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LATTICE PROJECTIONS ON
CONTINUOUS FUNCTION SPACES

EMILY MANN PECK

Suppose that X is a compact Hausdorff space and that F is
a closed (linear) sublattice of C(X). We characterize those
sublattices F that are the ranges of (linear) lattice projections on
C(X): there is a lattice projection of C(X) onto F if and only if
there is a closed subset Y of X such that F is lattice isomorphic
to C(Y) under the restriction mapping f— f|v(f € F).
Examples are given to show that this theorem cannot be sub-
stantially improved without imposing additional conditions
either on X or on the sublattice F. If X is a stonian space, then
a closed sublattice F of C(X) is the range of a lattice projection
exactly when it is the range of a positive projection.

1. Preliminary results and notation. Recall that an
(AM)-space E is a Banach lattice such that ||[x v y | =| x| v|y|l for each
nonnegative x and y in E. Kakutani [6] proved that the (AM)-spaces
are isometrically characterized as the closed sublattices of spaces C(X),
for X a compact Hausdorff space. An order unit e in E is a nonnegative
element of E such that for each x =0 in E there exists a real number
A >0 such that x = Xe. E is an (AM)-space with unit if E has an order
unit e such that the order interval [ — e, e] coincides with the unit ball in
E. The weak® topology on the dual E’' of E will be denoted by
o(E',E).

Let X be a compact Hausdorff space. C(X) is the Banach lattice of
real-valued continuous functions on X. For each x € X, ¢, is the point
evaluation at x. The function that is identically one on X will be
denoted by 1x. For any subset Y of X, define

hull(Y) = {f € C(X): f(Y) = {0}

DEeriNITION 1.1. Suppose that P is a projection of C(X) onto a

sublattice F of C(X). P is called an ¢-projection (or lattice projection)
if P is a linear lattice homomorphism.

Ker P denotes the null space of a projection P. Note that Ker P is
necessarily a lattice ideal of C(X) whenever P is an ¢-projection.

Suppose that X is a compact Hausdorff space, F is a closed (linear)
sublattice of C(X), and P is a positive projection of C(X)onto F. Then
e = P(1x) is an order unit for F, and F can be renormed with an
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equivalent norm ||-||. to be an (AM)-space with unit. The norm ||-||, is
defined by

|fll. =inf{A >0: |f|=Ae}, fEF

If [P|=1, then e = P(1yx) is a unit for F with the supremum norm.

There is a compact Hausdorff space K such that C(K) is lattice and
linearly isometric to F with the norm ||-||.. In fact, K can be taken to be
the set of extreme points of the positive face of the dual unit ball for the
norm |-, on F. We shall denote this particular space K by
Q.. Equipped with the o(F', F) topology, (2. is a compact Hausdorff
space. Moreover, the isometry is given by the evaluation:

o: F— C(Q,)

O(f)(u)=u(f) foreach fEF u€Q,

(see [12], p. 247). @ is an isometry defined on F with the supremum
norm if and only if | P| = 1.

Throughout the paper the linear structure of C(X), sublattices F,
and projection P will be assumed and used even though the linear
structure will not be specifically referred to each time.

The following result can be proved in a manner analogous to
Corollary 4, p. 691, of [13]:

PROPOSITION 1.2. Let X be a compact Hausdorff space, and let F be
a closed sublattice of C(X). If P is a projection of norm one of C(X) onto
F, then P is positive.

2. <(-projections on C(X). If X is a compact Hausdorff
space, then the range of an ¢-projection on C(X) is lattice isomorphic to
C(K) for some compact Hausdorff space K. Does there exist an
embedding of K into X? In order to answer this question affirmatively,
we shall need to relate linear mappings of C(X) into C(Y') to point maps
of Y into X. The following theorem (see Kaplan [7]) will be a major
tool:

THEOREM 2.1. Let X and Y be compact Hausdorff spaces and let
T: C(X)— C(Y) be a lattice homomorphism with T(1x)=1,.

(@) There is a continuous function T': Y — X defined fory € Y by
f(T'(y))=T()(y) for all f€ C(X). Moreover, T' is one-to-one
whenever T is onto, and T' is onto whenever T is one-to-one.

(b) Given a continuous function ¢: Y — X, there is an associated
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linear mapping ¢°: C(X)— C(Y) defined for f € C(X) by ¢°(f)(y)=
fle(y)) forally € Y. ||¢°=1, and ¢’ is an isometry whenever ¢ is onto.
© (T')=T

For any function f: A — B, the symbol f |4, A;C A, denotes the
restriction of f to the domain A, Suppose that X is a compact
Hausdorff space and that Y is a closed subset of X. There is a
restriction mapping Ry of C(X) onto C(Y) defined by Ry (f)(y) = f(y)
fory € Y, f€ C(X). We shall also denote Ry (f) by f|y. Throughout
the paper the term “‘restriction mapping” will be used in this canonical
sense. Note that R, is a lattice homomorphism and that Ry(1x) = 1,.

It will be necessary to extend real lattice homomorphisms (that is,
real-valued lattice homomorphisms) defined on a closed sublattice F of
C(X) to all of C(X). Denote by () the set of extreme points of the
positive face of the dual unit ball for the supremum norm of F. We
remark that if ), corresponds to a projection of norm one (as in §1), then
Q. = Qf since ||f|. = [{f|| for each fE F.

Lemma 2.2. (Extension lemma). Let X be a compact Hausdorff
space, and let F be a closed sublattice of C(X). Then any real lattice
homomorphism on F can be extended to a real lattice homomorphism on
C(X) that has the same norm.

Proof. Let ¢: F— R be a nonzero lattice homomorphism (the zero
homomorphism can be trivially extended to all of C(X)). Then &/||&| is
in () since ¢ generates an extreme ray of the cone in F’ (see Schaefer
[12], p. 213). An extreme point argument shows that any element of
has an extension to an extreme point of the positive face of the unit ball
in C(X)'. But the extreme points of the positive face of the unit ball in
C(X) are the point evaluations ¢, x € X, which are real lattice
homomorphisms on C(X). That the extension has the same norm is
obvious.

The following lemma is well-known in the “folklore” of the litera-
ture; however, it does follow directly from the extension lemma.

LeMMA 2.3.  The set of real lattice homomorphisms on C(X) coin-
cides with the set of nonnegative multiples of the point evaluations
£, XEX

It will be useful to note that if F is a closed sublattice of C(X), and if
F is renormed with an equivalent (AM)-space norm ||-|. (see §1), then
n €Q, exactly when u is a real lattice homomorphism on F and

el = 1.
The first theorem identifies the range of an ¢-projection P on C(X)
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as C(Y) for some closed subset Y of X. Moreover, a converse to that
statement is obtained. For the case that || P|| = 1, the portion (a) implies
(b) was proved by Geba and Semadeni [4].

THEOREM 2.4. Let X be a compact Hausdorff space and let F be a
closed sublattice of C(X). The following assertions are equivalent:

(a) There is an ¢-projection of C(X) onto F.

(b) There is a closed subset Y of X such that F is lattice isomorphic to
C(Y) under the restriction mapping Ry ; moreover, if e = R3'(1y), then

Ifle =1If1v ] for each f € F.
Also, if (a) holds, then Ker P = hull(Y), and Y is a subset of

{xe X: P(Ix)(x)=e(x)=1}.
If |P||=1, then F with the supremum norm is isometric to C(Y).

Proof. If (b) is satisfied, then R3'° Ry is the desired ¢-projection.

Conversely, let P be an ¢-projection of C(X) onto F, and consider
w € Q,, where e = P(1x) as in the discussion. Then w ¢ P is a real lattice
homomorphism of C(X) onto R; hence by 2.3 there is an x(w) € X and a
constant k(w)=0 such that w°P(f) = k(w)f(x(w)) for each f€ C(X)
(that is, w ° P = k(w)é,.,). Consider the function

¢: Q,— X, defined by Yy(w)=x(w), for w €,

as given above. Then ¢ is a one-to-one continuous function of (1, with
the o(F', F) topology into X. Moreover, the function A:(Q, - R,
defined by A(w)=k(w), for v €(),, as given above, is a continuous
function. Denote by Y therange of ¢. Then Y is homeomorphic to (2,
via ¢, and so F with the norm ||-|. (or C(£2,)) is lattice isometric to C(Y).

It remains to show that T: F— C(Y) given by T = (¢")" o ® is the
restriction mapping Ry. Let fEF, and y € Y. Then

@) o @(f)(y) =P W () =4"'(y)(H)=f(y) = Re () ().

Itis clear that e = P(1x) = Ry'(1y), and that || f|l. = |/f| v || for each f € F.
Note that f € hull(Y) exactly when f(Y)=0; this happens exactly

when Pf(Y)=0, or when f& Ker P. Hence hull(Y)=Ker P. Also,

P(1x)(y)=1x(y)=1 for each y € Y, so we have

YC{xEX: P(x)(x)=e(x)=1}.

Recall that if Y is a closed subset of a compact Hausdorff space X, a
simultaneous extension of C(Y) is a bounded linear mapping
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E: C(Y)— C(X) with the property that E(f)(y)=f(y) for all yE Y
and f € C(Y). Dean [2] proved that the existence of a linear extension
operator E is equivalent to the existence of a (bounded) projection of
C(X) onto hull(Y). The preceding proposition can be reformulated in
terms of simultaneous extensions that are lattice homomorphisms as
follows:

CoRrOLLARY 2.5. Let X be a compact Hausdorff space, and let F be a
closed sublattice of C(X). If P is an ¢-projection of C(X) onto F with
Ker P = hull(Y), then there is a simultaneous extension operator
E: C(Y)—> C(X) with |E||=|P| and E a lattice homomorphism.
Conversely, if there is a simultaneous extension operator E: C(Y)— C(X)
that is a lattice homomorphism, then there is an €-projection P of C(X)
onto a sublattice of C(X) that is lattice isomorphic to C(Y). Moreover,
IP|=1E].

Proof. If P exists, then R3' is the desired simultaneous extension
operator. Conversely, if E exists, then E ° Ry is an ¢-projection onto a
sublattice of C(X) that is lattice isomorphic to F.

Suppose that F is a closed sublattice of C(X) such that F is lattice
isometric to the range of an ¢-projection of norm one on C(X). Is F
the range of an ¢-projection on C(X)? If X is stonian, then there is an
¢-projection of C(X) onto F as we shall see in Theorem 3.1. However,
if X is not stonian, it is possible for a sublattice to be lattice isometric to
the range of an ¢-projection on C(X) without itself being the range of an
¢-projection. In fact, the restriction that X be stonian cannot even be
relaxed to the restriction that X be totally disconnected. Before
considering such an example, we construct an ¢-projection of norm one
associated with a given retraction.

PROPOSITION 2.6. Let X be a compact Hausdorff space and let Y be
a closed subset of X. If r: X— Y is a retraction, then there is an
¢-projection of norm one of C(X) onto a sublattice of C(X) that is lattice
isometric to C(Y).

Proof. Consider r’: C(Y)— C(X). A simple computation shows
that r’Ry is an ¢-projection of C(X) onto F =r’cR,(C(X)).
Moreover, Ker r’c Ry = hull(Y), and R is a lattice isometry of C(Y)
onto F. Thus ||[r’Ry | =1.

ExampLE 2.7. (See Arens [1]) We give an example of a totally
disconnected compact Hausdorff space X and a sublattice F of C(X)
that is lattice isometric to C(Y), where Y is a retract of X, yet F is not
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the range of any ¢-projection (not necessarily of norm one) on
C(X). By 2.6, F is lattice isometric to the range of an ¢-projection of
norm one on C(X).

Let

X, = {(i,~1-> mneN, m in},
m’n

Y = {(o,%): ne N} U{(0,0)},

First observe that r: X — Y, defined by
r(t9s)=(0as)7 t=071’%"”7 5=0’1’%,"',

is a retraction of X onto Y. Then r induces the ¢-projection r’c Ry of
norm one of C(X) onto a sublattice of C(X) that is lattice isometric to
C(Y).

Let F be the sublattice of C(X) consisting of those functions
constanton Y. There is no ¢-projection of C(X) onto F; however, F is
lattice isometric to C(Y). That there is no projection of norm one of
C(X) onto F is exactly the point of Arens’ example. To see that there is
not even a positive projection of C(X) onto F, note that since 1y € F, the
norm of any positive projection must be one; hence Arens’ proof applies,
and there is no positive projection of C(X) onto F.

It remains to show that F is lattice isometric to C(Y). First note
that F is lattice isometric to C(X,), where X, is the one-point compactifi-
cation of X, via the mapping

T: F— C(X,),
f(x) x€X,
T(f)(x) = { , fEF.
f((0,0)) x =0

Hence F is lattice isometric to (c), the space of convergent
sequences. Clearly, C(Y) is also lattice isometric to (c), and hence F is
lattice isometric to C(Y).

We know that a norm one projection of C(X) onto a sublattice of
C(X) is necessarily positive. It might be conjectured that a sublattice
that is the range of a projection of norm one on C(X) is the range of an
¢-projection on C(X). We shall see in §3 that if X is a stonian space,
then the conjecture is true; however, if X is a compact Hausdorff space
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that is not stonian, we claim the conjecture is not necessarily true. We
are indebted to H. Lotz for suggesting the following example that is much
simpler than the one we had used in a preliminary draft.

ExampLE 2.8. We give an example of a compact Hausdorff space
X and a closed sublattice F of C(X) such that F is the range of a norm
one (therefore, positive) projection on C(X) and F is lattice isometric to
the range of an ¢-projection of norm one on C(X), but such that F is not
the range of any ¢-projection on C(X).

Let X be the unit circle in the complex plane, and let F consist of all
the even functions in C(X):

F={fe C(X): f(—z)=f(z) foreach z€ X}.

Then P: C(X)— F, defined by P(f)(z) = (f(z) + f(— 2))/2, for f € C(X)
and z € X is a projection of norm one of C(X) onto F. Observe that F
is lattice isometric to C(X), which is the range of an ¢-projection on
C(X) (the identity mapping).

If there were an ¢-projection of C(X) onto F, since F is lattice
isometric to C(X), there would be an embedding o of X into X such that
o (X) is a closed connected subset of X (an arc segment), and such that F
is isomorphic to C(o (X)) via R,x). It is easy to see that at least one,
but not both, of the elements z and — z for each z € X must be in o(X)
in order that R ,x, is one-to-one and onto. Clearly, no such arc segment
exists; therefore, there is no ¢-projection of C(X) onto F.

3. Projections on C(X) for X stonian. In this sec-
tion we shall restrict our attention to projections on C(X) for stonian
spaces X. Much of the pathology encountered in the previous section
cannot occur in the presence of this restriction on X. For example, we
shall show that it is not possible for a sublattice F of C(X) to be lattice
isomorphic to the range of an ¢-projection on C(X) and not be the range
of any ¢-projection on C(X). (Contrast this with the situation in
Example 2.7.)

Suppose that X is a compact Hausdorff space. Recall that X is a
stonian space if the closure of each open set is open. Nakano (see [11])
proved that C(X) is an order complete vector lattice if and only if X is
stonian. It can be shown that a sublattice that is the range of a positive
projection defined on an order complete vector lattice must also be order
complete as a vector lattice. Now let X be a stonian space, and let P be
a positive projection on C(X) onto a closed sublattice F of C(X); since
X is stonian, F must be order complete, and the lattice isometry of F
with C((.) then shows that (), must be stonian.

We shall state the main results for sublattices that are the ranges of
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positive projections on C(X), for X a stonian space, before proving any
of the results.

THEOREM 3.1. Let X be a stonian space and let F be a closed
sublattice of C(X). The following are equivalent:

(@) There is a projection of norm one of C(X) onto F.

(b) F is an order complete (AM)-space with unit.

(c) Fislattice isometric to a space C(K), for some stonian space K.

(d) F is lattice isometric to C(Y), for some closed subset Y of X,
under the restriction mapping Ry.

(e) There is an ¢-projection of norm one of C(X) onto F.

As a corollary, we have the following result:

CoRrROLLARY 3.2. Let X be a stonian space, and let Z be a stonian
space such that C(X)" is lattice isometric to C(Z). Then

(a) there is an embedding of X into Z, and

(b) there is an ¢-projection P of norm one of C(Z) onto ¢(C(X)),
where ¢ is the canonical embedding of C(X) into C(Z).

If we replace the requirement that F be the range of a projection of
norm one by the requirement that F be the range of a positive projection,
then a similar theorem may be obtained by replacing “‘isometry” with
“isomorphism’ throughout 3.1. However, the proof of 3.3 will not
follow exactly as that for 3.1.

THEOREM 3.3. Let X be a stonian space and let F be a closed
sublattice of C(X). The following are equivalent:

(@) There is a positive projection of C(X) onto F.

(b) F is an order complete (AM)-space with an order unit.

(c) F is lattice isomorphic to C(K), for some stonian space K.

(d) F is lattice isomorphic to C(Y), for some closed subset Y of X,
under the restriction mapping Ry.

(e) There is an ¢-projection of C(X) onto F.

Note. In (b), the order interval [ — ¢, e], where e is an order unit
for F, is not in general the unit ball for F.

Theorems 3.1 and 3.3 are not equivalent. We obtain conditions for
a closed sublattice F of C(X) (X stonian) that is the range of a positive
projection to be (in addition) the range'of a projection of norm one. We
shall then be able to construct a simple example of a stonian space X and
a closed sublattice F of C(X) satisfying the conditions of Theorem 3.3
but not Theorem 3.1.
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THEOREM 3.4. Let X be a stonian space, and let F be a closed
sublattice of C(X) that is the range of a positive projection on C(X). The
following are equivalent :

(@) There is a projection of norm one of C(X) onto F.

(b) F is lattice isometric to C(K), for some stonian space K.

(c) Qris o(F', F) closed.

(d) If {x,} is a net in X and x an element of X such that {e,_|r}
converges 10 ¢, |r for o(F', F), then | e.|rll— || £

() Z={x in X:|&|r|=1} is a closed subset of X.

(f) If {f.} is an increasing net of nonnegative functions in F with
sup, f. = f, and if k is a positive constant such that | f, || = k for all a, then

I71= «.

(g) The unit ball in F is order complete.
We shall now prove theorems 3.1, 3.3, and 3.4.

Proof of 3.1. (a) implies (b) is a consequence of 1.2; (b) implies (c) is
the Kakutani representation; (d) implies (e) follows from 2.4; and (e)
implies (a) is obvious. It remains to show that (c) implies (d).

Without loss of generality, we can assume that K is )~ Suppose
that @ is the lattice isometry of F with the supremum norm onto C(£))
given by the evaluation mapping. Consider

Z={x in X:®'(15)(x)=1},

and define the mapping ¢: Z — Qr by ¢(x) = ¢, |, foreach x in Z. We
claim that ¢ is continuous and surjective. Since ¢ is a lattice isometry,
we have for each x in Z,

e |rll= @10, ) (x) = 1.

It follows that ¢(x) = &, | is in Qr for each x in Z since each ¢(x)is a
real lattice homomorphism on F. From the extension lemma it follows
that ¢ is surjective. By a lemma due to Gleason (see [5], p. 484), it
follows that there is a closed subset Y of Z such that ¢|, is a
homeomorphism of Y onto )~ It is easily seen that the lattice isometry
(¢ |y)o® of F with the supremum norm onto C(Y) is the restriction
mapping Ry.

The proof of 3.3 will depend upon an extension theorem for lattice
homomorphisms into C(Y) for stonian spaces Y'; the crucial step for that
theorem is the extension lemma. The extension theorem was suggested
by a theorem of H. P. Lotz (see [9]) on extensions of positive operators; a
proof may be given by appropriately modifying Lotz’s proof.
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THEOREM 3.5. Let F be a Banach lattice, let Y be a stonian space,
and let T: F— C(Y) be a lattice homomorphism. If X is a compact
Hausdorff space such that C(X) contains F as a closed sublattice, then
there is an extension T of T that is a lattice homomorphism of C(X) into
C(Y). Moreover, | T|=|T]

Proof of 3.3. We need only show (c) implies (d). If T is a lattice
isomorphism of F onto C(Y) for some stonian space Y, then there is an
extension T of T that is a lattice homomorphism of C(X) onto C(Y) by
3.5. Then T 'oT is the desired ¢-projection.

RemaRk. Noting that the extension T constructed in the proof of
3.5 is norm-preserving, we have | T™'o T'||= 1 whenever T is an isometry
defined on F with the supremum norm. Another proof of 3.1 can be
given using this observation.

Proof of Theorem 3.4. The equivalence of (a) and (b) was proved in
3.1. It is clear that (b) implies (c).

If (c) is satisfied, then ex U (the set of extreme points of the dual
unit ball in F') is o(F', F) closed. It follows from a theorem of
Lindenstrauss and Wulbert (see [8], p. 336) that if F is a closed sublattice
of C(X), and if ex U is o(F', F) closed, then F is isometric to C({)f)
under the evaluation mapping. £} must be stonian since F is order
complete. Hence (c) implies (b).

If &: F— C(K) is a lattice isometry where K is stonian, then
u=®"'(1) is a unit element for F, and | & |¢||= u(x) for x in X. It
follows that (b) implies (d). It is clear that (d) implies (e). If (e) is
satisfied, then ) is a continuous image of Z under the mapping
0: Z—>Qp 0(x)=¢,|r (see the proof of 3.1). Hence Qf is o(F', F)
compact, and, therefore, o(F', F) closed. Thus (e) implies (c).

That (b) implies (f) follows since 0 = f and || f|| = k for some positive
constant k if and only if 0 = f = ku, where u is the unit element. If (f)
holds, then u =sup{fin F:0=f, |f||[=1} is a unit for F. (b) then
follows by the Kakutani representation. The equivalence of (f) and (g)
is clear.

To conclude this section, we shall give an example such that the
conditions (a) through (g) of 3.4 are not satisfied.

ExaMpLE 3.6. We give an example of a stonian space X and a
closed sublattice F of C(X) such that F is the range of a positive
projection on C(X) (so that all of the conditions of 3.3 are satisfied), yet
F is not the range of a projection of norm one on C(X) (hence none of
the conditions in Theorem 3.4).
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Let Y be an infinite stonian space, and let y, be a nonisolated point
of Y. Let F be the vector lattice C(Y) with the norm

I£11=sup [ F)Iv2Af)l. fin C(Y),

Then the norm ||-|| on F is equivalent to the supremum norm, and F with
the norm ||-|| is an (AM)-space. Hence there is a compact Hausdorff
space X such that F can be isometrically embedded as a closed sublattice
of C(X). It follows from the fact that Y is stonian that there is a
positive projection oi C(X) onto F.

We claim that there is a net of real lattice homomorphisms on F,
each of norm one, that converges to a real lattice homomorphism on F of
norm 3. It will follow that condition (c) of Theorem 3.4 is not satisfied,
and hence there is no projection of norm one of C(X) onto F. Let {y.}
be a net in Y that converges to y,, and consider the net {¢,,} of real lattice
homomorphisms on F. It is clear that ||, | = 1 for each a, yet | &,] =
1. But{g, } converges to ¢, in the topology o (F', F) since {y, } converges
to y, in Y.

4. Projections on C(X) for X hyperstonian. A com-
pact Hausdorff space X is called hyperstonian if X is stonian and if the
normal measures on X separate the points of X. (A measure u on X is

called normal if J'fad,u — (0 whenever {f,} is a net of nonnegative

functions in C(X) such that {f,} decreases to 0.) Dixmier [3] proved that
X is hyperstonian exactly when C(X)is a dual space, and that in this case
the predual of C(X) is uniquely determined as the space C(X)" of
normal measures on X.

We shall consider projections on C(X), for X a hyperstonian space,
that satisfy an order continuity condition. We shall call a positive
projection P of C(X) onto a sublattice F of C(X) an order continuous
projection if {P(f,)} decreases to 0 in F for each net {f,} in C(X) that
decreases to 0.

A band in an order complete vector lattice E is a lattice ideal M of
E such that sup S isin M for each subset S of M such that sup S exists in
E. A simple computation shows that the bands in C(X) for X a stonian
space are those lattice ideals hull(Y) such that Y is a closed and open
subset of X. If X is a hyperstonian space, it can be seen that P is an
order continuous ¢-projection on C(X) if and only if Ker P is a band in
C(X) (see, for example, [10], Theorem 18.13).

If Y is a subset of X, then — Y will denote the set theoretic
complement of Y.

The situation for order continuous ¢-projections, which is partially
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analogous to that for ¢-projections on order-complete C(X) spaces, is
summarized below.

THEOREM 4.1. Let X be a hyperstonian space and let F be a closed
sublattice of C(X). The following assertions are equivalent:

(a) Fisthe range of an order continuous €-projection of norm one on
C(X).

(b) Fis lattice isometric to C(Y') for some closed and open subset Y
of X. Moreover, the isometry is given by the restriction mapping Ry.

(c) F is lattice isometric to a band in C(X).

Proof. If P is an order continuous ¢-projection of norm one, then
Ker P is a band. It follows that Ker P = hull(Y) for some closed and
open subset Y of X. It follows from 2.4 that F' with the supremum norm
is lattice isometric to C(Y) under R,.

Suppose that F is lattice isometric to C(Y) under Ry for some
closed and open subset Y of X. C(Y) is lattice isometric to hull(— Y)
since Y is both closed and open, and hull(— Y) is a band in C(X).

Suppose that F is lattice isometric to hull(Z) for some closed and
open subset Z of X. Then F is lattice isometric to C(— Z) under the
restriction mapping R_,, and there is an ¢-projection of norm one of
C(X) onto F with kernel equal to hull(— Z) (see 3.1). Since Z is closed
and open in X, hull(— Z) is a band in C(X), and the projection is order
continuous.

REMARK. Using Theorem 3.3 rather than Theorem 3.1, we obtain
the following theorem:

THEOREM 4.1'. Let X be a hyperstonian space, and let F be a closed
sublattice of C(X). The following assertions are equivalent:

(@) There is an order continuous ¢-projection of C(X) onto F.

(b) F is lattice isomorphic to a band in C(X).

Notice that F is not necessarily a band. Indeed, if X is a hyper-
stonian space, and if Y is a proper closed and open subset of X, consider
the sublattice F={f€ C(X): f(y)={f(x,)}}, where x,€ =Y. F is
clearly not a band (1x € F), yet the mapping P defined by

fx) xgY
P(f)(x) = { , fEC(X),
f(xo) x€Y

is an order continuous ¢-projection of C(X) onto F.
It is not true that each of the conditions of Theorem 4.1 is equivalent
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to the condition that F be lattice isometric to C(Y) for some hyper-
stonian space Y. For example, let X be a hyperstonian space without
isolated points, and let F be the sublattice of C(X) consisting of the
constant functions. Then F is lattice isometric to C(one point), yet
there is no one-dimensional band in C(X).

ProrosiTION 4.2.  Let X be a hyperstonian space, and let F be a
closed sublattice of C(X). Then F is lattice isometric to C(Y) for some
hyperstonian space Y if and only if F is the range of an order continuous
¢-projection of norm one on C(X)". Furthermore, each of the equivalent
conditions of 4.1 implies that F is lattice isometric to C(Y) for some
hyperstonian space Y.

Proof. 1f F is lattice isometric to C(Y) for some hyperstonian space
Y, then there is an ¢-projection P of norm one (but not necessarily order

P” w’
continuous) of C(X) onto F. Consider C(X)"— F”"— F, where ¢ is the

canonical embedding of the predual F" of F into F"', and where P" is the
second adjoint of P. Then ¢'° P" is an order continuous ¢-projection of
norm one of C(X)" onto F (adjoints of positive operators are order
continuous).

Conversely, note that C(X)" is lattice isometric to C(Z) for some
hyperstonian space Z. If there is an order continuous ¢-projection of
norm one of C(Z) onto F, then F is lattice isometric to C(Y) via Ry for
some closed and open subset Y of Z. But a closed and open subset of a
hyperstonian space is itself hyperstonian.

As a final remark, we have the following result:

CorOLLARY 4.3. There is an order continuous ¢ -projection of C(X)"
onto C(X) if and only if X is hyperstonian.

This paper constitutes a portion of the author’s doctoral thesis at the
University of Illinois. The author is grateful to her thesis advisor,
Professor Donald R. Sherbert, for his invaluable aid, to Professor
Heinrich P. Lotz for his enlightening suggestions, and to the referee for
shortening some proofs.
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