ON STARLIKENESS AND CONVEXITY OF CERTAIN ANALYTIC FUNCTIONS

V. V. ANH AND P. D. TUAN

Let N be the class of normalised regular functions

$$f(z)=z+\sum\limits_{k=2}^{\infty}a_{k}z^{k}$$
 , $|z|<1$.

For $0 \le \lambda < 1, \gamma \ge 1$, let $f(z), g(z) \in N$ be such that

$$|f(z)/[\lambda f(z)+(1-\lambda)g(z)]-\gamma|<\gamma$$
, $|z|<1$.

We establish the radius of starlikeness of f(z) under the assumption $\operatorname{Re}\{g(z)/z\}>0$, or $\operatorname{Re}\{g(z)/z\}>1/2$, or $\operatorname{Re}\{zg'(z)/g(z)\}>\alpha$, $0\leq\alpha<1$, or $\operatorname{Re}\{1+zg''(z)/g'(z)\}>0$ for |z|<1. The analysis may be extended to the problem of finding the radius of convexity for certain subclasses of N.

1. Introduction and notation. Let S, S^* , S^* denote the subclasses of N which are univalent, univalent starlike, univalent convex in |z| < 1 respectively.

A necessary and sufficient condition for $f(z) \in N$ to be univalent starlike in |z| < r is

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\} > 0 \;,\;\;\; |z| < r \;.$$

A necessary and sufficient condition for $f(z) \in N$ to be univalent convex in |z| < r is

$$\operatorname{Re}\left\{1 + rac{zf''(z)}{f'(z)}
ight\} > 0$$
 , $|z| < r$.

A function f(z) belongs to $S^*(\beta)$, i.e., is starlike of order β , $0 \le \beta < 1$, if it satisfies the condition

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\}>eta$$
 , $|z|<1$.

A function f(z) belongs to $S^{\circ}(\beta)$, i.e., is convex of order β , $0 \le \beta < 1$, if it satisfies the condition

$$\operatorname{Re}\left\{1+rac{zf''(z)}{f'(z)}
ight\}>eta$$
 , $|z|<1$.

Let \mathscr{T}_{α} denote the class of regular functions of the form

$$p(z)=1+\sum\limits_{k=1}^{\infty}c_kz^k$$
 , $|z|<1$,

satisfying the inequality $\operatorname{Re} \{p(z)\} > \alpha$ for |z| < 1, $0 \le \alpha < 1$ and \mathscr{Q}_{τ} the class of functions q(z) with expansion of the above form but satisfying the inequality $|q(z) - \gamma| < \gamma$ for |z| < 1, $\gamma \ge 1$. We note that both \mathscr{G}_0 and \mathscr{Q}_{∞} reduce to the class \mathscr{T} of functions with positive real part.

Let N_n , $n \ge 1$, denote the subclass of N consisting of functions of the form $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$. Then $N_1 = N$.

Shah [8] considered the problem of determining the radius of starlikeness of $f(z) \in N_n$ for the following cases:

- (a) $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathscr{F}$ with $g(z) \in N_n$ and $g(z)/z \in \mathscr{F}$, or $g(z)/z \in \mathscr{F}_{1/2}$ (with n=1), or $g(z) \in S^*(\alpha)$;
- (b) $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathcal{Q}_1$ with $g(z) \in N_n$ and $g(z)/z \in \mathcal{P}_n$, or $g(z) \in S^*(\alpha)$.

The conditions were shown to be sharp only when $\lambda=0$. In this paper, we solve the problem for the subclasses of N mentioned at the beginning, subject to certain restrictions on the values of λ . Letting $\gamma \to \infty$ we obtain the radii of starlikeness of f(z) satisfying $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathscr{P}$. All the bounds obtained are best possible. Furthermore, the same technique may be used to establish the radius of convexity of $f(z) \in N$ satisfying $f'(z)/[\lambda f'(z)+(1-\lambda)g'(z)] \in \mathscr{Q}_r$, where g(z) belongs to various subclasses of N. The results proved here generalize those of MacGregor [3, 4, 5] and Ratti [6, 7].

It should be remarked that parallel results for subclasses of N_n , n > 1, may be derived in an analogous manner. The manipulations involved are, however, more complicated.

The lemmas required for the proofs of our theorems are given in §2. Section 3 contains theorems giving the conditions for star-likeness. We outline the conditions for convexity in §4.

2. Some lemmas. Let \mathscr{B} denote the class of functions w(z) regular in |z| < 1 and satisfying w(0) = 0, |w(z)| < 1 for |z| < 1.

LEMMA 2.1 [9]. If $w(z) \in \mathcal{B}$, then for |z| < 1,

$$|zw'(z) - w(z)| \leq \frac{|z|^2 - |w(z)|^2}{1 - |z|^2}.$$

Proof. Write $w(z)=z\phi(z)$, where $\phi(z)$ is regular in |z|<1 and $|\phi(z)|\leq 1$. The assertion now follows from the well-known result due to Caratheodory

$$|\phi'(z)| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2}$$
.

Lemma 2.2. Let $w_1(z) = [1 - w(z)]/[1 + \beta w(z)]$, where $w(z) \in \mathscr{B}$,

 $\beta \geq 0$. Then, fo $|z| = r < \min(1, 1/\beta)$,

$$egin{split} ext{Re} \left\{ -eta w_{_1}(z) + rac{1}{w_{_1}(z)}
ight\} + rac{r^2 |1 + eta w_{_1}(z)|^2 - |1 - w_{_1}(z)|^2}{(1 - r^2) |w_{_1}(z)|} \ & \leq rac{1 - eta + (3eta + 1)r + eta (eta + 3)r^2 + eta (eta - 1)r^3}{(1 - r^2)(1 + eta r)} \,. \end{split}$$

Proof. By Schwarz's lemma, $|w(z)| \le r$ on |z| = r < 1. The transformation $w_i(z) = [1 - w(z)]/[1 + \beta w(z)]$ maps the disc $|w(z)| \le r$, $r < \min(1, 1/\beta)$, onto the disc $|w_i(z) - a| \le d$, where

$$a=rac{1-eta r^2}{1-eta^2 r^2}$$
 , $d=rac{(1+eta)r}{1-eta^2 r^2}$.

Clearly,

$$0 < a - d = rac{1 + r}{1 + eta r} < a + d = rac{1 + r}{1 - eta r}$$
 .

Put $w_1(z) = a + u + iv$, R = |a + u + iv|; then

$$S(u, v) = \operatorname{Re}\left\{-eta w_{_1}(z) + rac{1}{w_{_1}(z)}
ight\} + rac{r^2|1 + eta w_{_1}(z)|^2 - |1 - w_{_1}(z)|^2}{(1 - r^2)|w_{_1}(z)|} \ = -eta(a + u) + rac{a + u}{R^2} + rac{1 - eta^2 r^2}{1 - r^2} \cdot rac{d^2 - u^2 - v^2}{R} \; .$$

Now.

$$rac{\partial S}{\partial v} = -rac{v}{R^4} \Big\{ 2(a+u) + rac{1-eta^2 r^2}{1-r^2} [(d^2-u^2-v^2)R + 2R^3] \Big\} .$$

The terms inside the curly brackets are always positive for $r < \min(1, 1/\beta)$. Hence the maximum of S(u, v) in the disc $|w_1(z) - a| \le d$ is attained when v = 0 and $u \in [-d, d]$. Setting v = 0 in (2.1) we obtain

(2.2)
$$S(u, 0) = \frac{2(1 - \beta^2 r^2)a}{1 - r^2} - \frac{(1 + \beta)(1 - \beta r^2)}{1 - r^2}(a + u).$$

Since dS(u, 0)/du < 0 for $r < \min(1, 1/\beta)$, the maximum of S(u, 0) occurs at the end point u = -d and the result follows.

LEMMA 2.3. If $w(z) \in \mathcal{B}, \beta \geq 0$, then for $|z| = r < \min(1, 1/\beta)$,

(2.3)
$$\operatorname{Re}\left\{\frac{zw'(z)}{[1-w(z)][1+\beta w(z)]}\right\} \leq \frac{r}{(1-r)(1+\beta r)}$$
.

Proof. From Lemma 2.1, we have

$$egin{aligned} \operatorname{Re} \left\{ & rac{zw'(z)}{(1-w(z))(1+eta w(z))}
ight\} & \leq \operatorname{Re} \left\{ & rac{w(z)}{(1-w(z))(1+eta w(z))}
ight\} \ & + rac{r^2 - |w(z)|^2}{(1-r^2)|1-w(z)||1+eta w(z)|} \, . \end{aligned}$$

Put $w_i(z) = [1 - w(z)]/[1 + \beta w(z)]$, then the above inequality becomes

$$egin{split} ext{Re} \left\{ rac{zw'(z)}{(1-w(z))(1+eta w(z))}
ight\} & \leq rac{1}{(1+eta)^2} igg[eta - 1 + ext{Re} \left\{ -eta w_{_1}(z) + rac{1}{w_{_1}(z)}
ight\} \ & + rac{r^2 |1+eta w_{_1}(z)|^2 - |1-w_{_1}(z)|^2}{(1-r^2)|w_{_1}(z)|} igg] \,. \end{split}$$

An application of Lemma 2.2 to the right hand side will give the result which is easily seen to be sharp for w(z) = z at z = r.

The following lemma is a consequence of [2, Theorem 3].

LEMMA 2.4. If $p(z) \in \mathcal{P}$, then on |z| = r,

$$\left\{rac{zp'(z)}{1+p(z)}
ight\} \geq \left\{rac{-rac{r}{1+r}}{1+r}
ight., \quad for \quad r < rac{1}{3} \ rac{r^2+2^{3/2}(1-r^2)^{1/2}-3}{1-r^2}
ight., \quad for \quad rac{1}{3} \leq r < 1
ight..$$

(2.5)
$$\operatorname{Re}\left\{\frac{zp'(z)}{p(z)}\right\} \ge -\frac{2r}{1-r^2}.$$

3. Radii of starlikeness.

THEOREM 3.1. Let $f(z) \in N$ be such that $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathbb{Z}_7$, where $g(z) \in N$ and $g(z)/z \in \mathbb{Z}_7$, $0 \le \lambda < (1+\sqrt{3}+1/2\gamma)/(2+\sqrt{3})$. Then the radius of starlikeness σ_1 of f(z) is given by the only positive root in (0,1) of the equation

$$\beta r^3 + (2+3\beta)r^2 + 3r - 1 = 0$$
.

where $\beta = [(1 + \lambda)\gamma - 1]/(1 - \lambda)\gamma$.

Proof. Put $\psi(z) = 1 - f(z)/\gamma[\lambda f(z) + (1 - \lambda)g(z)]$. Then $|\psi(z)| < 1$ for |z| < 1 and $\psi(0) = 1 - 1/\gamma = A$. Let $w(z) = [\psi(z) - A]/[1 - A\psi(z)]$. It is clear that $w(z) \in \mathscr{B}$ and $\psi(z) = [w(z) + A]/[1 + Aw(z)]$ from which we deduce

$$(3.1) \qquad \frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} - \frac{1+A}{1-\lambda} \cdot \frac{zw'(z)}{(1-w(z))(1+\beta w(z))},$$

 $eta=(A+\lambda)/(1-\lambda)$, provided $1-\lambda(1-w(z))/(1+Aw(z))\neq 0$. Since $|w(z)|\leq r$ for |z|=r by Schwarz's lemma, it follows that

$$1 - \lambda(1 - w(z))/(1 + Aw(z)) \neq 0$$

if, in particular, $|z| < 1/\beta$.

Now, as $g(z)/z \in \mathscr{T}$, write g(z)/z = p(z), some $p(z) \in \mathscr{T}$. Then zg'(z)/g(z) = 1 + zp'(z)/p(z). An application of (2.5) gives

(3.2)
$$\operatorname{Re}\left\{rac{zg'(z)}{g(z)}
ight\} \geqq rac{1-2r-r^2}{1-r^2} \;, \quad |z|=r < 1 \;.$$

This result together with (3.1) and (2.3) yield

$$ext{Re}\left\{rac{zf'(z)}{f(z)}
ight\} \geq rac{1-3r-(2+3eta)r^2-eta r^3}{(1-r)(1+eta r)} \;.$$

For the cubic polynomial

$$F(r) = \beta r^3 + (2+3\beta)r^2 + 3r - 1$$

F(0) < 0, $F(1) = 4 + 4\beta > 0$, $F(1/\beta) = (3 + 6\beta - \beta^2)/\beta^2$. Thus the equation F(r) = 0 has exactly one root in (0, 1) which is in the range $(0, 1/\beta)$ if $\beta < 3 + 2\sqrt{3}$, i.e., if $\lambda < (1 + \sqrt{3} + 1/2\gamma)/(2 + \sqrt{3})$.

REMARK 3.1. The theorem is sharp for

$$f(z) = \frac{1-z}{1+\beta z} \cdot \frac{z(1-z)}{(1+z)}.$$

When $\lambda=0$, f(z) is starlike in $|z|<\sqrt{5}-2$ if $\gamma\mapsto\infty$ and in $|z|<(\sqrt{17}-3)/4$ if $\gamma=1$ as previously shown by Ratti [6, Theorems 1 and 4].

THEOREM 3.2. Let $f(z) \in N$ be such that $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathscr{Q}_{\tau}$, where $g(z) \in N$ and $g(z)/z \in \mathscr{S}_{1/2}$. Then the radius of starlikeness of f(z) is

$$\sigma_{\scriptscriptstyle 2} = egin{cases} r_{\scriptscriptstyle 1} \ , & for \ 0 \leqq \lambda \leqq 1/2 \gamma \ , \ [2^{\scriptscriptstyle 1/2}(1+eta)^{\scriptscriptstyle 1/2}-1]/(1+2eta) \ , & for \ 1/2 \gamma < \lambda < (\sqrt{5}+1 + 1/\gamma)/(\sqrt{5}+3) \ , \end{cases}$$

where $\beta = [(1 + \lambda)\gamma - 1]/(1 - \lambda)\gamma$ and r_1 is the smallest positive root in (0, 1) of the equation

$$egin{aligned} (1+2eta+9eta^2)r^4+2(1+12eta+3eta^2)r^3+(13+10eta+eta^2)r^2\ +4(1-eta)r-4=0 \;. \end{aligned}$$

Proof. Since $g(z)/z \in \mathscr{S}_{1/2}$, there exists $p(z) \in \mathscr{S}$ so that g(z)/z = 1/2 + p(z)/2. Hence

(3.3)
$$\frac{zg'(z)}{g(z)} = 1 + \frac{zp'(z)}{1 + p(z)}.$$

Applying (2.4) to this equation gives, on |z| = r,

$$(3.4) \quad \operatorname{Re}\left\{rac{zg'(z)}{g(z)}
ight\} \ge egin{dcases} 1/(1+r) \ , & ext{for} & 0 < r < 1/3 \ 2[2^{1/2}(1-r^2)^{1/2}-1]/(1-r^2) \ , & ext{for} & 1/3 \le r < 1 \ . \end{cases}$$

This result together with (3.1) and (2.3) yield, for |z| = r < 1/3,

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \ge \frac{1-2r-(1+2eta)r^2}{(1-r)(1+eta r)} = G(r)$$

and for $1/3 \leq r < 1$,

$$ext{Re}\left\{rac{zf'(z)}{f(z)}
ight\} \geq -rac{(1+eta)r}{(1-r)(1+eta r)} + rac{2[2^{1/2}(1-r^2)^{1/2}-1]}{1-r^2} \; ,$$

which yields the equation giving the condition of starlikeness of f(z) to be

$$egin{aligned} (1+2eta+9eta^2)r^4+2(1+12eta+3eta^2)r^3+(13+10eta+eta^2)r^2\ &+4(1-eta)r-4=0 \;. \end{aligned}$$

The only root in (0,1) of the numerator of G(r) is r_2 which is less than 1/3 if $\beta > 1$, i.e., if $\lambda > 1/2\gamma$, and is the range $(0,1/\beta)$ if $\beta < \sqrt{5} + 2$, i.e., if $\lambda < (\sqrt{5} + 1 + 1/\gamma)/(\sqrt{5} + 3)$. Thus f(z) is starlike in $|z| < r_2$ if $1/2\gamma < \lambda < (\sqrt{5} + 1 + 1/\gamma)/(\sqrt{5} + 3)$. Now, for $0 \le \lambda \le 1/2\gamma$, $\beta < 1$, and r_1 is in the interval $(0, 1/\beta)$ and the theorem is proved.

REMARK 3.2. The results are sharp. The extremal functions are

$$f(z) = egin{dcases} rac{1-z}{1+eta z} \cdot rac{z}{2} igg[1 + rac{1}{2} \Big(rac{1+ze^{-i heta}}{1-ze^{-i heta}} + rac{1+ze^{i heta}}{1-ze^{i heta}} \Big) igg\} \,, & ext{for } 0 \leqq \lambda \leqq 1/2 \gamma \ rac{1-z}{1+eta z} \cdot rac{z}{1+z} \,, & ext{for } 1/2 \gamma < \lambda < (\sqrt{5}+1+1/\gamma)(\sqrt{5}+3) \,, \end{cases}$$

where θ satisfies the equation

$$H(r_1)(1+r_1^2)+r_1^2-[3H(r_1)+1/2+r_1^2(H(r_1)+1/2)]r_1\cos heta \ +2H(r_1)r_1^2\cos^2 heta=0$$

with

$$H(r_1) = [r_1^2 + 2^{3/2}(1 - r_1^2)^{1/2} - 3]/2(1 - r_1^2)$$
.

When $\lambda = 0$, the cases $\gamma \to \infty$ and $\gamma = 1$ give Theorems 2 and 5 of [6].

REMARK 3.3. For $g(z) \in S^c$, the result [10]

$$\operatorname{Re}\left\{rac{zg'(z)}{g(z)}
ight\} \geq rac{1}{1+r}, \quad |z|=r < 1$$

together with (3.1) and (2.3) give the radius of starlikeness of $f(z) \in N$ with $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathcal{Q}_{7}$ to be $[2^{1/2}(1+\beta)^{1/2} - 1]/(1+2\beta)$ for $0 \le \lambda < (\sqrt{5} + 1 + 1/\gamma)/(\sqrt{5} + 3)$, $\beta = [(1+\lambda)\gamma - 1]/(1-\lambda)\gamma$. The bound is attained for the function

$$f(z) = \frac{1-z}{1+\beta z} \cdot \frac{z}{1+z}.$$

When $\lambda = 0$, the cases $\gamma \to \infty$ and $\gamma = 1$ become Theorem 4 of [4] and Theorem 4 of [5] respectively.

THEOREM 3.3. Let $f(z) \in N$ be such that $f(z)/[\lambda f(z) + (1-\lambda)g(z)] \in \mathscr{Q}_7$, where $g(z) \in S^*(\alpha)$, $0 \le \lambda < \lambda_0$, some $\lambda_0 < 1$. Then the radius of starlikeness σ_3 of f(z) is given by the smallest positive root in (0, 1) of the equation

$$eta(2lpha-1)r^3+(3eta+2lpha-2lphaeta)r^2+(3-2lpha)r-1=0$$
 , where $eta=\lceil(1+\lambda)\gamma-1
ceil/(1-\lambda)\gamma$.

Proof. Since $g(z) \in S^*(\alpha)$, we have

$$\operatorname{Re}\left\{rac{zg'(z)}{g(z)}
ight\} \geqq rac{1+(2lpha-1)r}{1+r}$$
 , $|z|=r < 1$.

Applying this result and (2.3) to (3.1) gives the required equation from which σ_3 may be obtained. λ_0 is determined by the condition $\sigma_3 < 1/\beta$.

REMARK 3.4. The theorem is sharp for

$$f(z) = \frac{1-z}{1+\beta z} \cdot \frac{z}{(1+z)^{2-2\alpha}}.$$

When $\lambda = 0$, the cases $\gamma \to \infty$ and $\gamma = 1$ correspond to Theorems 3 and 6 of [6].

4. Radii of convexity. In this section, we briefly look at the problem of determining the radius of convexity of $f(z) \in N$ with $f'(z)/[\lambda f'(z) + (1-\lambda)g'(z)] \in \mathcal{Q}_r$, where g(z) belongs to various subclasses of N. For such f(z), we can deduce in a similar manner as in Theorem 3.1 that

(4.1)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} = \operatorname{Re}\left\{1 + \frac{zg''(z)}{g'(z)}\right\} - \frac{1 + A}{1 - \lambda} \cdot \frac{zw'(z)}{(1 - w(z))(1 + \beta w(z))},$$

provided $1 - \lambda(1 - w(z))/(1 + Aw(z)) \neq 0$, $w(z) \in \mathcal{B}$, $A = 1 - 1/\gamma$, $\beta = (A + \lambda)/(1 - \lambda)$. With some restriction on λ , we may apply (2.3) and the known bounds for Re $\{1 + zg''(z)/g'(z)\}$ to (4.1) to get the equations from which the radii of convexity of f(z) may be obtained. We consider the following six cases.

- (i) $g'(z) \in \mathscr{P}$. The radius of convexity of f(z) is equal to σ_1 as given by Theorem 3.1.
- (ii) $g'(z) \in \mathscr{F}_{1/2}$. The radius of convexity of f(z) is equal to σ_z as given by Theorem 3.2.
- (iii) $g(z) \in S^{c}(\alpha)$. The radius of convexity of f(z) is equal to σ_{3} as given by Theorem 3.3.
 - (iv) $g(z) \in S$.

The result [1, p. 166]

$$ext{Re}\left\{1+rac{zg''(z)}{g'(z)}
ight\} \geqq rac{1-4r+r^2}{1-r^2} \;, \quad |z|=r < 1 \;,$$

together with (2.3) and (4.1) yield the radius of convexity of f(z) to be the smallest positive root (less than 1) of the equation

$$\beta r^3 - 5\beta r^2 - 5r + 1 = 0$$

with $0 \le \lambda < (2 - \sqrt{6} + 1/2\gamma)/(3 - \sqrt{6})$.

- (v) $g(z) \in S^*$. The radius of convexity of f(z) is the same as that of part (iv).
 - (vi) $g(z) \in S^*(1/2)$. Theorem 4.1 of [9] with $\beta = 1/2$ gives

$$ext{Re}\left\{1+rac{zg''(z)}{g'(z)}
ight\} \geq rac{1-r}{1+r}\,, \quad |z|=r < 1/2\;.$$

This result together with (2.3) and (4.1) yield the radius of convexity of f(z) to be the smallest positive root ρ of the equation

$$eta r^{\scriptscriptstyle 3} - 3eta r^{\scriptscriptstyle 2} - 3r + 1 = 0$$
 ,

with
$$0 \le \lambda < (1 + \sqrt{2} + 1/2\gamma)/(2 + \sqrt{2})$$
.

All these results are best possible and generalise those obtained by Ratti [7, Theorems 1-6].

REFERENCES

1. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, R. I., 1969.

- 2. W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 298-326.
- 3. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
- 4. ———, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963), 514-520
- 5. ———, The radius of univalence of certain analytic functions II, Proc. Amer. Math. Soc., 14 (1963), 521-524.
- 6. J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z., 107 (1968), 241-248.
- 7. ———, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math., 1 (1970), 30-36.
- 8. G. M. Shah, On the univalence of some analytic functions, Pacific J. Math., 43 (1972), 239-250.
- 9. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23 (1971), 323-339.
- 10. E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.

Received October 15, 1976. One of the authors (V. V. Anh) acknowledges the financial support of a University of Tasmania Research studentship. The authors are grateful for the referee's valuable comments.

University of Tasmania, Hobart Tasmania, Australia