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SEMIGROUPS WITH IDENTITY
ON PEANO CONTINUA

W. WILEY WILLIAMS

A continuum is cell-cyclic if every cyclic element is a
finite dimensional cell. We show that any finite dimensional
cell-cyclic Peano continuum X admits a commutative semi-
group with zero and identity, and apply this to show that if
X is also homogeneous it is a point.

In [12] we showed that each cell-cyclic Peano continuum (locally
connected metric continuum every cyclic element of which is a finite
dimensional cell) X admits a semilattice (commutative idempotent
topological semigroup). We now extend this result to show that X
admits a commutative semigroup with identity and zero, and then
apply this to homogeneous continua. Our extension is a partial
answer to a question first raised by R. J. Koch in [6].

A semilattice is also a partially ordered Hausdorff topological
space in which every two elements have a greatest lower bound
and the function (x, y) —> glb{x, y] is continuous. For i c S , let
L{A) = {z: z <L x for some xeA} and M(A) = {y:x ^ y for some

xeA}. A set A is increasing if M(A) — A. An arc chain is a

totally ordered subset of a semilattice whose underlying space is an
arc. We reserve I for the unit interval under min multiplication,
and T for the quotient semilattice obtained by identifying (0, 0) and
(1, 0) in {0, 1} x I. Note that In and Tn, under coordinatewise
multiplication, are semilattices with identity on the w-cell, with zero
in the boundary and interior respectively.

Let X be a cell-cyclic Peano continuum. We use the cyclic ele-
ment notation and results of Whyburn [10] and Kuratowski and
Whyburn [8], slightly modified in the following way. In X we say
a set A separates a and b if each arc from a to b meets A. C(p, q)
denotes the cyclic chain from p to q and is {#eX|some arc from p
to q contains %}. An subcontinuum A of X is an A-set if each arc
in X having end points in A is contained in A. Cyclic elements and
cyclic chains are A-sets. Given a point x and an A-set A, if x £ A
there is a unique element y e A such that y separates each element
of A f r o m x. D e n o t e t h i s y b y P{A, x). lί xeA s e t P(A, x) — x.

Then for a fixed A-set A the function x ~» P(A, x) is a monotone
retraction of X onto A mapping X\A into Fr(A) = {x e A | x $ D° for
any cyclic element D of A} U {cut points of A}. A set M is nodal
in X if M Π (X\M)* contains at most one point. A point is an end
point of X if it has a basis of neighborhoods having one point
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boundary. A node of X is either (i) a true cyclic element which is
a nodal set or (ii) an endpoint. By Com(a;, A) we mean the component
of x in A. The interior of A is denoted by A0.

I* Preliminary results*

THEOREM 1.1. [12]. Any cell-cyclic Peano continuum admits
the structure of a semilattice.

We note that in the proof of 1.1 given in [12], In and Tn, as
defined above, could have been used for the semilattice structures on
the individual cyclic elements. Thus the structure may be so con-
structed that each cyclic element is a semilattice with identity; also
the zero may be chosen to by any predetermined point.

The following is an unpublished result due to Phyrne Bacon.
We include a proof for completeness.

THEOREM 1.2. Let X be a compact semilattice and C an arc
chain containining 0. If Πc is defined by Πc(x) = sup {a e C | x e M(a)},
then

( i ) Πc is a homomorphism from X onto C
(ii) Πc is continuous iff whenever x, y eC and x < y then

y e M(x)°.

Proof. X compact implies Πc is well-defined. For (i), first note
that IIc is order preserving. Let x, y e X and suppose Πc{x) <. Πc(y).
Since Πc is order preserving we have Πc(xy) ^ Πc(x). If Πc(xy) <
ΠG(x), then there exists zeC such that Πc(xy) < z < Πc(x). Thus
x e M{z) and xy $ M(z). But Πc(x) < Πc{y) and x e M(z) implies
y e M(z). We conclude xy e M(z), a contradiction. Thus

Πc(xy) - Πc(x) - Πc(x)Πc(y) .

By symmetry, if Πc(y) ^ Πc(x) then the same conclusion is reached,
and Πc is a homomorphism.

For (ii), suppose whenever x,yeC and x<y, then yeM(x)°.
For each xeC define V(x) = X\M(x). Then each V(x) is open, and
we claim that x < y implies V(x)* a V(y). First note that M(M(x)°)
is open by the continuity of multiplication, contains M(x)°, and is
contained in M(x). Thus M(M(x)°) = M(x)°, and M(x)° is increasing.
So if & < y, then y e M{x)°, and Λ%) S M(M(^)°) = M(x)°. Thus
7(y) = X\M(y) contains X\M(x)° - [Z\Λf(α?)]* = V(x)*. Since C is an
arc chain, inf {a e C \ x e V(a)} = sup {aeC\xe M(a)} = /7σ(a?). Thus a
proof like that for Urysohn's lemma [3] shows Πc is continuous.
This completes the proof.
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It is implicit in results of Lawson [9] that if X is a semilattice
on a finite dimensional Peano continuum, then (i) each point of X
lies on an arc chain C containing 0, and (ii) if x < y in C, then
yeM(x)°. We conclude

COROLLARY 1.3. Each point of a finite dimensional Peano con-
tinuum X lies on an arc chain C containing 0 and there is a
homomorphic retraction of X onto C.

THEOREM 1.4. Any finite dimensional cell-cyclic chain C(p, q)
admits a semilattice with identity. Moreover, ifqe Fr(C(p, q)) then
q can be chosen to be the identity.

Proof. Note that the true cyclic elements of C(p, q) form a
countable collection {Dτ). We consider two cases:

Case 1. Some true cyclic element Do of C(p, q) contains q.
Then JD0 admits a semilattice structure with zero a = P(D, p) Φ q
and identity e. Moreover if q e Fr(C(p, q)) then q e Fr(D0), so we
may choose e = q. By 1.1, C(p, a) admits a semilattice in which
each cyclic element Dt is a semilattice with identity et and zero
P(DU p). In each Dt there is an arc chain T* from et to bt = P(Dif q)
and also an arc chain TQ in Do from e to a and a homomorphism
h: DQ —•> To which is a retraction. Let f%\ Γo.—» T* be an onto homomor-
phism for each i. Now define a semilattice structure * on C(p, q)
to agree with those on C(p, a) and Do and such that if x e C(p, a)
and y e D then

x if a? is a cut point of C(p, α)
i f

This obviously idempotent and commutative. Associativity and
continuity follow since h and ft are homomorphisms and continuous.
Note that e is an identity for *.

Case 2. q is not in any true cyclic element of C(p, q). Then
there is a sequence {cj of distinct cut points of C(p, q) such that
fa}—»? a n d Ci+i separates c from g. This implies

Endow each C(co c<+1) with a semilattice structure as in 1.1 so that
d is the zero of C(cif ci+1) and each cyclic element Ds is a semilattice
with zero P(Dj9 p) and identity ej9 and let T3 be a (possibly degenerate)



560 W. WILEY WILLIAMS

are chain in Dά from es to P(DJ9 q). Let St be an arc chain in
C(ci9 ci+1) from ct to ct+1 and let Λ<: C(ci9 ct+1) —* St be a homomorphism
and retraction. For each ί9 j e Z+

9 let fiti: S<-* Ty be an onto homo-
morphism. Now define an operation * on C(p9 q) to agree with that
on each C(ci9 ci+1) and such that if x e C(cm9 cm+1) and y e C(cn9 cn+1) then

(x if x is a cut point and n ~ m + 1

# if w > m + 1

y s l ϊ a. = χi¥y = jXfnΛKiv)) if « is not a cut point
(i.e., xeDj for some jeZ+) and
π = m + 1

#2/ if w = m

Define gf to be an identity for C(p, q).
This is obviously idempotent and commutative. The proof of

associativity is similar to that in Case 1 except in the following
case: Suppose x e C(cn9 cn+ί)9 y e C(cn+19 cn+2) and z e C(cn+29 cn+3). If x

is a cut point, then x*y*z = x in any order, and if y is a cut point
then x*y*z = α;*̂ / in any order. If neither is a cut point then xeD,
and y β Dk for some true cyclic elements Zλ, and Dk. So

(#*:z/)*z = x*y = χfn+uj(K+i(y)).

K+i(yfn+2,k(K+2(z))) = K+i(y)K+i(fn+2,k(K+2(z))) since h^+i is a homomor-
phism. Also &Λ+1(ίί) ^ P(DA, g) = K+ί(fn+2tk(K+2(z))) since fifn+1 Π D* is
an arc chain with maximum element P(Dk9 q) and Tk is an arc chain
with minimum element P(Dk9 q). I t follows that

x*(y*z) = xfn+1>j(K+k(y)) =

Suppose α;w —> a? and yn—*y. \ί x Φ qφ y, then one can prove
%*,*!!*, —* %y using the continuity of the functions ht and f%tj and the
fact that the cyclic chains C(ci9 ci+1) meet only at cut points. If
x = q φ y and y e C(ci9 ci+1) then eventually ci_ι ^ yntί ci+2 and
ci+4 £ xn so that xn*yn = yn->y = xy. If x = q = y and iΐ W(xn, yn)
denotes the smaller of i and j where xn e C(cίf ci+1) and yn e C(cj9 cj+1)
then W(xn9 yn)~>°° as n -* oo. Since a?n*yΛ 6 Cίc^ί^,^,, ^(^y^+i) and
since C(^, q) is locally connected we conclude that xn*yn —>• q = α;̂ /.
This completes the proof.

We note that in Case 2, if c^+1 separates x from j> and cn

separates y from g then x*y — y.

II* Ruled continua*

DEFINITION 2.1. Suppose X is a topological space and E Q X9
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OeX Let A = {[0, e]:eeE} be a collection of arcs in X satisfying:
( i ) X= U{[0,e]:eeE}.
(ii) [0, e] Π [0, /] is a proper subarc of each when e and / are

distinct elements of E.
(iii) For each e e E, there is a unique [0, e] e A.
(iv) If xa —>x then [0, xa] —> [0, x] in the sense of lim sup-lim

inf convergence.

Then A is said to be a ruling of X and X is said to be a ruled
space with zero 0. The concept of a ruled space was introduced by
Eberhart in his dissertation [4] Spaces admitting a stronger type
of ruling have been studied by Koch and McAuley [7]. We note
that if X is ruled then for each xe X there is a unique arc [0, x]
which is contained in every [0, e] containing x.

DEFINITION 2.2. A metric d is radially convex with respect to
a partial order ^ on X if x <Ξ y, y ^ z and y Φ z imply d(x, y) <
d(x, z).

LEMMA 2.3. Let X be a compact metric ruled space. Define
% ̂  y iff x £ [0, y]. Then ^ is a closed partial order on X. More-
over X admits a metric radially convex with respect to this order,
so that if r tί d(0, e) there is a unique x(r) e [0, e] such that
d(0, x(r)) = r.

Proof. This is clearly a partial order; that it is closed follows
from property iv) of ruled spaces. By a result of Garruth [2], X
admits a metric radially convex with respect to this order. The
lemma now follows.

THEOREM 2.4. Any cell-cyclic Peano continuum X admits a
ruling, and 0 may be chosen to be any point of X.

Proof. By 1.1, X admits a semilattice with zero 0 chosen arbi-
trarily. As in the proof of 1.1 given in [12], for each true cyclic
element D of X let hD denote the homeomorphism from In or Tn

to D used to define this semilattice. Set E = Fr(X)\({cut points of
X}ί7{0}). For each eeE and each true cyclic element D of C(0, e)
define T(D, e) to be the image under hD of the straight line segment
[Λ?(P(A 0)), h-D\P{D, e))\ in In or T\ Then define [0, e] = ((J {T(D, e):
D e C(0, e)}) U {cut points of C(0, β)}. Then [0, e] is a metric, compact
(since C(0, e)\[0, e] is open in C(0, e)) order dense chain in the semi-
lattice X and hence an arc. We now show the four conditions are
satisfied.
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(i) X = U{O,e]:eeE}. If xeX\E then x is either an interior
point of some cyclic element D of X or a cut point of X. If x is an
interior point of D then x e hD{hn\P(D, 0), h^ι(e)]) for some e e Fr(D).
If e e E then x e T(D, e) £ [0, e]. It e£E then choosing an end element
e' of a component of X\{e} other than the one containing 0, x e [0, ef]

(ii) and (iii) are clear
(iv) If ea—+e, then [0, ea] —> [0, e]. This follows from the fact

that [0, ea] S £ ( O and from techniques like those in [12]. We omit
the details.

THEOREM 2.5. Any cell-cyclic Peano continuum with a nodal
cyclic element admits a commutative semigroup with identity and
zero.

Proof. Let X be a cell cyclic Peano continuum and suppose
X = C U D, where C f) D = {0} and D is a true cyclic element. Then
C is a cell-cyclic Peano continuum and hence admits a ruling
A = {[0, e]:eeE} with zero 0 and a radially convex metric. Let h
be a homeomorphism from In or Γ% to D> depending on whether
0 is in the boundary or interior of D, and define a semilattice with
identity e on D using h. Then there is in D an arc chain S from 0
to e and a retraction /: D —> S which is a homomorphism. Moreover
we may assume that S is radially convex so that for x, y eS,
e£(0, $2/) = min {d(0, x), d(0, y)}. Without loss of generality we may
assume d(Q, e) is maximal among {ά5(0, x)\xeX}. Now define a semi-
group on X by

0 if x, y e C

The point in [0, #] of distance 7* =
min {eϋ(O, x), d(0, f(y))} from 0 if xeC, yeD.

Associativity is obvious in all cases except the following: Suppose
xeC and y, zeD. Then (x*y)*z is the point in [07 x] of distance
min {d(0, x), d(0, f(y)), d(0, f(z))} from 0, whereas x*(y*z) is the point
in [0, x] of distance min {d(0, x), d(0, f(y, z))} from 0. But d(0, /(i/^)) =
ώ(0, f(y)f(z)) = min{ώ(0, /(#)), d(0, /(«))} so (a?*2/)*« = a?*d/*«). Continuity
follows from the properties of ruled spaces and the fact that / is
continuous. It is clear that e is an identity and 0 a zero. This
completes the proof.

We conjecture that any X as in 2.5 admits a semilattice with
identity. In fact, if X can be embedded in a plane then X can be
embedded in a two-cell N and ruled in such a way that X Π Fr(N)
is one of the arcs ruling X. One can now apply a theorem from
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Eberhart's dissertation to show that X admits a semilattice with
identity,

III* Cell-cyclic Peano continua without a nodal cyclic ele-
ment* The goal of this section is a result like 2.5 for finite dimen-
sional cell-cyclic Peano continua without a nodal cyclic element.

LEMMA 3.1. Let X be a cell-cyclic Peano continuum. Then there
exist two sequences {pt) and {gj in Fr(X), with pλ and q^ chosen
arbitrarily, such that

( i ) If we set Hn = U*U C{pi9 g*), then for each n > 1,
{p«} = C(pnf qn) Π Hn_x

(ii) // we set H = U?=i Hn, then each point of X\H is an end
point of X, and so ff* = X.

(iii) The diameter of the components of S\Hn tends to 0 uni-
formly with 1/n.

Proof. This was proved by Whyburn ([10], p. 73) without the
condition that {pj and {gj are in Fr(X). We show this condition
can also be assumed. Whyburn's proof considers a dense sequence
{rj and sets pλ — rlf q^ = r2. Clearly these may be chosen arbitrarily
in Fr(X). In Whyburn's proof, for j > 1 q3 is the r< of smallest
index such that r, ί H3^ and pό = P{H3_U q3). Thus p3 e Fr{X). If
q3- £ Fr(X), then q3- is an interior point of some true cyclic element D.
Let q) be any point in Fr(D) other than P(D, pά). Then C(pj9 q5) =
C(pjf q'3), so we may assume q3 e Fr(X). The lemma follows.

Now let X be a finite dimensional cell-cyclic Peano continuum
without a nodal cyclic element. Then X has at least 2 end points
([10], p. 77); let 0 and 1 denote end points of X. Let {pj, {gj, {Hn},
and H be as described in 3.1, with pλ = 0, qγ = 1. Each C(^, g*)
admits a semilattice with zero ^ and identity g* by 1.3. We now
define inductively an algorithm for defining a semilattice with identity
on H.

Let {c3} be the sequence of cut points of (7(0, 1) converging to
1 such that ci+ί separates c3 from 1 used in 1.3 to define the semi-
lattice on C(0,1). Let nx be one more than the smallest i such that ct

separates p2 from 1 in X. Set Q^C(p2) q2), P^fCom (1, C(0, l)\{cΛl})]*,
and R, = [Com(0, C(0, l)\{cni}]*. Let T, be an arc chain from p2 to
q2 in Qi and Sλ be an arc chain from cni to 1 in C(0,1). Let/2: S1—>T1

be a continuous onto homomorphism such that fτ1{q2) — Λf(cΛl+1) Π Sw

and let ^ : Px —> ϊ7! be the continuous onto homomorphism obtained
by composing fγ and a homomorphic retraction r1 of C(cWl, 1) onto St.
We now define a semilattice * on ίί2 = C(px, g^ U C(p2, q2) = J3Ί U Qi by
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'xy if x, y e C(0, 1) = P, U R, or x, y e Qι

x*y = 2/*a; = xp2 if x^Rlf y e Qx

Λi(a?)2/ if flje?!, 2/e Qi

where juxtaposition means whichever of the previously defined
operations on H1 or ζ^ fits the context.

Associativity is clear in all cases except when r e Rίy pe Ply

q e Qlm In this case r*(p*g) = r^(h1(p)q) — τp2, whereas

(r*p)*q — (rp)p2 — r(pp2) = τp2

by the note at the end of Section I. Continuity is easily checked
since Plf Qt and Rt meet only at cut points of X. Note that any
point in C(cnz+1, 1) acts as an identity for any point in

[Com(0,Ht\{cnι})]*,

and 1 acts as an identity for all of H2.
Suppose that a semilattice structure with zero 0 and identity 1

has been defined on Hk_ί so that the structure agrees with those on
C{PU qτ) for each i <J k. Also suppose cn]c_x e {cj has been chosen so
that any element of [Com (1, Hk_ι\{cnk_ι+1})]^ acts as an identity for
any element [Com (0, iZ"Λ_1\{cΛJfe_1})]*.

Let nk be one more than the smallest integer greater than ?̂ A._1

such that c%k separates pk+1 from 1. Set Qk = C(pk+ι, qk+ί),
Pk - C(cnk, 1) = [Com (1, Hk\{cnk})]*, and Rk = [Com (0, Hk\{cnk})]*. Let
Tk be an arc chain from Pk+1 to qk+1 in Qk and Sk - S, Π Pk. Let
fk: Sk —> Tk be a continuous onto homomorphism such that

in Pfc, and let hk: Pk—> Tk be a continuous onto homomorphism
obtained by composing fk and the homomorphic retraction rk = rx | PΛ

of C(cnjfe, 1) = Pk onto SΛ. We now define a semilattice * with
identity 1 on Hk by

'xy if Xy y e Hk_x or x, y e Qk

hk(x)y if α e P f c , ^ / G Q &

where juxtaposition means whichever of the previously defined
operations on Hk or Qk fits the context.

Again associativity is clear in all cases except when r e Rk,
pePk, qeQk. In this case r*(p*q) = r*(hk(p)q) = rpfc, whereas
(r*p)*q ~ (rp)pk — τ(ppk) since the operation on Hk_x is associative.
But p e [Com (1, Hk_\{cnk__^)\* and pk e [Com (0, H^Aί^^J) ]* so by
hypothesis ppk = pfc, and r*(^p*g) = (r*p)*g. Continuity is again
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easily checked. Again any point in [Com (1, Hk\{cnk+1})]* acts as an
identity for any element [Com (0, Hk\{cnk})]*. By induction we have
proved the following:

LEMMA 3.2. Each Hn admits a semilattice with zero 0 and
identity 1 so that the operations agree whenever possible.

LEMMA 3.3. The function P(Hn, -):H—>Hn is a retraction and
a homomorphism for each n.

Proof. I t has been previously noted that each P(Hnf •) is a
retraction. To show that each is a homomorphism it suffices to show
that the restriction of P(Hn, •) to Hn+1 is a homomorphism, since
P{HnJ •) is the composition of this restriction and P(Hn+1, •)• Let
x, yeHn+1 = Hn U Qn. If x, y eQ n then

P(Hn, x)*P(Hnf y) = pn*pn = pn = P(Hn, x*y)

since x*y e Qn. If x 6 Qn, y e Hn then there are two cases. If y e Pn

then P(Hn, x)*P(Hn, y) = pn*y = pn since pn e Rn^ by definition and
any element of Pn acts as an identity for any element of i2Λ_i.
However P(Hn, x*y) = P ^ , %*K(y)) = p n since x*hn(y) e Qn. lί yeRn

then P(JΪW, x)*P(Hn, y) = j>n*y = a*# = P(fl», a?*y). This completes the
proof of the lemma.

LEMMA 3.4. Lβί X be as above and let x, y e X, and suppose
{%n}> {yn} are sequences in H such that xn ~^>x, yn-+ y. Then there
exists zeX such that {xn*yn} —>z, where * denotes the operation on
any Hn containing xn and yn, and z is independent of the choice of
the sequences.

Proof. We distinguish four cases.

Case I. x = y = 1. From the definition of multiplication on H,
if a, bePk = [Com(l, H\{ck})]* then a*bePk. Now {Pk} forms a
neighborhood basis at the end point 1. Since both {xn} and {yn} are
eventually in each Pk, {xn*yn} is eventually in each Pk and hence

Case II . a?, y, and 1 all distinct. Let N be an integer so large
that P(HQf x) and P(HOf y) are in Com (0, H0\{cN}) and that the
diameter of any component of X\HN < d(x, y)/2. This implies
Com (x, X\HN) and Com (y, X\HN) are disjoint open sets, and we may
assume xN e Com (x, X/HN) and yn e Com (y, X\HN) for all n. Also
we may assume d(xn9 yn) > d(x, y)/2 for all n. We now show
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%%*yn — P(HN, yn)*P(HN, yn) for all n. The statement is obvious if
xnf yn 6 HN. Suppose it is true whenever xnf yn e Hm for some m ^ JV,
and let xw yn e £ΓW+1 = Hm U Qm. If x% e Qm and yn e Hm then £w*2/w =
pm*yn. By hypothesis, since p w , yneHm then

2>»*y» = ^(-H"^ pm)*P(HN, yn) .

But P(£k, pm) = P(HN, xn) since Qmc[Com (α?Λ, X\HN)\\ Thus ajB*yβ =
P(HN, xn)*P(HNf yn). By symmetry the statement is true if xn e Hm

and yn e Qm. The statement is obvious if both xn, yn e Hm, whereas
the case xn9 yn e Qm is impossible for it implies d(xn, yn) < d(x, y)/2 <
d(xn, yn).

We know HN is a semilattice and hence

x%*yΛ = P(HN, xn)*P(HN, yn) > P(HNf x)*P(HN, y)

since P{HN, •) is continuous.

Case III. x = y Φ 1

( a ) x = y gH. Then x — y is an end point of X and {Z7J =
{[Com (x, X\Hi)]*} is a neighborhood basis at x = y. We show that
if Z7ί is fixed and if xn, yne UiΠHN then xn*yn 6P<nίf^, for any iV.
Note the statement is true for N ^ i. Suppose it is true whenever
#n> yn^UiC\ Hm for some m ^ i, and let

a? , i / . 6 ^ n Hm+1 = ε/ί n ( f l . u Q J .

If α;w e QTO and yΛ 6 Hm then a?,*^ = pw*τ/w e Ut Π £Γwc C7", n fl*+i by the
induction hypothesis. By symmetry the statement is true if xn e Hm

and yn e Qm. If xn9 yn e QTO then a;Λ*i/Λ e Qw c Z7, Π £ΓW+1, and if
a?w, 2/Λ 6 ίZ"w the statement follows from the induction hypothesis.

Since {xn} and {yn} are eventually in each Uif and since for each
n and each i we can find N(n, i) such that xn1 yn^Ui\MIN{nΛ)9 we
conclude that {#W*2/J is eventually in each Z7t. Thus {xn*yn} —*x = y.

( b ) x — y e HNy some iV. Let ε > 0. There exists L > N so
that the diameter of any component of X\fi"L is less that ε/2, and
so that B(x, ε/2) n P i = 0 . We may assume d(a?Λ, x) < ε/2 and
<?(#»> y) < ε/2 for each n. Divide {xn*yn} into two (perhaps finite)
sequences: If xn*yne HL then

x»*yn = P(HL, xn*yn)

= P(HL, xn)*P(HL, yn)~+P(HL, x)*P{HL, x) - xy = x = y ,

by Lemma 3.3 and the continuity of multiplication on HL. If xn*yn ί HL,
then a?ft g H z and j / Λ g iί^ because .B(α;, ε/2) Π PL — 0 and using the
definition of multiplication on H. Also, using the definition of
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multiplication xn*yn e Com (xn, X\HL) or xΛ*yn e Com (yn, X\HL). Thus

d(x, xn*yn) £ d(x, xn) + d(xn, xn*yn) < ε

or

d(y, xn*yn) ^ d(y, yn) + d(yn, xn*yn) < ε .

In either case d(x, xn*y) = d(y, xn*yn) < e. We conclude that {xn*yn} —>

x = y.

Case IV. y Φ x = 1. We first establish two facts.
(A) If α, & e H so that P(ίί0, α) 6 Com (1, fΓ0\{cΛ}) and P(H0, δ) e

Com (0, H0\{cn}) for some w, then α*δ = P(iZo, α)*δ.
The proof is by the induction on the Ht containing a. I t is

clear for a e Ho. Suppose the statement is true for a e Hm, m ^ 0,
and let a e Hm+1 = Hm U Qm+ί. Suppose a e Qm+1, for the induction
hypothesis assures the statement is true if aeHm. Then since a
and b are separated by cm, b & Qm+1. Hence α*& = pm+ί*b. But
pm+1*b = P(HQ, pm+1)*b by the induction hypothesis, and

so

α*& = P(fl0, α)*& .

Thus (A) is established.
(B) If α, ft e if so that α e Com (1, HQ\{cn}) and 6 e Com (0, H0\{cn})

for some n, then either α*δ = a*P(Hn, b) or α*&6Com(δ, X\HU)*.
The proof is by induction on the Hi containing b. If beHn

then P(£ΓW, b) = b and the statement is true. Suppose the state-
ment is true when beKm for some m^ n, and let b 6 Qm+1.
If α e Com (1, H0\{cJ) then α*δeQ w + 1 cCom(δ,-X\f fJ* . If ae
[Com (0, JHΌ\{G»})1* then α*δ = α*^>w. But a*pm = a*P(Hn, pm) by the
induction hypothesis, and PCH,, pm) = P(J3Γn, δ). Thus α*δ = a*P{Hn, b)
and (B) is established.

We now distinguish two subcases of Case IV.

Subcase 1. ye HM, some M. Let ε > 0. Choose M so large that
c^ does not separate y from 0 and the diameter of any component
of -X\fZjf is less than ε/2. We may assume that for each n,
P(H0,yn)e Com (0, H0\{cM}) and P(H09 xn) e Com (1, H0\{cM}). Then by
(A), xΛ*yΛ = P(HQf xn)*y%, and by (B), P(H0, xn)*yn = P(H0, xn)*P(HM, y%)
or P(HQ9 xn)*yn e Com (δ, X\H%)*. If the former then

, yn) > l*P(f l J f , y) = y
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by the continuity of the multiplication on HM and Lemma 3.3. In
the latter case d(P(H0, xn)*yn, yn) < e/2. We may assume d(yn, y) < ε/2,
so d(y, P(H0, xn)*yn) < ε. Thus we conclude that {xn*yn} —> y.

Subcase 2. y$H. If Vk = [Com {y, X\Hk)]* then {Vk} is a
neighborhood basis, so we need only show {xn*yn} is eventually in
each Vk. Fix a Vk. We may assume again that for each n,
P(HQ, yn) e Com (0, H0\{cM}), P(H0, xn) e Com (1, H\{cM}\ and yn e Vk for
some M^k. By (A) and (B), xn*yn = P(H0, xn)*P(HM, yn) or xn*yn e
Com (#„, X\HM)*aVk. However P(HM, yn) e Vk, and P(H0, xn) eHo, so
P(H0, xn)*P(HM, yn) e Vk. This completes the proof of the lemma.

THEOREM 3.5. Let X be a finite dimensional cell-cyclic Peano
continnum without a nodal element. Then X admits a semilattice
with identity.

Proof. By the above, the dense set H admits a semilattice with
identity. For each x,yeX let {xn} —>x, {yn} —*y where {xn}, {yn} are
sequences in H. Define xy = lim {#%*2/%}. By 3.4 this limit exists
and is independent of the choice of the sequences. It follows that
this operation is a semilattice with identity on X. Combining this
with Theorem 2.3 we have

COROLLARY 3.6. Let X be a finite dimensional cell-cyclic Peano
continuum. Then X admits a commutative semigroup with identity
and zero.

COROLLARY 3.6. Any retract of a two-cell admits a commutative
semigroup with identity.

Proof. Borsuk [1] has shown that a subset X of a two-cell A
is a retract of A if and only if A is a locally connected continuum
which does not separate the plane. Whyburn [11] has shown that
for locally connected continua in the plane, not separating the plane
is equivalent to every cyclic element being a simple closed curve
with interior, i.e., a two-cell. Thus a retract of a two-cell is a
cell-cyclic Peano continuum, and the result follows from Corollary
3.6.

DEFINITION 3.8. A space X is homogeneous if for each pair of
points x and y in X there is a homeomorphism of X onto itself
carrying x to y.

THEOREM 3.9. Any finite dimensional homogeneous cell-cyclic
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Peano continuum (in particular, any homogeneous retract of a two-
cell) is a point.

Proof. By a result of Hudson and Mostert [5], any homogeneous
compact connected semigroup with identity is a group. Combining
this with Corollaries 3.6 and 3.7, unless X is a point X admits the
structure of a group with two idempotents, a contradiction.
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