangle$, a bounded p group. Then R has property S iff there are constants u_{i} and v_{i} for each i such that:
(1) $x_{i} x_{j}=v_{j} x_{i}+u_{i} x_{j}$, for every i and j, or if $2^{n} G=0, r\left(2^{n-1} G\right)=2$ for some n,
(2) $x_{i} x_{j}=v_{i} x_{i}+u_{i} x_{j}$, for $i \neq j$ and $x_{i}^{2}=\left(u_{i}+v_{i}+2^{n-1}\right) x_{i}$, for every i.

Proof. (a) Sufficiency. Let $\alpha=\sum a_{i} x_{i}, \beta=\sum b_{j} x_{j}$ be elements in R. If (1) is given,

$$
\alpha \beta=\left(\sum_{j} b_{j} v_{j}\right) \alpha+\left(\sum_{i} a_{i} u_{i}\right) \beta
$$

and we are done. If (2) is given,

$$
\alpha \beta=\left(\sum_{j} b_{j} v_{j}\right) \alpha+\left(\sum_{i} a_{i} u_{i}\right) \beta+2^{n-1} \sum a_{i} b_{i} x_{i} .
$$

The right-hand sum is a linear combination of α and β if and only if $a_{i} b_{i} \equiv k a_{i}+1 b_{i}(\bmod 2)$ for some k and 1 and all i. This, in turn, is possible if and only if $r\left(2^{n-1} G\right) \leqq 2$, as can be shown by considering cases. (b) Necessity. If $r(G)=1$, (1) is satisfied. We assume
$r(G) \geqq 2$. We first show that, for each i, there exist u_{1}^{\prime} and v_{i}^{\prime} such that, for $i \neq j, x_{i} x_{j}=v^{\prime}, x_{1}+u_{i}^{\prime} x_{j}$. For fixed i choose $x_{k} \neq x_{i}$ of maximal order possible. Write $x_{i} x_{k}=c x_{i}+d x_{k}$ and, for $i \neq j \neq k, x_{i} x_{j}=a x_{i}+b x_{j}$. Then $x_{i}\left(x_{j}+x_{k}\right)=(a+c) x_{i}+\left(b x_{j}+d x_{k}\right)$. The right-hand term must be a multiple of $x_{j}+x_{k}$ and, hence, $d x_{j}=b x_{j}$. Similarly, if $x_{k} x_{i}=c_{0} x_{1}+d_{0} x_{k}$ and $x_{j} x_{i}=a_{0} x_{i}+b_{0} x_{j}$, an examination of $\left(x_{j}+x_{k}\right) x_{t}$ shows that $d_{0} x_{j}=$ $b_{0} x_{j}$. We let $u_{1}^{\prime}=d, v_{1}^{\prime}=d_{0}$ and do this for each i. Then, $x_{i} x_{j}=$ $v_{j}^{\prime} x_{i}+u_{i}^{\prime} x_{j}$ for $i \neq j$. Next, for each $i, x_{i}^{2}=\left(u_{i}^{\prime}+v_{i}^{\prime}+e_{i}\right) x_{i}$ for some e_{i} such that $0 \leqq e_{i}<o\left(x_{i}\right)$. Write $r_{i}=u_{i}^{\prime}+v_{1}^{\prime}+e_{i}$. If $i \neq j$,

$$
x_{i} x_{j}+x_{i} x_{i}=\left(u_{j}^{\prime}+v_{j}^{\prime}\right) x_{i}+\left(u_{i}^{\prime}+v_{i}^{\prime}\right) x_{j}=r_{i} x_{i}+r_{i} x_{j}-\left(e_{i} x_{i}+e_{i} x_{j}\right) .
$$

If the right-hand term equals zero for all $i \neq j$, we let $u_{i}=u_{i}^{\prime}, v_{t}=v_{i}^{\prime}+e_{i}$ and condition 1 of the theorem will be satisfied. Suppose, for some $i \neq j$, $e_{j} x_{i}+e_{i} x_{j} \neq 0$ where $o\left(x_{i}\right) \leqq\left(x_{l}\right)$. If $e_{j} x_{i} \neq 0, o\left(x_{i}\right)=o\left(x_{j}\right)$ by (1.2). If $e_{i} x_{j} \neq 0, e_{i} x_{i}+e_{i} x_{j}$, as a multiple of $x_{i}+x_{j}$, equals $e_{i}\left(x_{1}+x_{j}\right)$. Here $e_{i} x_{1}=$ $e_{j} x_{i} \neq 0$, and again $o\left(x_{t}\right)=o\left(x_{t}\right)$. Since both terms in $e_{j} x_{t}+e_{i} x_{j}$ are nonzero, the sum would remain nonzero if, say, i or j were replaced by k where x_{k} has maximal order p^{n} in R^{+}. It means $o\left(x_{i}\right)=o\left(x_{j}\right)=p^{n}$. By (1.2), e_{t} and e_{i} may be replaced by 2^{n-1} and $r\left(2^{n-1} G\right)=2$ (we already knew $\left.r\left(2^{n-1} G\right) \leqq 2\right)$. It follows that x_{i}^{2} equals, for each $i,\left(u_{i}^{\prime}+v_{i}^{\prime}+2^{n-1}\right) x_{i}$. Let $u_{i}=u_{i}^{\prime}, v_{i}=v_{i}^{\prime}$ for every i. The proof is complete.

We now consider how a S-ring can be constructed on a bounded primary group. In general, if group $G=\bigoplus\left\langle x_{i}\right\rangle$, a ring (not necessarily associative) can be constructed on G in the following way (see Theorem 120.1 of [4]). For each i, j, let $x_{i} x_{j}$ be an element in G subject to the sole condition: $o\left(x_{i} x_{j}\right) \leqq \min \left(o\left(x_{i}\right), o\left(x_{j}\right)\right)$ and define multiplication on the rest of G linearly. We note that these two conditions are also necessary. We may now state a theorem.

Theorem 1.4. Let $G=\bigoplus\left\langle x_{i}\right\rangle$ be a bounded p-group where $o\left(x_{1}\right)=$ n_{i}. A S-ring can be constructed on G by setting
(1) $x_{i} x_{j}=v_{j} x_{1}+u_{i} x_{j}$, and
(2) $\left(\sum a_{i} x_{t}\right)\left(\sum b_{j} x_{j}\right)=\sum_{t, j} a_{i} b_{j} x_{t} x_{j}$, where
(3) $n_{i} u_{1} G=n_{i} v_{1} G=0$, and
(4) $u_{i} v_{j} x_{k}=0$ unless $i=j=k$.

If $p \neq 2$, any p-primary S-ring, not a zero-ring, is of this type.
Proof. By (1.3) and the preceding paragraph, conditions 1-3 are sufficient for constructing a S-ring (not necessarily associative) on G. Conversely, let R be a p-primary S-ring, not a zero-ring. Its additive group has the form G by (1.1) and, by (1.2) and the paragraph above, conditions $1-3$ are necessary. We now show that (4) is necessary
and sufficient for associativity. Multiplication is associative if and only if, for all $i, j, k,\left(x_{i} x_{j}\right) x_{k}=x_{i}\left(x_{j} x_{k}\right)$ or, by computation, if and only if $u_{j} v_{k} x_{i}=v_{j} u_{i} x_{k}$ for every $i, j, \quad k$. Clearly, (4) implies this equation. Conversely, suppose this equation is given. If $i \neq k, x_{i}$ and x_{k} are linearly independent and $u_{i} v_{,} x_{k}=0$. If $j \neq k$, we substitute, in the above equation, k, i, j for i, j, k respectively, and derive $u_{i} v_{j} x_{k}=v_{i} u_{k} x_{j}$, and again $u_{i} v_{j} x_{k}=0$. Property (4) is established.

Remark. A S-ring on a 2 -group, however, need not satisfy condition 1 of the preceding theorem. An example is the ring-direct sum $Z /(2) \oplus Z /(2)$, which we call M. The following theorem will allow for the ring M.

Theorem 1.5. Let G be as in (1.4) where $2^{n} G=0$ and $r\left(2^{n-1} G\right)=2$ for some n. A S-ring R can be constructed on G by setting
(1') $x_{i} x_{j}=v_{j} x_{i}+u_{i} x_{j}$, for $i \neq j$ where $x_{i}^{2}=\left(u_{i}+v_{i}+2^{n-1}\right) x_{i}$, for every i,
(5) all u_{i}, v_{\imath} are even,
and satisfying conditions 2-4 of (1.4). A S-ring on a 2-group, not a zero-ring, has this construction or that of (1.4).

Proof. (a) Let G and multiplication on G be as given. Conditions $1^{\prime}, 2$, and 3 define a S-ring R (not necessarily associative) on G for the same reasons as in (1.4). We claim (4) and (5) ensure $x_{i}\left(x_{j} x_{k}\right)=\left(x_{i} x_{J}\right) x_{k}$ for all i, j, k. If $i=j=k$, this is clear. If i, j, k are all distinct, these products are computed exactly as in (1.4) and the equation is true by (4). Suppose, in the equation, exactly two subscripts agree. Again, the value of each product in G is as in (1.4). This is so because each term involving the number 2^{n-1} disappears. We illustrate this with one example. In $\quad x_{i}\left(x_{i} x_{j}\right)=v_{j}\left(u_{i}+v_{i}+2^{n-1}\right) x_{i}+u_{i} x_{i} x_{j}, \quad v_{j} 2^{n-1} x_{i}=0 \quad$ by (5). Therefore, R is associative. (b) We now verify the last sentence of the theorem. Suppose R is a S-ring on a 2 -group G but is neither a zero-ring nor structured as in (1.4). By (1.3), (1') is necessary together with (2) and (3). If all u_{i} and v_{i} are even, the products $x_{i}\left(x_{j} x_{k}\right)$ and $\left(x_{i} x_{j}\right) x_{k}$ are computed as in (1.4) unless $i=j=k$ and (4) is again needed. If (5) is not satisfied, we will prove R is isomorphic to M, the ring mentioned in the Remark above. That M has a construction satisfying the conditions of this theorem is routine to show. Therefore, suppose (5) is not satisfied and u_{i} or v_{i} is odd for fixed i. Consider $x_{i}^{2} x_{j}=x_{i}\left(x_{i} x_{j}\right)$ for $j \neq i$ and $o\left(x_{j}\right)=p^{n}$. If we compute this equation in G and equate the two x_{j}-terms, we obtain $\left(u_{i}+v_{i}+2^{n-1}\right) u_{i} x_{j}=u_{i}^{2} x_{j}$ or $\left(v_{i}+2^{n-1}\right) u_{i} x_{j}=0$. Similarly, from $x_{i} x_{i}^{2}=\left(x_{i} x_{i}\right) x_{i}$, we obtain $\left(u_{i}+2^{n-1}\right) v_{i} x_{j}=0$. We deduce from these equations that u_{i} and v_{i} have the same parity. Thus, u_{i} and v_{i} are both odd, $\left(v_{i}+2^{n-1}\right) x_{j}=0$, and $n=1$. Also, $x_{i}^{2}=x_{i}$ and $x_{j}^{2}=x_{j}$. From the condition on rank, it follows
that $R^{+}=\left\langle x_{\imath}\right\rangle \bigoplus\left\langle x_{j}\right\rangle$. We claim $x_{i} x_{j}=x_{j}=x_{j} x_{i}$. Suppose $x_{i} x_{j}=x_{i}+x_{j}$ (the only other possibility since u_{1} is odd). Then $x_{i}+x_{1}=x_{1}^{2} x_{j}=$ $x_{i}\left(x_{i} x_{J}\right)=x_{j}$, a contradiction. Thus, $x_{i} x_{j}=x_{J}$. Similarly, $x_{J} x_{i}=x_{r} . \quad$ By writing $R^{+}=\left\langle x_{i}+x_{j}\right\rangle \bigoplus\left\langle x_{j}\right\rangle$, we readily see that R is isomorphic to M which satisfies the conditions of the theorem.

Remark. At first glance, the construction of S-rings might seem unduly complicated, but this is not so. Suppose G is the group given in (1.4) with least bound p^{N}. We can satisfy the conditions of the theorem by, for each i, letting $u_{t}=r_{i}, v_{t}=0$ where p^{N} divides $r_{t} n_{1}$. Another example shows that all u_{i}, v_{i} can be nonzero. Let R be the ring on the group $\langle x\rangle \bigoplus\langle y\rangle$ where $o(x)=81=o(y), \quad x^{2}=27 x, \quad y^{2}=27 y, \quad x y=$ $9 x+18 y$, and $y x=18 x+9 y$. This ring also has property S.

We now consider torsion S-rings in general.
Theorem 1.6. Let G be a torsion group with primary decomposition, $G=\bigoplus_{p} G_{p}$. A ring R on G has property S if and only if, for each p, the subring R_{p} on G_{p} has property S.

Proof. The necessity of the condition is clear. We suppose R_{p} is a S-ring for each prime p and prove $R=\bigoplus R_{p}$ is a S-ring. Let $\alpha=\Sigma x_{p}$ and $\beta=\Sigma y_{p}$ be elements in R where $x_{p}, y_{p} \in R_{p}\left(x_{p}=y_{p}=0\right.$ for almost all p 's). Since, for each $p, x_{p} y_{p}=a_{p} x_{p}+b_{p} y_{p}$ for constants a_{p} and b_{p}, $\alpha \beta=\sum x_{p} y_{p}=\sum a_{p} x_{p}+\sum b_{p} y_{p}$. For each p, let $n_{p}=\max \quad\left(o\left(x_{p}\right)\right.$, $\left.o\left(y_{p}\right)\right)$. By the Chinese Remainder Theorem, there exist constants k and 1 satisfying $k \equiv a_{p}\left(\bmod n_{p}\right)$ and $1 \equiv b_{p}\left(\bmod n_{p}\right)$ for each p for which x_{p} or y_{p} is nonzero. It follows that $\alpha \beta=k \alpha+1 \beta$ and that R is a S-ring.
2. Torsion-free rings. In this section all rings are assumed to be torsion-free. We first establish, in 5 lemmas, some properties of S-rings. Theorem 2.6 will be the culmination of this effort.

Lemma 2.1. If x and y are elements in a S-ring, $x^{2}=r x$, and $y^{2}=s y$, then $x y+y x=s x+r y$ and $x y=s x$ or ry.

Proof. First, suppose x and y are linearly independent. The proof that $x y+y x=s x+r y$ is the same as in (1.2), except that k now equals $s+r$ exactly. Next, set $x y=a x+b y, y x=c x+d y$. Then, $a r x+b r y=$ $x^{2} y=x(x y)=(a r+a b) x+b^{2} y$ and $a b=0=b(b-r)$. Similarly, $c d=$ $0=c(c-r)$. If $b \neq 0$, then $b=r, a=0$, and $x y=r y$. If $c \neq 0$, then $c=r, d=0$, and $y x=r x$ which means that $x y=s x$. If $b=c=0$, then $x y=s x$ since $a+c=s$. Secondly, suppose x and y are linearly dependent and $m x=n y \neq 0$. By computation, $m x y=m(s x)$ and $x y=$ $s x$. Similarly, $y x=r y$, and, as a result, $x y+y x=s x+r y$.

Lemma 2.2. For elements x and y in $a S$-ring the following are equivalent:
(1) $x^{2}=y^{2}=0$,
(2) $x y=y x=0$,
(3) $x y+y x=0$.

Proof. From (2.1), (1) implies (2) and (2) implies (3). We must show that (3) implies (1). If x and y are linearly independent, this follows from (2.1). Suppose $m x=n y \neq 0$. Then $0=m n(x y+y x)=$ $m(x(n y)+(n y) x)=m(x(m x)+(m x) x)=2 m^{2} x^{2}$ and $x^{2}=0$. Similarly, $y^{2}=0$.

Lemma 2.3. If K is a subring of the S-ring R and $K^{2}=0$, then K is an ideal.

Proof. Let $x \in K, y \in R \backslash K$. If x and y are linearly dependent, then $x y=y x=0 \in K$. Assume that they are linearly independent and write $\quad x y=a x+b y$. Then $0=x^{2} y=x(x y)=x(a x+b y)=b x y=$ $a b x+b^{2} y$ and $b y=0$. Thus, $x y$ (similarly $y x$) is in K.

Lemma 2.4. If the S-ring R has rank one, it is a zero-ring or R^{+}is cyclic.

Proof. Assume the lemma to be false. Then there is an element $x \neq 0$ in R^{+}of unbounded height. Since $R^{2} \neq 0, x^{2}=a x \neq 0$ for some a. Choose n and y such that $n y=x$ but n is not a factor of a. If $y^{2}=b y$, by computation $a x=n^{2} b y=n b x$ and n divides a, a contradiction. Therefore, the lemma is true.

Lemma 2.5. If R is a S-ring, then it is a zero-ring or it contains an ideal K and an element z such that $R^{+}=K^{+} \bigoplus\langle z\rangle$, where $K^{2}=0$ and $z^{2}=s z$ for some $s \neq 0$. Also, for every x in $K, x z=u x$ and $z x=(s-u) x$ where $u(s-u)=0$.

Proof. Suppose R is not a zero-ring and K is a maximal subring in R such that $K^{2}=0$. By (2.3), K is an ideal and we may form the quotient ring $R / K=L$. We will show that L^{+}is cyclic and torsionfree. First, L has property S. For, if D is a subgroup of L^{+}, so is its inverse image in R^{+}and closure under multiplication in R implies it in L. Secondly, L is torsion-free. Suppose $y \neq 0$ but $n y=0$ in L. If x in R maps to y, then $n x$ is in K and $(n x)^{2}=0$. If $x^{2}=0$, the subring generated by x and K is a zero-ring by (2.2) which contradicts the maximality of K. Thus, $x^{2} \neq 0, n=0$, and L is torsion-free. Thirdly, we prove that L has rank one. By the previous argument, it suffices to
show that $r(L)>1$ implies $R \backslash K$ has a nonzero element whose square is zero. Suppose, then, $r(L)>1$ and x and y are linearly independent in $R \backslash K$. If $x^{2}=r x, y^{2}=s y$, then, by (2.1), $x y+y x=s x+r y$ and $(s x-r y)^{2}=0$. Therefore, the rank of L must be one. By the maximality of K, L is not a zero-ring. By (2.4), L^{+}is cyclic and $R^{+}=K^{+} \bigoplus\langle z\rangle$ for z where $z^{2} \neq 0$. Finally, we verify the last sentence of the theorem. Let x, y be elements in K. By (2.1) it will suffice to show that $y z=u y$ implies $x z=u x$. Since K is an ideal, $x z=a x$ for some a. Suppose x and y are linearly independent. Then $(x+y) z=$ $a x+u y$ must be a multiple of $x+y$ and $x z=u x$. Suppose $m x=$ $n y \neq 0$. Then $\quad \max =m x z=n y z=n u y=u m x \quad$ and $\quad a=u$, as desired. The proof is complete.

We can now describe all S-rings on torsion-free groups.
Theorem 2.6. Let G be a torsion-free group of the form $H \bigoplus\langle z\rangle$. A S-ring can be constructed on G by, for $x, y \in H$, setting $(x+a z)(y+b z)=b u x+a(s-u) y+a b s z$, where $u(s-u)=0$. Any torsion-free S-ring, not a zero-ring, has such a structure.

Proof. If R is a S-ring and $R^{2} \neq 0$, then the structure of R is as above by (2.5). Conversely, suppose the above structure is given. It is easy to check that multiplication is well-defined and that the distributive law holds. Let $\alpha=x+a z, \beta=y+b z, \gamma=w+c z$, where x, y, $w \in H$. We may assume $u=0$ (the proof is similar if $u=s$). Then $\alpha \beta=a s \beta$ and property S is assured. Since $(\alpha \beta) \gamma=(a s)$ (bs) $\gamma=$ $\alpha(\beta \gamma)$, the associative law is satisfied. Therefore, the construction defines a S-ring.
3. Mixed rings. In this section the ring R is always mixed and T is its torsion subring. It is well-known that the torsion subring of a ring is an ideal. If R is a S-ring, we can say more.

Proposition 3.1. If R is $a S$-ring, $T^{2}=0$.
Proof. We first show that $x^{2}=0$ for every x in T. Let $x \in T$, $y \in R \backslash T$, where $o(x)=n, \quad x^{2}=r x$, and $y^{2}=s y$. Then $(x+n y)^{2}=$ $r x+n^{2} s y=k(x+n y)$ for some k. Hence, $k=n s$ and $x^{2}=n s x=$ 0 . To complete the proof, it will suffice to show $x z=0$ for linearly independent x and z in T. We write $x z=a x+b z$ and, since T is an ideal, $y z=c z$. Then $(x+y) z=a x+(b+c) z$ and $a x$ must be a multiple of $x+y$ which implies $a x=0$. Similarly, we can show $b z=0$ by considering $x(z+y)$. Therefore, $x z=0$ and, as a result, $T^{2}=0$.

If R is a mixed S-ring, not a zero-ring, then R / T may or may not be a zero-ring. We consider the second case first and describe the structure of R when $(R / T)^{2} \neq 0$ in Theorem 3.5. To prove it three lemmas are required.

Lemma 3.2. If R is a S-ring and R / T is not a zero-ring, then R has an ideal K containing T and an element z such that $K^{2}=0, z^{2} \neq 0$, and $R^{+}=K \bigoplus\langle z\rangle$.

Proof. By (2.5), $(R / T)^{+}=(K / T) \oplus\langle z+T\rangle$ for some ideal K / T and element $z+T$ such that $(K / T)^{2}=0,(z+T)^{2} \neq 0$. By the isomorphism theorems for groups, $R^{+}=K^{+} \bigoplus\langle z\rangle$, where $K \supset T$ and $z^{2} \neq 0$. Since T and K / T are ideals, so is K. We must show $K^{2}=0$. Since any two elements of K are contained in a subgroup of torsion-free rank at most two, it will suffice to show $K^{2}=0$ where $K^{+}=T \bigoplus\langle x\rangle \bigoplus\langle y\rangle$ for some x and y. Since K / T is a zero-ring, so is $\langle x\rangle \oplus\langle y\rangle$ as well as T. We will show $t x=0$ for t in T and it will follow, by symmetry, that $K^{2}=$ 0 . Since T and K are ideals, $t x=a t, z x=b x$ for some a and b. Then, $(t+z) x=a t+b x$ and at is a multiple of $t+z$ which implies $t x=a t=$ 0 . This completes the proof.

For the rest of this section, T_{i} is the p_{i}-component of T where $\left\{p_{i}\right\}$, $i \in I$, is the set of prime numbers.

Lemma 3.3. Let R be a S-ring, $R^{+}=K \bigoplus\langle z\rangle$, where $K \supset T$, $K^{2}=$ 0 , and $z^{2}=s z$. Then:
(1) if K is mixed, for every x in $K, x z=u x, z x=(s-u) x$ where $u(s-u)=0$;
(2) if $K=\bigoplus T_{1}$, there exists u_{1} for each i such that $x_{1} z=u_{1} x_{1}$, $z x_{t}=\left(s-u_{i}\right) x_{t}$, and $u_{t}\left(s-u_{i}\right) x_{t}=0$ for every x_{i} in T_{i}.

Before proving this lemma, we establish the following.
Lemma 3.4. Let R be as in (3.3). If $x, y \in K$ and $o(y)$ is infinite or $o(x)$ divides $o(y)$, then $y z=u y$ implies $x z=u x$.

Proof. If x and y are linearly independent or if $o(x)$ is infinite, the argument at the end of the proof of (2.5) may be used to prove the lemma. If x and y are dependent and $o(x)$ is a finite number, then $x=w+a y$ for element w and constant a such that w is independent of y and $o(w)$ divides $o(y)$. By the previous sentence applied to w and y, $w z=u w$. Again $x z=u x$.

Proof of 3.3. In general, if $x \in K$ and $x z=u x$, then $z x=(s-u) x$ and $u(s-u) x=0$. To see this, consider $(x+z)^{2}=x z+z x+s z$. Since
this expression must be a multiple of $x+z, x z+z x=s x$ or $z x=$ $(s-u) x$. Also, $\quad s u x=s x z=x(s z)=x z^{2}=u^{2} x \quad$ and $\quad u(s-u) x=$ 0 . Suppose, then, K is mixed. If $y \in K \backslash T$, and $y z=u y$, then $u(s-u)=0$ and, by (3.4), $x z=u x$, for every x in K. We have proved (1). Assume, then, $K=T$ as in (2). We will examine the following possible cases: (a) T_{i} is bounded, (b) T_{i} is not reduced, and (c) T_{1} is unbounded and reduced. (a) Let T_{1} be bounded. Let y be an element of maximal order in T_{i} and $y z=u_{i} y$. Then (2) follows from (3.4) and from what was said at the beginning of this proof. (b) Let T_{i}^{+}contain a divisible subgroup D of rank one. We claim $D z=0$ or $z D=$ 0 . Suppose this is not so. Then D contains an element y such that neither $y z$ nor $z y$ is zero. For $n>0$, there exists x such that $p^{n} x=y$, and for some $u, x z=u x$ and $z x=(s-u) x$ by what was said above. But, if n is large relative to $o(y)$, uy or $(s-u) y$ is zero since $u(s-u) x=0$, although $u y=y z \neq 0 \neq z y=(s-u) y$. From this contradiction we conclude that $D z=0$ or $z D=0$ and $y z=u y$ for all y in D where $u(s-u)=0$. If $x \in T_{\imath} \backslash D$, we may select $y \in D$ such that $o(x)$ divides $o(y)$ and (3.4) completes tne proof of (2) in case (b). (c) Suppose T_{1} is reduced with unbounded basic subgroup B. First, assume $B z \neq 0 \neq z B$. We show a contradiction. If $x z \neq 0 \neq z y$ for x, y in B and $o(x)$ divides $o(y)$, then $y z \neq 0$ by (3.4). In this event, we select $w \in B$ of large order relative to that of y. Then, if $w z=u w, z w=$ $(s-u) w, \quad u y=y z \neq 0 \neq z y=(s-u) y$. But $u(s-u) w=0$ and the largeness of $o(w)$ imply $u y$ or $(s-u) y$ equals zero. Therefore, $B z=0$ or $z B=0$ and, for all $x \in B, x z=u x$ where $u(s-u)=0$. If $g \in T_{i} \backslash B$, we may choose $x \in B$ such that $o(g) \leqq o(x)$ and, by (3.4), $g z=u g$. We have established (2) for case (c).

Theorem 3.5. Let $G=H \oplus\langle z\rangle$ be a mixed group where $H \supset$ T. A S-ring R can be constructed on G by defining :
(1) if $H \neq T,(x+a z)(y+b z)=a(s-u) y+b u x+a b s z$ for x, $y \in H$ where $u(s-u)=0$;
(2) if $\quad H=\bigoplus T_{t}$,
$\left(\sum x_{t}+a z\right)\left(\sum y_{t}+b z\right)=a \sum\left(s-u_{i}\right) y_{t}+b \sum u_{t} x_{i}$ + absz for $x_{i}, y_{t} \in T_{i}$ where $u_{t}\left(s-u_{t}\right) T_{i}=0$ for each i. If R is a mixed S-ring and R / T is not a zero-ring, R has the above structure with $s \neq 0$.

Proof. We prove the last sentence first. If R is a mixed S-ring and R / T is not a zero-ring, R has the structure of the theorem by (3.2), (3.3), and the distributive law. Therefore, we assume G is as given and show that (1) and (2) define S-rings on G. The proof for definition (1) is the same as in (2.6). We assume (2) is given. A routine calculation shows that multiplication is well-defined and that the distributive law holds. This leaves associativity and property S to be verified. Let
$\alpha=\Sigma x_{t}+a z, \beta=\Sigma y_{i}+b z, \gamma=\Sigma w_{t}+c z$, where $x_{i}, y_{i}, w_{i} \in T_{1}$ and let $n_{i}=\max \left(o\left(x_{i}\right), o\left(y_{i}\right), o\left(w_{i}\right)\right)$. By the Chinese Remainder Theorem, we can find k such that $k \equiv u_{i}\left(\bmod n_{t}\right)$ for each i such that x_{i}, y_{i}, or w_{t} is nonzero. Then $\alpha \beta=b k \alpha+a(s-k) \beta$ and property S is assured. Finally, $(\alpha \beta) \gamma=b c k^{2} \alpha+a c k(s-k) \beta+a b s(s-k) \gamma=\alpha(\beta \gamma)$ and the ring is associative. The proof is complete.

If R is a S-ring, it may happen that R / T is a zero-ring but R is not. In this case, as we shall see, the additive group of R / T has rank one but may not be cyclic. Hence, a few words on mixed groups of torsion-free rank one are in order. Let G be such a group and $T=\bigoplus T_{i}, i \in I$, its torsion subgroup (T_{i} is the p_{i}-component of T where p_{1} is a prime number). Let z be a torsion-free element in G. We partition I into subsets J and K such that i is in J or K exactly if the p_{i}-height of $z+T$ in G / T is infinite or finite, respectively. The latter height is designated n_{r}. In this case G has a generating set:

$$
A=\left\{T_{i}, z_{j n}, z_{k}\right\}, i \in I, j \in J, k \in K, \quad n=1,2, \cdots
$$

where

$$
\begin{align*}
z & =p_{l}^{n} z_{j n}+t_{m n}, & & t_{j n} \in T_{l} \tag{*}\\
& =p_{k}^{n_{k}} z_{k}+t_{k}, & & t_{k} \in T_{k} .
\end{align*}
$$

Here $z_{k}=z$ if $n_{k}=0$. We write $G=(A, *)$. Each element α in G has a unique expression of the form:

$$
\begin{equation*}
\alpha=\sum x_{1}+\sum_{l} a_{j} z_{j m_{1}}+\sum b_{k} z_{k}+c z \tag{**}
\end{equation*}
$$

where $x_{i} \in T_{i}, m_{j}$ depends on $j,\left(a_{l}, p_{j}\right)=1,\left|a_{j}\right|<p_{l}^{m_{j}}$, and $\left|b_{k}\right|<p_{k}^{n_{k}}$. The last sentence can be seen by examining the image of α in G / T.

We are ready to state and prove the final theorem of this section.
Theorem 3.6. Let $G=(A, *)$. A S-ring R can be constructed on G in the following manner. For each i in I, choose u_{t} such that $u_{t}^{2} T_{i}=0$ and, if $i \in J, u_{i}=0$. For each i and $k \neq i \neq j$, choose $u_{k i}$ and $u_{j i}$ such that $u_{k i}=0=u_{j i}$ if T_{1} is unbounded and $p_{k} u_{k i} \equiv 1 \equiv p_{1} u_{j i}\left(\bmod p_{1}^{N_{i}}\right)$ if T_{\imath} has least bound $p_{i}^{N_{i}}$. Multiplication on G is defined by the following rules:
(1) $T^{2}=0$, and $x y=-y x$ for $x, y \in A$.
(2) For $x_{i} \in T_{i}, z_{k}$, and $z_{\mu m}$,

$$
x_{i} z_{k}=u_{k k}^{n_{k}} \eta_{i}^{n_{i}} u_{i} x_{i}
$$

and

$$
x_{i} z_{j n}=u_{i p}^{n} p_{i}^{n} u_{1} x_{i} \quad\left(n_{t}=0 \quad \text { if } \quad i \in J\right) .
$$

(3) For $i \in K$ and z_{k}, z_{p},

$$
z_{t} z_{k}=u_{i k}^{n} u_{k} t_{k}-u_{k i}^{n_{k}} u_{i} t_{1}
$$

and

$$
z_{1} z_{j n}=-u_{j i}^{n} u_{l} t_{1} .
$$

(4) For $i \in J$ and $z_{l m}, z_{j n}$,

$$
z_{l m} z_{j n}=0
$$

(5) Multiplication on G is linear relative to A. If R is a S-ring and R / T but not R is a zero-ring, then R has the above structure.

Proof. (a) We prove the last sentence first. Assume S-ring R is not a zero-ring but R / T is. We claim $r(R / T)=1$. To show this, it will suffice to prove R is a zero-ring if $R^{+}=T \bigoplus\langle x\rangle \bigoplus\langle y\rangle$, for some x and y. We know $T^{2}=0$. Since R / T is a zero-ring, so is the ring on $\langle x\rangle \bigoplus\langle y\rangle$. If $t \in T,(t+y) x=t x$ is in T and must be a multiple of $t+y$. Thus, $t x=0$. Other products in R are zero by symmetry, and $R^{2}=0$. Therefore, $r(R / T)=1$, and we let $R^{+}=G=(A, *)$. We proceed to verify properties $1-5$. Throughout this proof we assume k and j are always in K and J respectively. First, since T and R / T are zero-rings, it follows that, for $x, y \in R, x^{2}=y^{2}=0=(x+y)^{2}=x y+y x$ and, hence, (1) is necessary. If $i \in K$, consider the subgroup $T_{1} \oplus\left\langle z_{1}\right\rangle . \quad$ By (3.3) with $s=0$, there is a constant u_{1} such that $u_{1}^{2} T_{1}=0$ and $x_{i} z_{t}=u_{i} x_{t}$, for every x_{1} in T_{1}. If $i \in J$ and $x_{t} \in T_{t}, x_{1} z_{i n}=0$ for all n because of the height condition on $z_{i n}$ (modulo T_{t}) and, as a result, $x_{i} z_{i n}=u_{i} x_{i}$ where $u_{i}=0$. We have proved (2) for $i=k$ or j. Next, for fixed i and $k \neq i \neq j$, let $u_{k 1}$ and $u_{j i}$ be as stated in the theorem. If $i \in K$, by reason of $(*)$,

$$
p_{1}^{n_{1}} u_{1} x_{1}=x_{1}\left(p_{i}^{n_{i}} z_{1}+t_{1}\right)=x_{i}\left(p_{k}^{n_{k}} z_{k}+t_{k}\right)=x_{1}\left(p_{j}^{n} z_{j n}+t_{j n}\right)
$$

If $i \in J$, the same equations hold true when, for $m>0, p_{t}^{m}$ and $z_{1 m}$ replace $p_{i}^{n_{i}}$ and z_{i}, respectively. These equations, then, imply (2) for the remaining possible cases. We next verify (3). By (1), any element in A squared is zero and (3) is true for $i=k$. For $i \in K$ but $i \neq k$, consider $p_{i}^{n_{i}} z_{i}+t_{i}=p_{k}^{n_{k}} z_{k}+t_{k}$. Multiplying on the right (left) by $z_{k}\left(z_{t}\right)$, we derive:

$$
p_{i}^{n_{i}} z_{l} z_{k}=u_{k} t_{k}-u_{k i}^{n_{k}} p_{i}^{n_{1}} u_{i} t_{l} \quad \text { and } \quad p_{k}^{n_{k}} z_{l} z_{k}=u_{i k}^{n_{k}} p_{k}^{n_{k}} u_{k} t_{k}-u_{i} t_{1} .
$$

Since $z_{1} z_{k} \in T_{k} \oplus T_{t}, z_{\imath} z_{k}$ has the form given in (3). Similarly, considering $p_{1}^{n_{1}} z_{1}+t_{t}=p^{n} z_{j n}+t_{j n}$ for $i \in K$ and multiplying right (left) by $z_{j n}\left(z_{t}\right)$, we derive the second equation of (3). We next prove (4). For $i \in J$ but $i \neq j$, consider $p_{1}^{m} z_{l m}+t_{l m}=p_{j}^{n} z_{j n}+t_{j n}$. If we multiply right (left) by $z_{j n}$ $\left(z_{l m}\right)$, we obtain $p_{i}^{m} z_{l m} z_{j n}=0=p_{j}^{n} z_{l m} z_{j n}$ which implies $z_{l m} z_{j n}=$ 0 . Suppose, however, $i=j$ and $m>n$. Then $z_{j n}=p^{m-n} z_{l m}+x_{i}$ for some $\quad x_{i} \in T_{t}$, and $z_{l m} z_{l n}=p^{m-n} z_{l m}^{2}+z_{l m} x_{t}=0$. We have proved (4). Since (5) is obvious, the proof of the final sentence of the theorem is complete. (b) Suppose G and multiplication on G are as given in the theorem. We must prove that multiplication is well-defined and that the associative and S properties are present. We first observe that the second equation of (1) is consistent with the first equation of (3) and of (4). We now prove multiplication is well-defined. First, if $x \in A$ and y, y_{1} are two representatives of z given by $(*)$, we claim $x y=x y_{1}$ and it is meaningful to write $x z=x y=x y_{1}$. To prove this, we consider cases. If $x \in T_{t}$, a reversal of the proof of (2) above yields the desired result. If $x=z_{i}, i \in K$, a reversal of the proof of (3) above yields the desired result. If $x=z_{j n}$, then $x y=0$ for every representative y of z. We compute the less obvious product. Let $z=p_{i}^{n_{i}} z_{i}+t_{i}$, $i \in K$. Then

$$
\begin{aligned}
z_{j n}\left(p_{i}^{n_{i}} z_{i}+t_{t}\right) & =-p_{i}^{n_{i}} z_{l} z_{j n}-t_{i} z_{j n} \\
& =p_{i}^{n_{i}} u_{j i}^{n} u_{i} t_{i}-u_{j i}^{n} p_{i}^{n_{i}} u_{i} t_{i}=0 .
\end{aligned}
$$

Secondly, if $x \in A$ and $z_{j n}=p_{l} z_{j n+1}+x_{j n}$ where $x_{j n} \in T_{j,}$, we claim $x z_{j n}=$ $x\left(p_{j} z_{j n+1}+x_{j n}\right)$. Again we consider cases. If $x \in T_{i}$, (2) yields the desired result. If $x=z_{l}, i \in K$, then, by (3),

$$
\begin{aligned}
z_{l} z_{j n} & =-u_{j i}^{n} u_{i} t_{l}=p_{l}\left(-u_{j i}^{n+1} u_{i} t_{l}\right)=p_{l}\left(z_{i} z_{j n+1}\right) \\
& =z_{l}\left(p_{l} z_{j n+1}+x_{j n}\right)
\end{aligned}
$$

as desired. If $x=z_{l m}, \quad i \in J$, then $z_{\imath m} z_{j n}=0=z_{\imath m}\left(p_{ر} z_{j n+1}+x_{j n}\right)$, as desired. Thirdly, multiplication on all of G is well-defined. By reason of (1) and (5) it will suffice to show that $\alpha \beta=\alpha^{\prime} \beta$ where $\alpha=\alpha^{\prime}, \alpha$ is the representative of $(* *)$, and β is arbitrary in G. Suppose, then, $\alpha^{\prime}=$ $\sum_{i} y_{t}+\sum_{l}\left(\sum_{n} d_{j n} z_{j n}\right)+\sum_{k} e_{k} z_{k}+f z$ where $y_{t} \in T_{i}$. For fixed j and $n<m_{j}$, by what was said above, $d_{j n} z_{j n}$ may be replaced by $d_{j n} p_{j} z_{j n+1}+d_{j n} x_{j n}$ in computing $\alpha^{\prime} \beta$. If $n>m_{l}$, by the uniqueness of the form of $\alpha, d_{j n}=p_{j} d_{j n}^{\prime}$ for some $d_{j n}^{\prime}$ and $d_{j n} z_{j n}=d_{j n}^{\prime} p_{j} z_{j n}=d_{j n}\left(z_{j n-1}-x_{j n-1}\right)$. We replace the left term by the right term in computing $\alpha^{\prime} \beta$. Continuing in this manner and simplifying, for each j, we may replace $y_{j}+\sum_{n} d_{j n} z_{j n}$ by $x_{j}+a_{j} z_{j m_{I}}+f_{j} z$ for
some f_{f}. In like manner, for each k, we may replace $y_{k}+e_{k} z$ by $x_{k}+b_{k} z_{k}+f_{k} z$ for some f_{k}. The sum of the f 's, f, and the f_{k} 's must equal c and it follows that $\alpha^{\prime} \beta=\alpha \beta$. Multiplication is well-defined. Finally, we establish the associative law and property S. It will suffice to show them for a subring R_{1} of R where R_{1} is finitely generated over T. Since any finitely generated subgroup of the group G / T is cyclic, we may assume $R_{1}^{+}=T \bigoplus\langle y\rangle$ where y is a linear combination of members of $A \backslash T$. By reason of (1) and (2) and linearity, there exists a constant v_{t} for each i such that $x_{i} y=v_{i} x_{i}=-y x_{i}$ for every x_{i} in T_{i} and $v_{i}^{2} T_{i}=0$. By the proof of (3.5), R_{1} is associative and possesses property S. The proof of the theorem is complete.
4. Special properties. The additive group of an Artinian, Noetherian, or regular ring belongs to a narrowly defined and wellknown class of groups (see chapter XVII of [4]). This knowledge together with the theorems of the preceding sections enable us to decide the nature of particular classes of S-rings. We describe the classes that seem most important in the following corollaries.

Corollary 4.1. A S-ring R has an identity if and only if R is isomorphic to Z, to $Z /(2) \oplus Z /(2)$ (ring-direct sum), or to $\bigoplus Z /\left(p^{n_{p}}\right)$ summed over a finite number of distinct primes p where n_{p} depends on p.

Corollary 4.2. The rings Z and $Z /(p)$ are the only integral domains with property S.

Corollary 4.3. A nontrivial S-ring R is regular if and only if it has the form $\bigoplus Z /(p)$ (ring-direct sum) where each $p \neq 2(p=2)$ occurs at most once (twice).

Corollary 4.4. A S-ring R is Artinian if and only if it is a torsion ring of finite rank.

Corollary 4.5. A S-ring R is Noetherian if and only if R^{+}is a direct sum of a finite number of cyclic groups.

In the following let T be the torsion subring of R and T_{i} be the p_{1}-component of T for prime number p_{i}. Let \bigoplus signify ring-direct sum and let (z) and $\left(z_{i}\right)$ signify the subring generated by z and z_{i}, respectively.

Corollary 4.6. A ring R has the property that every additive subgroup is an ideal if and only if
(1) R is a zero-ring,
(2) $R=T \bigoplus(z)$ and $T^{2}=s T$ where $z^{2}=s z$, or
(3) $R=\bigoplus T_{i}$ and, for $T_{i}^{2} \neq 0, \quad T_{i}=H_{i} \oplus\left(z_{i}\right)$ and $H_{i}^{2}=0=s_{i} H_{i}$ where $z_{i}^{2}=s_{i} z_{i}$.

The last corollary is not new and may be found in [5]. We include it here because it follows readily from the theorems of the paper.

References

1. R. A. Beaumont, Rings with additive group which is the direct sum of cyclic groups, Duke Math. J., 15 (1948), 367-369.
2. R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math., 5 (1961), 61-98.
3. L. Fuchs, Abelian Groups, Publ. House Hungar. Acad. Science, Budapest, 1958.
4. L. Fuchs, Infinite Abelian Groups, Academic Press, N. Y., Vol. I (1970), Vol. II (1973).
5. L. Redei, Die Vollidealringe, Monatshefte für Mathematik, 56 (1952), 89-95.

Received February 23, 1976.

University of Detroit

