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ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS III

ATSUSHI INOUE

In this paper we continue our study of unbounded
operator algebras begun in previous papers. In particular,
the unbounded Hubert algebras are studied. The primary
purpose of this paper is to give necessary and sufficient
conditions under which an unbounded Hubert algebra is
pure.

!• Introduction* In the previous paper [6] we began our study
of unbounded Hubert algebras and raised the following problem.

Problem. Let £̂Ό be a maximal Hubert algebra in a Hubert
space φ. Does there exist a pure unbounded Hubert algebra over 2$^
in £?

In this paper we find that if ϋ% Φ § then the answer is affirma-
tive. That is, if ϋ% Φ Q, then the maximal unbounded Hubert
algebra L%(l&0) is a pure unbounded Hubert algebra over i^0 in φ.
It therefore seems that our study of a class of unbounded operator
algebras called 2£TΓ*-algebras is significant. For, from ([6] Theorem
3.10) if £̂ o ^ £> then there necessarily exist pure EW*-algebras over
the left von Neumann algebra ^Ό(^o) of &0 and if Sϊo is a semifinite
von Neumann algebra with a faithful normal semifinite trace φ0 on
SIJ" and L\φ0) Φ 3ί0 Π L2(<p0), then there exist pure EW*-algebras over
§ϊ0 such that are isomorphic to standard £W#-algebras.

2* Basic theory for unbounded Hubert algebras* We give
here only the basic definitions and facts needed. For a more complete
discussion of the basic properties of unbounded Hubert algebras the
reader is referred to [6, 7].

Let 3f be a pre-Hilbert space with an inner product [ | ] and be a
*-algebra. Let Q be the completion of 3f. Suppose that 3f satisfies;

(1) (£1?) = (?*!£*), £,?e.gr,

(2) (£?IC) = (?|£*C), £ , ? , ζ e ϋ r .

Now, we define π(ξ) and τr'(f) by;

π(ζ)V = ζy and π\ζ)η = ηξ , ηe^.

Then, by (2), we know that π(ξ) and π'(ξ) are closable operators on
φ with the domain ^ and π(f)* => ττ(f*), π'(f)* Z) π'(f*).

105
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DEFINITION 2.1. If 3f satisfies (1), (2) and (3) 3r\ is dense in
φ, where

&o — {ζe 3ϊ\ π(ί) is continuous with respect to the

pre-Hilbert space structure of

then 3? is called an unbounded Hubert algebra over ^ in § and
π(resp. π') is called the left (resp. right) regular representation of 3ϊ.
In particular, if ^ Φ 3f, then £& is called pure.

Let 3f be an unbounded Hubert algebra over ^ and let £> be
the completion of 3f. Clearly ϋ% is a Hubert algebra and the com-
pletion of ^o is the Hubert space φ Let π(resp. πf) be the left
(resp. right) regular representation of 3f and let τro(resp. π[) be the
left (resp. right) regular representation of the Hubert algebra ϋ%

Let Sί be a family of closable operators on a Hubert space. Then
we denote by A the closure of AeSΆ and put 21 = {A AeSί}.

For each x e ξ> we denote πo(x) and τrό(x) by;

πo(x)ζ - τrί(£)oj , π'0(x)ζ = τro(f )a; , f e ^ 0 .

Then τro(ίc) and πό(x) are linear operators on § with the domain ^ 0 .
The involution on 3ί is extended to an involution on φ, which is also
denoted by *. Then we have ττo(x*) = 7Γ0(#)* and 7rό(x*) = π'l%)*.

LEMMA 2.2. ( 1 ) For each ξ e 3? we have

π'(ξ) = π'Q(ξ) ,

π(n = π(ξ)* , ττ'(f*) = π'iζ)* .

(2 ) For eαcfe XeC (the field of complex numbers) and ξ, 97e
we have

π(ζ) π(η): = π{ξ)π{η) = π(ξη) ,

λ = 0

Therefore π(£3ϊ) is a *-algebra of closed operators on HQ under the
operations of strong sum, strong product, adjoint and strong scalar
multiplication. Similarly π\£&) is a *-algebra of closed operators
on §.

Proof. ([6] Lemma 2.1 and Proposition 2.3)
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Let ^o(^o) (resp. T,{^)) be the left (resp. right) von Neumann
algebra of the Hilbert algebra ϋ% and let φ0 be the natural trace
on ^Ό(ϋ%)+. Let 33(φ) be the set of all bounded linear operators on
£. Putting

x _ u / 0 is a Hilbert algebra containing i^0. If £*% = (£?0)b, then ^
is called a maximal Hilbert algebra in φ.

Let 9ft be the set of all measurable operators on Q with respect
to ^ 0 (^ό) For every TeS)ΐ+ we put

μo(T) = sup boWf)); 0 ^ πo(£) ^ Γ, f e

and

Then IIΓHJ, is called the ZAnorm of T in Lp(φ0) and /i0 is called the
integral on L\φ0). If p = oo, we shall identify ^Ό(-^o) with
and we denote by 1|Γ|| or || TH*, the operator norm of T

DEFINITION 2.3. We define Lω-spaces with respect to φ0 and
as follows;

Lω(φQ) — Π Lp(φQ) , Lt(φ<) — Π Lp(φ0) ,

and

respectively. For p ί> 2 we set

- {̂  e φ; τro(^ e L»(φ0)} ,

THEOREM 2.4. L^(^o) (resp. L\3f$) is an unbounded Hilbert
algebra over (£2Qb (resp. (̂ Ό)D in Φ If & is a pure unbounded
Hilbert algebra, then 2$ is a *-subalgebra of L?(&0). Hence Lt(&0)
is maximal among unbounded Hilbert algebras containing £^0

Proof. ([6] Theorem 3.9)

3. Necessary and sufficient conditions under which Z^(i^) is
pure* Let ^ be a Hilbert algebra in a Hilbert space $ and let φQ

be the natural trace on
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LEMMA 3.1. For 2 ^ p < q we have

Ll(^o) = $ => L&&,) 3 Lj(^o) =>

and

where n is an integer.

Proof. For each xeLQ

2(^0) let πo(x) = Ϊ7]7ro(a?)| be the polar

S oo

XdE(X) be the spectral resolution of
|7φ;)|. Then,

-[
Jo

\χ\\l<

Hence, xeLξ(£&Q). Consequently Lξ(&Ό)z>Ll(&Ό), and so we can
easily show that Lt(^Ό) = Π2̂ %<oo -L?(^ί) (w; integer).

LEMMA 3.2. // I/f(^0) = L?(^o) /or some ? > p ^ 2,
/or αίί r e[p, oo).

Proo/. Let a? e Lf(^o) = L l ( ^ ό ) . Then, | πQ(x) \q/p e L p (^ 0 ) . Since

2 < 2g/p ^ q and L K ^ J ) =̂  ̂ 9 / ? ) ( ^ Ό ) => -ίΊ(^Ό) (by Lemma 3.1), we get

i.e., l ^ ϊ J l ^ e L 1 ^ ) . Hence, \τφή\9/9eL*(φ0) Π L\φ0).
Repeating the .same argument, we get that \πo(x)\{q/p)neLp(φQ)Π

(n = 1, 2, •). From q/p > 1 and Lemma 3.1, a;e

DEFINITION 3.3. An element e of £*% is called a projection if
e2 = e = e*. Let 2£(̂ &) denote the collection of all projections in ^ ζ .

THEOREM 3.4. Let ^ be a Hilbert algebra in ξ>. Then the
following conditions are equivalent.

(1) L2

ω(^0) is pure.
(2) Lω(^r0) is pure.
( 3 ) There exists a sequence {en} of nonzero mutually orthogonal

projections in (ϋ^0)6 such that Σ?=i llβ»lli < °°

(4) !Q is not a Hilbert algebra, i.e., (£%Qh Φ Q.
(5)
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( 6 ) Lζ(&0) Φ L&&r0) for some 2 ^ p < q.
( 7 ) LfC^o) ^ Ll(&0 for each p > 2.

In particular, if &0 has an identity, ίfeew (1)~(7) are eqvivalent
to (7)';

( 7 )' Lp(φQ) Φ Lq(φQ) for each q > p ^ 1.

Proof. From Lemma 3.1, for 2 ^ p < q

LI ID LI 3 L\ 3 L? ̂  (^ 0 ) δ .

Hence, (7) => (6) => (5) =̂> (4) and (2) => (1) are easily showed.

(1) => (7); If Ll(&0) = Ll(&0) for some p > 2, then from Lemma

3.2 we have L\{^) = L?(l&0). Since L?(^ o ) is an algebra, for each
a? 6 Z/2

ω(^Ό), ^(TΓoί^)) = Φ, i.e., πo(x) e S5(^). Hence I/2

ω(^Ό) is a Hubert
algebra.

(4)=>(3); Suppose t h a t xe$ - (SfX Let \πjx)\ = ( XdE(X) be
JoJ

the spectral resolution of |ττo(ίc)|. Since | τro(α;) | ί S3(©), £?(?& + 1) —
Ĵ (w) Φ 0 for infinite many n, and so we may suppose that E(n + 1) —
E{n) Φ 0 (n = 1, 2, .). We shall show that £7(^ + 1) - E(n) e
L~(φ0) Π L\φ0). Clearly, ί?(w + 1) - E{n) e LTO(^0) = ^Ό(^o). More-
over, we have

+ 1) - E(n)\\l = φQ(E(n + 1) - E(n)) = -

-\:

Hence, E(n + 1) — E{n) eL2(φ0) (n = 1, 2, •), and so there exists

en e (^ό)6 such that E(n + 1) - ί?(w) = τro(β%) (w = 1, 2 •). Clearly
{β%} is a sequence of nonzero mutually orthogonal projections in
We shall show that Σ?=il|β»||S < °°. In fact, for m> n

and {^(m + 1) — E(n)} converges σ-weakly to 0(n, m-+°°). Since
φ0 is σ-weakly continuous, we have

Σ l|β*llϊ = lim φQ(E(m + 1) - ί?(%)) = 0 .
m,w->oo & = •«. m,n—>oo

Hence, Σ ϊ - i l | β . | | i < ~ .

(3) => (2); For some positive integer k0, Σ~=*n l|eM ||I < 1. We set
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bQ = I l o g α 0 1,

, Σ IKII2,
n=kQ+l

, 6 n = I l o g an\,

and

α» = Σ He* III,
k k

We shall show that — (&0)h. For every pe[l, <>o)

and so

Hence,

lim || Σ,bkeko+k\\2

2 = lim 0 .

£ and ||x||2
2 = ΣΓ=o l&JΊI^ 0 +J | 2

2 . Similarly, for every
p e [ l , co), χ e i ? ( S o ) and ||a?||? = Σϊ=o |6 IΊ|β* 0 +J | ϊ . Therefore,
xeLω(^r0). On the other hand, limn_00 6Λ = oo and | | e Λ o + Λ | | | ^ 0
(n = 1, 2, -), and so πo(^)
is, Lω(^0) is pure.

and | | e Λ o + Λ | | |

- (&ro)b. ThatHence, a; e

Suppose that ^ has an identity.

(7)'=>(7); Obvious.

(7) => (7)'; For 1 <; p < q we have

Lι(9>0) => L*(φQ) 13 L^(^o) Z) Lω(^0) =)

Suppose that Lp(φ0) = L^(^o) for 1 ^ p < g. Let T e L 1 ^ ) . Then,
I Γ|1 / p 6 Lp(φ0) = L?(cpo)- Hence, | Γ|9/ί? e L 1 ^ ) . Repeating the same
argument, | T\(q/P)n e U{φ,){n = 1, 2, •), and so | T \ e L{(l/p)n(φQ)
(n = l,2, •••)• From q/p > 1 and Lemma 3.1, |T|e.Z/%\), and so

Let ^ 0 be a Hilbert algebra in !Q. From Theorem 3.4, if φ is
not a Hilbert algebra, i.e., (̂ Ό)& ^ §, then Z^C^Ό) becomes a pure
unbounded Hilbert algebra over (£3Qb in §. So, the previous problem
is solved. If L^(ϋ%) is a Hilbert algebra, then § is a Hilbert
algebra and L^(ϋ%) = φ. Hence we can give some conditions for

to be a Hilbert algebra.

COROLLARY 3.5. Let ϋ^0 δβ a Hilbert algebra in ίg. Then the
following conditions are equivalent.

( 1 ) ^ is a Hilbert algebra.
( 2 ) Lt{^) is a Hilbert algebra.
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( 3 ) © =
( 4 ) Either E((&0)b) is a finite set or Σ ϊ U | | β Λ | | ϊ = °° for each

sequence {en} of mutually orthogonal projections in
( 5 ) There exists C> 0 such that \\e\\2 ^ C for all (())
( 6 ) Lζ(&0 = Li(^r0) for each q > p ^ 2.
( 7 ) LfC^o) = Lt(^0) for some p > 2.

Jw particular, if ^ has an identity, then (1) ~ (7) are equivalent
to (7)';

(7 )' Lζ(&0) = ^f(^ό) /or some g > p ^ 1.

Proo/. From Theorem 3.4 (1) «=> (2) <=> (3) <=> (6) <=> (7) ~ (7)' are
easily showed.

Let E = πo(e) and F = πo(f) for e, f e E((&rQ)h). We denote by
S n ί 7 (resp. # U ί7) the projection onto E$ Γ) J P § (resp. J?φ U J P ^ ) .
Clearly, Ef]F and JS7 U ί 7 in L°°(^o) Π L2(φ0). Hence there exist

projections e (Ί / and β U / in (£&Q)h such that E 0 F = πQ(e Π /) and

E{JF= πQ(e U / ) .
If E((^0)b) is an infinite set, then there exists a sequence {ej

of mutually orthogonal projections in E((£&0)b). In fact, the following
two cases are considered.

( i ) There exists a sequence {en} of E((S&0)b) such that

e2 - (eλ Π O Φ 0, , en - (βL U e2 U U βw-i) Π βn Φ 0, .

(i i) There exists a sequence {en} of E((^)h) such that ^ > en

for all % ̂  2.
( i ); Obvious,
(ii); We set

n

Pi = #1, ' * J Pn = βi — U β*, * * * ,
fc=2

Qn = 2> ~ Pn+i , tt = 1, 2, .

If g% ^ 0 for infinite many w, then {g%} is a sequence of mutually
orthogonal projections in E{{&0)h). If g,, = 0 for infinite many n,
then en > en+1 for infinite many n. Putting fn = en — βn+1, {/»} is a
sequence of mutually orthogonal projections in E((£&0)h). From the
above argument and Theorem 3.4, (2) <=> (4) is easily showed.

(5) => (4); Obvious.
(4) => (5); Suppose that (5) is not satisfied. For each n there

exists eneE((^ϋ)b) such that | | e j | 2 < 1/n. After a slight modification
of the above, we can make a sequence {pn} of mutually orthogonal
projections in E((^0)b) such that Σ~=i 11V J Is ^ Σ ϊ - i 11 β J |i ^
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4* Standard EW*~algebras. From ([6] Theorem 3.10) if 3ί is
a pure unbounded Hubert algebra over £^0, then there exists the
pure £W*-algebra ^ ( ^ ) on L2

ω(^ά) over ^Ό(^Ό). So, from Theorem
3.4, if ^ is a Hubert algebra in Q and (&0)b Φ φ, then there neces-
sarily exist pure ϋW-algebras over ^ o (^o) Hence it seems that
our study of i?I7*-algebras is significant. For a more complete
discussion of the above argument we give here the basic definitions
and facts of £Ί/F-algebras.

DEFINITION 4.1. Let S be a pre-Hilbert space with an inner
product ( I ) and let £> be the completion of ®. We denote the set of
all linear operators on S) by S(S)). A subalgebra δΐ of S(®) is called
a #-algebra on ® if there exists an involution on δϊ; A ~> A* such
that

) , A e δϊ ,

We set

Let δί be a #-algebra on ® with an identity operator I. δί is called
a symmetric #-algebra on ® if (I + A*A)"1 exists and lies in δΐ6 for
every A e δί.

A symmetric #-algebra δί on ® is said to be an EW*-algebτsL
over §ί& if ΰb is a von Neumann algebra. If δί Φ δίδ, then δΐ is called
a pure .EW^-algebra.

Let δί be a set of densely-defined closed operators on § which
is a *-algebra under the operations of strong sum, strong product,
adjoint and strong scalar multiplication, δί is said to be an EW*-
algebra over δί6 if (I + T*T)~ι eδΐ for every Γeδί and the sub-algebra
δί6 of bounded operators in δί is a von Neumann algebra. If δΐ Φ δΐ6,
then δί is called a pure EW*-algebra.

Clearly if δΐ is an (resp. pure) .EΊP-algebra, then 2Ϊ is an (resp.
pure) EW*-algebra.

Let & be an unbounded Hubert algebra over ^ in a Hibert
space § and let φQ (resp. ψQ) be the natural trace on ^ 0 (^Ό) + (resp.

. For every xeQ we see that

Jπo(x)J = π'0(x*) and Jπ'0(x)J = πo(x*) ,

where J denotes the involution * on φ. Hence we get that

= {xe



ON A CLASS OF UNBOUNDED OPERATOR ALGEBRAS III 113

and

( ) ^ ( ) c Lζ(

Let TΓ? (resp. (TΓ')?) be the left (resp. right) regular representation of
and let

; Te

where T/L?(&0) is the restriction of T onto L?(^o). Then
W)l{βf\ ftfoi&Q/Lii&Ό) and T*(&*)ILΐ{&*) are #-algebras on L?(
under *?(£)* - π?(f*), (π')2

ω(ί)* - (π')r(ί*), (Γ/L?(^0))f = T*/Lζ(^) and
Qγ = (r)*/Lΐ(&Q), respectively.

NOTATION. We denote by ^ ( ^ ) (resp. ^ ( ^ ) ) the #-algebra on
generated by π2

ω(^) (resp. (π')ΐ(&)) and <%O(&QfLZ(&0 (resp.

THEOREM 4.2. Let £& be a pure unbounded Hubert algebra over
Sf, in a Hilbert space Q. Then <%S(βf\ ^(L ω (^ 0 )) and %f{Lt{&0))
(resp. T{0), T{Lω{^0)) and T{Lt{&Q))) are pure EW*-algebras on

over ^0(i§%) (resp. 3^(^J)). Furthermore, we have

and

Proof. From ([6] Theorem 3.10) ^ ( ^ ) , ^(L ω (^ 0 )) and
are pure ^TF*-algebras on L?(^o) over ^Ό(^o). Similarly

we can easily prove that 3^(^), ^(L ω (^ 0 )) and ^(L2

ω(^0)) are pure
JKTΓ*-algebras on L2

ω(^0) over 3^(^0). We shall show that
Clearly, ^(L ω (^ 0 )) c ^(L2

ω(^0)). Suppose

that ίceLίί^o)- Let πo(α) = C/Ίπo(α5)| be the polar decomposition of

πo(x) and let | πo(x) \ = \ XdE(X) be the spectral resolution of |ττo(α;)|.
Jo

Then, I πo(x) \ = U*πo(x) = πQ( U*x) e Lt(φ^. Since | πo(x) \ is ^-restrict-

edly measurable, E(X0)
L e L2(φ0) for a positive number λ0. Hence,

\ΈJx) I ̂ (λo)1 e Lϊ(φQ)(L2(φ0) Π I/°°(̂ o)) c Lω(φ0). Therefore we have

\Ίφ)\ - \
Jo

( ) +
Hence, π%(U*x) e%f(Lo>(&r0)), and so π%(x) e^(L ω (^ 0 ) ) . Consequently

Similarly we can show that T(Lt(&0)) =
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Since J^l^J = %{&,) and Jπo(x)J = π'Q(x*) for every
x e 3f, we see that

DEFINITION 4.3. ^ ( ^ ) (resp. T{&)) is called the left (resp. right)
£W*-algebra of &.

THEOREM 4.4. Let £̂Ό be a Hubert algebra in a Hilbert space §
and {&0)b =5*= ©. T%e% L?(l3θ is a pure unbounded Hilbert algebra,
and <Zf(L%(&Q) and T(U{^)) are pure EW*-algebras on U{
over ^Ό(^Ό) and %(£%>), respectively.

Proof. Theorem 3.4 and Theorem 4.3.

DEFINITION 4.5. Let 8ί be an i?TΓ*-algebra. 8ί is called a standard
i£TF*-algebra if there exists a pure unbounded Hilbert algebra 3f
such that Sί = ^

Let Sί0 be a semifinite von Neumann algebra on a Hilbert space
£> and let φ0 be a faithful normal semifinite trace on δί0

+. Let SK(SΪ0)
denote the set of all measurable operators with respect to %. From
([4] Proposition 4.3) 3K(9ΐ0) is an £W*-algebra over 8l0. Let Wl9o be
the maximal ideal associated with φ0, i.e., ΈlψQ — {TeSί0; φo(\ T\) < co}.
For every Te2K(9ΐo)

+ we put

^(T) = sup <PQ(A) ,

and

Then L™(φ0): = L°°{φύ) Π ί/2(9o) is a maximal Hilbert algebra in the
Hilbert space 2%>0) under the inner product (S\T) = μ(T* S) and
L?(9>0) = n2̂ p<oo I#p(9>o) i s a maximal unbounded Hilbert algebra over
Lΐ(φ0). Let &{φQ) be an unbounded Hilbert algebra in L2(φQ) over
L?(φ0). Then &(φ0) is regarded "as a *-algebra on φ under the
strong sum, strong product, adjoint and strong scalar multiplication.
We denote by 2t(^(φ0)) the set of closed operators on § which is
the *-algebra generated by &(φ0) and 8l0. Then W(£&((pQ)) is an
EW*-algebra over % and it is isomorphic to the left J5W#-algebra

THEOREM 4.5. Lβί δί0 δβ α semifinite von Neumann algebra on
a Hilbert space § α^ώ Zβί <̂>0 be a faithful normal semifinite trace on
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Sί0

+. If L2(φQ) is not a Hilbert algebra, i.e., L2(φ0) Φ L%(φ0), then
there exists a pure EW*-algebra §ί over 3ΪO such that is isomorphic
to a standard EW*-algebra. In particular, if ΠTBL^(Ψ0) 3f{T) is
dense in ξ>, then we may regard 2ΐ as a pure EW*-algebra over δί0.

GOROLLARY 4.6. Let Sί0 be a semifinite von Neumann algebra
on a Hilbert space & and let φ0 be a faithful normal semifinite
trace on SHί. If 91 is a pure EW*-algebra over Sί0 such that SI c

), then St is isomorphic to a standard EW*-algebra.

Proof. We can easily prove that Sί Π Lt(φQ) is a pure unbounded
Hilbert algebra over L™(φ0) and Sί is isomorphic to ^ ( δ ί Π Lζ(φ0)).
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