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ON CHARACTERIZATIONS AND INTEGRALS OF
GENERALIZED NUMERICAL RANGES

MOSHE GOLDBERG AND E. G. STRAUS

Let c=(γlf •• ,τ'n) be given. The generalized numerical
range of an nXn matrix A, associated with c, is the set
Wc(A)={Σγj(Axj, Xj)} where (xl9 •••,#„) varies over orthonor-
mal systems in Cn. Characterizations of this range, for
real c, are given. Next, we study integrals of the form
\Wc(A)dμ(c) where μ(c) is a measure defined on a domain in
Rn. The above characterizations are used to study the
inclusion [wc(A)dμ(c)c:λWc>(A). We determine those λ, for
which this inclusion holds for all nXn matrices A. Such
relations lead to more elementary ones, when the integral
reduces to a finite linear combination of ranges. In parti-
cular, we obtain the inclusion relations of the form Wc(A)a
λWAA) which hold for all A.

1* Introduction* The generalized numerical range of an n x n

complex matrix A, associated with a fixed vector c = (Ύ19 , 7W) e

C\ is the set of complex numbers

(1.1) Wc = W{rv.:,rΛA) = \ Σ ΎiiAxt, xd): (xίf ~,xn)eAn

where Λn is the set of all orthonormal ^-tuples of vectors is C*.
We call Wc a generalized range since for c = (1, 0, , 0) it reduces
to the classical range

W(A) = {(Ax,x):\\x\\ = 1} .

It is clear from (1.1) that Wc remains invariant under permuta-
tions of the components of c; that is, Wc depends on the unordered
set {7̂  , 7 J rather than on c.

Westwick, [5], has shown that if c is a real vector then Wc is
convex, but if ceCn with n ^ 3, then Wc(x) may fail to be convex
even for normal A. For this reason we restrict our attention, in
this paper, to generalized numerical ranges with real coefficients.

Our first purpose is to characterize the sets Wc. In §2 we
show that

WC(A) = {tr (HA): H e J^c} ,

where Sίfc is a class of Hermitian matrices depending on c.

In § 3 we define integrals of the form I Wc(A)dμ(c) where Si
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is a domain in Rn and μ{6) is a nonnegative measure on ̂ , Since
the sets Wc are convex, such integrals are convex as well, and we
may define them in terms of their support functions.

Finally, using the above characterization of Wcf we investigate
inclusion relations of the form

(1.2) [ Wc(A)dμ(c) c 7lFc,(A), λ - constant ,

which hold, uniformly, for all AeCnXny i.e., for all ̂ -square matrices.
If the measure μ(c) is concentrated on a finite number of vectors
c, then (1.2) is reduced to inclusion relations involving finite linear
combinations of generalized numerical ranges. Such relations were
considered in earlier works [2, 3].

In particular, for given vectors c, cr we obtain necessary and
sufficient conditions under which

Wc(A)c:xWc, , vAeCnxn.

2* Characterization of generalized ranges* For any vector
c — (7X, , Ύn) consider the diagonal matrix

C = diag (c) = diag (7ί9 , Ύn) ,

and construct the class of matrices

^fc - conv {UC[7*: U unitary} ,

where conv denotes the convex hull.
Since we restrict attention to c e Rn it is evident that the ele-

ments of ^ c are Hermitian.
Using ^ c we have the following characterization of ranges with

real coefficients.

THEOREM 1. If c e Rn then

Proof. It follows from the definition of WC(A) in (1.1) that

WC(A) = {tr (CU*AU): U unitary} .

Thus

(2.1) WC(A) - {tr ((UCU*))A): U unitary} ,

which implies that

Wc(A)cz{tr(HA):He^c} .
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For the converse inclusion let

H = Σ MUiCUf); λ, ^ 0 , Σ \ = 1 ,
i

be an arbitrary element of %fc. By the convexity of Wc and by
(2.1) we have

tr (HA) = Σ \ tr ({UjCUftA) e WC(A) .

So,

and the theorem follows.
We introduce two definitions which lead to another characteri-

zation of WC(A).

DEFINITION 1. (i) A real vector c = (ylf , 7n) is called ordered
if

7, ^ 72 ̂  ^ 7, .

(ii) We say that c, c' satisfy c' < c if there exists a doubly
stochastic matrix S (i.e., a matrix with nonnegative entries whose
row sums and columns sums equal 1), such that cf — Sc.

In Theorem 5 of [3] we proved the following.

LEMMA 1. For ordered c, cf we have cf -< c if and only if

Σ ^ ^ Σ ^ , l= l, •••,",

wiίfe equality for I — n.

DEFINITION 2. Let c e Rn, and let At(l <Ll <ίn) be the set of

all orthonormal ϊ-tuples of vectors in Cn. We define έ%fe to be the
class of all Hermitian matrices H for which

(2.2) Σ (Hxjf xj) ^ Σ li , Vfa,---,Xι)eΛl9 i = 1, - - ' , n ,

with equality for I — n.
Let βw •••, e% be the standard basis of C\ Note that if I ^ ^G

(which is the case assumed in § 3), then the equality for I = n in
(2.2) implies that

Σ (Hejf eά) = ΣΎj = 0
3 = 1

i.e., all members of <%ζ have trace 0.
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LEMMA 2. If c is ordered then £ίfc = ^ c .

Proof. Take a unitary matrix Z7and orthonormal vectors xίf , xl9

(1 <; I ^ w). Since the vectors T/̂  = U*x, , j = 1, , ί, are orthonor-
mal as well, it is not hard to verify that

(2.3) Σ (UCU*xd, xs) = £ (Cyy, yy) ^ 7, + - + 7, ,
i=i i=i

C = diag (c) ,

with equality for I — n. Therefore, if

is any (Hermitian) matrix in ^ c , we find by (2.3) that

Σ (Hxίf χ3) = Σ Σ MUfiUtxj, xs) ^ Σ

with equality for I = n. So, by Definition 2, ffe^J, and con-
sequently ^ c ^ .

Conversely, take any HeJ%?ζ. Since i ϊ is Hermitian, it is
unitarily similar to a real diagonal matrix, i.e., there exists a
unitary V such that

(2.4) C = F*ί fF - diag (7[, , 7i) ,

where we may assume that e' = (Ύ[, •••, 7̂ ) is ordered. Using (2.2)
and the orthonormal vectors x5 — Vejf j = 1, , ϊ, we find that

Σ 7} = Σ (P'eif eό) - Σ (Y*HVeh eό) = £ (Hxj} xό) ^±Ύjf

with equality for I — n. That is, by Lemma 1, cf < c. Hence, there
exists a doubly stochastic matrix S such that c' = Se. Now recall
that doubly stochastic matrices are convex combinations of permuta-
tion matrices Pσ. In particular S = Σ^JPa. Thus

(2.5) c' = Σ λσP^; λσ ^ 0 , Σ\σ = lf

where Sm is the symmetric group. Since for every B, P0BP* has
both the rows and columns of B permuted according to σ, we have

(2.6) diag (Pac) = Pσ diag (c)Pc* = PσCPa* .

So, by (2.5), (3.6),

(2.7) C = diag (cr) = Σ \ d i a g (P,c) = Σ XJP.CPΪ .
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From (2.4) and (2.7) we obtain

(2.8) H = FC'F* - Σ K[(VPσ)C(VPσr] = Σ K{UσCU*) ,
σ a

λσ ^ 0 , 2 X = 1 ,

where Uσ = VPσ are, of course, unitary. Hence, i f e ^ c , i.e.,
Sίfc c ^/c and the proof is complete.

Theorem 1 together with Lemma 2 imply a second characteri-
zation of generalized numerical ranges with real coefficients.

THEOREM 2. // c is ordered then

WC(A) = {tr (HA): He <seζ} .

Another simple consequence of the last lemma and the convexity
of <%fc is that for ordered c, J%*c is convex.

At this point we recall the definition of the λ -numerical range,
(1 <£ k ^ n), given by Halmos [1, § 167], which after a convenient
normalization becomes

Wk(A) = \— tr (PAP): P = orthogonal projection of rank k\ .
I k )

It can be verified that Wk(A) may be written as

Wk(A) = { ±- Σ (Ax,, α/): (»„ , xk) e

Hence we see that

Wk(A) = T7C,(A) , with cfc - \(ex + . + ek) .
A/

That is, the λ -numerical range is a special case of the generalized
numerical range.

The matrices £έfC]c are those Hermitian matrices which satisfy
Definition 2 with c = ck. Using this definition one can show that

rch = jHermitian H:O^H^ — 1 / tr (H) = 1

Thus Theorem 2 generalizes the result

Wk(A) = j tr (JEΓA): 0 ^ if ^ — I, tr (H) = 1 J , fc = 1, , n

of Fillmore and Williams [1, Theorem 1.2].

3. Integrals of generalized ranges* In this section we are
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interested in linear combinations, or more generally, in integrals of
the sets We(A), where A is arbitrary but fixed, and c varies in
some domain of Rn.

Let c = (ylf , 7Λ) be a real vector with 7 == ΣΊό Φ 0, and con-
sider the vector b = (βu , βn) defined by

b=c-lΊ

n n
We have Σβ3 = 0 and

B = diag (6) - diag (c) - — I = C - -2-Γ .
n n

So, by Theorem 1,

Wb(A) = {tr(E7BtΓM): U unitary}

= \tτ\u(c- — J W * A Ί : *7 unitary! = 17,(4) - j — tr (A)\ .

This argument suggests that it is convenient to restrict attention
to those vectors c for which ΣΎ3 — 0. The limitation merely involves
a translation of the ranges by multiples of the trace, or, equivalent-
ly, the restriction to matrices of trace 0.

Since Wc is invariant under permutations of the 7, , we may
assume that each vector c in %our domain is ordered. Hence, we
consider the set of ordered vectors c with ΣΊά = 0, which form a
conical subset <& of an (n — l)-dimensional subspace of Rn.

We are ready now to study integrals of WC{A) relative to an
arbitrary measure μ on <g% that is integrals of the form

(3.1) Jμ = Jμ(A) = ί Wc(A)dμ(e) .
j ί?

One way of defining the integral in (3.1) is by carrying linear sums,
over partitions of ^ , to the limit. Alternatively, one realizes that
Jμ, being an integral of the convex sets We9 is a convex set as
well. Hence Jμ may be characterized by its support function (e.g.,
[4] part V),

u(Jμ, θ) = sup Re (ze~iθ) , 0 ^ θ < π
zejμ

In order to evaluate u(Jμ, θ), we consider the support functions of
our closed convex integrands Wc. We have

u(Wc, θ) = n{c, θ) = max Re(ze~iθ) , 0 ^ θ < π .
zeWc

Since u(c, θ) is a linear function of c in the sense that
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u(XWc + X'Woh θ) = Xu(c, θ) + X'u{c\ θ) , Vλ, λ' ^ 0 ,

we have

u(Jμ, θ) = u(^Wedμ(c)f <?) = \u(Wc, θ)dμ{c) =

Of course, the measure μ may be concentrated at a finite
number of points cίf , cm e <ĝ . In this case the integral J^ reduces
to the finite linear combination

Since W^ = λ"PFc for scalar λ, we shall avoid integration over
proportional vectors of ^ . This can be achieved by restricting
integration to the domain

3f = {c: c = (ylf , Ίn), ΣJj = 0 , Ίλ = 1} ,

which is the bounded set of all vectors in ^ with 7X = 1.
The above concept of integration can be extended in order to

consider the integral

(3.2)

We recall that the integrands Sίfc are convex sets in the (n2 — 1
real dimensional) space H of Hermitian matrices of trace 0. It
follows that £ίfμ is also a convex set in H. Again, the convexity
of Sίfc and Sίfμ implies that the integral may be defined in terms
of the support functions of Sίfe. Here, in analogy to the previous
case, the support function of 3ίfc assigns to each point Hx on the
unit sphere of H, the distance from the origin 0 of H to the plane

of support of Sίfc perpendicular to the direction OJEZi.
Having the integrals Jμ and £ίfμ defined we state our main

result.

THEOREM 3. Let μ be a nonnegative measure on &, and let
cf Φ 0 be an ordered vector with ΣΊ\ = 0. Then

(3.3) ^Wc(A)dμ(c) cXWC,(A) , VAeCnXn ,

if and only if λ ^ 7){c') or λ <; ζ(c') where

x ( Ί\ + ' " + Ί

(3.4b) ζ{c') = min (

(3.4a) τ)(c') = max ( Ί\ + ' " + Ί\ dμ{c) ,
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Proof. In the proof of Lemma 8 of [3] we have shown that if
c' Φ 0 with ΣY3 = 0, then

(3.5) Ύ[ + . + Ύ[ > 0 , Yn+ ... + τ;_z+1 < 0; I = 1, . . . , n - 1 .

This establishes that 57, ζ of (3.4) are well defined and since μ is a
nonnegative measure we see that η 2> 0, ζ ̂  0.

Next we show that λ *> ̂ (c') or λ ^ ζ(c') imply (3.3). For this
purpose we use the definition of Sίfμ, Theorem 2, and the linearity
of the trace to evaluate the set on the left of (3.3):

(3.6) \ Wc(A)dμ(c)=[ {tr (HA): He

= j tr (ifA): H e ί ^dμ(c)\ = {tr (HA):

Now choose λ with λ ^ y(cf). Since λ ^ 0, the vector λc'
remains ordered. Hence, by Theorem 2,

(3.7) XWAA) = WU.(A) = {tr (ίLi): i ϊ e

From (3.6), (3.7) we see that in order to prove (3.3) it suffices to
show that

(3.8) serμ c

Thus, let Ho be a matrix in 3ίfμ. Then by (3.2), there exist
elements ΈLC& §ίfc for all c e 3f, such that

Ho = ί Hcdμ(c).

The matrices Hc satisfy Definition 2, and since μ is a nonnegative
measure on ̂ , it follows that for Z-tuples xlf , xt in ̂ fc we have

with equality for 2 — w. Since l 7 ^ = JTJ = 0, the above equality
for I — n implies

(3.10a) Σ (Hoxj9 Xj) = 0 = X±Ύ .

For 1 ̂  Z < n we use the assumption X ̂  TJ to obtain from (3.9)
that
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(3.10b)

By Definition 2, the relations (3.10) mean that Ho e £%fXc>. Hence,
(3.8) holds, and consequently the inclusion in (3.3) follows.

For λ ^ ζ the situation is slightly different. Consider the
vector c" = (—7ή, •••, — 7[). Since c' is ordered, c" is too. Also,
the condition λ <Ξ ζ(c') becomes

(3.11) - λ > -ζ(c') = - min

= max J^_7' _ . . . _ 7;_ ? + l

Hence, by the previous part of the proof, we have that

(3.12) ί Wc(A)dμ(c)cz-\WAA), V l e C

But — λc" is merely a reordering of λc'. Thus, the set on the
right of (3.12) satisfies

-XWAA) = W-lβ»(A) = Wλc,(A) - XWΛA) ,

and we obtain (3.3).
To complete the proof we have to show that if ζ < λ < η, then

(3.3) does not hold for some AeCnxn. First assume 0 ^ λ < η.
That is, for some I, 1 ^ I < n,

(3.13)

Consider the matrix Aι = Iz φ 0%_z. A simple computation shows
that for an ordered vector c, the range Wc{Aι) is a real interval
with right end-point 71 + + 7,. Then, the left side of (3.3)
represents a real interval with right end-point

( (7, + + Ίι)dμ{c) ,

which, by (3.13), exceeds the right end-point λ(7[ + + 7j) of

Finally, if ζ(c') < λ < 0, then (3.11) implies that 0 < - λ < 3?(c")
where c" = (—7ή , -7j). Thus by the above example the inclusion

ί Wc(Aι)dμ(c) c -
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fails to hold, and the theorem follows.
We remember of course, that we restricted integration to the

domain 3f for convenience only. Therefore, if so desired, μ(c) can
be extended to the domain <g*, and Theorem 3 remains valid.

If μ is concentrated at a finite number of vectors cί9 , cm e <g%
then Theorem 3 characterizes all λ for which

Σ μ{c<)Wβi{A) c XWAA) , VA 6 Cm .

A result of this type is given in Theorem 1 of [2].
Of particular interest is the case where μ is concentrated at a

single vector c" 6 ^ . That is,

\ Wc(A)dμ(c) =

and Ύ), ζ of (3.13) are given now by

(3.14) 7]{c') = m a x 7 ' ' + ' " + 7 " ζ(c') - min j " + ' " + , 7 " .

i^κn y[ + . . . + Ύ[ ιsι< τ; + . . . + τ ; _ m

Thus, from Theorem 3 we conclude,

COROLLARY. Let cf Φ 0 and c" be ordered vectors with ΣΊr

ά =
ΣΊ" •=- 0.

WC,,(A)(ZXWΛA) , VAeCnxn

if and only if λ ^ ^(c') or λ ^ ζ(c') where Ύ), ζ are given in (3.14).

This result was proved differently in Theorem 8 of [3].
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