SEMIGROUPS WITH IDENTITY ON PEANO CONTINUA

W. Wiley Williams

A continuum is cell-cyclic if every cyclic element is a finite dimensional cell. We show that any finite dimensional cell-cyclic Peano continuum X admits a commutative semigroup with zero and identity, and apply this to show that if X is also homogeneous it is a point.

In [12] we showed that each cell-cyclic Peano continuum (locally connected metric continuum every cyclic element of which is a finite dimensional cell) X admits a semilattice (commutative idempotent topological semigroup). We now extend this result to show that X admits a commutative semigroup with identity and zero, and then apply this to homogeneous continua. Our extension is a partial answer to a question first raised by R. J. Koch in [6].

A semilattice is also a partially ordered Hausdorff topological space in which every two elements have a greatest lower bound and the function $(x, y) \rightarrow g l b\{x, y\}$ is continuous. For $A \subset S$, let $L(A)=\{z: z \leqq x$ for some $x \in A\}$ and $M(A)=\{y: x \leqq y$ for some $x \in A\}$. A set A is increasing if $M(A)=A$. An arc chain is a totally ordered subset of a semilattice whose underlying space is an arc. We reserve I for the unit interval under min multiplication, and T for the quotient semilattice obtained by identifying $(0,0)$ and $(1,0)$ in $\{0,1\} \times I$. Note that I^{n} and T^{n}, under coordinatewise multiplication, are semilattices with identity on the n-cell, with zero in the boundary and interior respectively.

Let X be a cell-cyclic Peano continuum. We use the cyclic element notation and results of Whyburn [10] and Kuratowski and Whyburn [8], slightly modified in the following way. In X we say a set A separates a and b if each arc from a to b meets $A . C(p, q)$ denotes the cyclic chain from p to q and is $\{x \in X \mid$ some arc from p to q contains $x\}$. An subcontinuum A of X is an A-set if each arc in X having end points in A is contained in A. Cyclic elements and cyclic chains are A-sets. Given a point x and an A-set A, if $x \notin A$ there is a unique element $y \in A$ such that y separates each element of A from x. Denote this y by $P(A, x)$. If $x \in A$ set $P(A, x)=x$. Then for a fixed A-set A the function $x \rightarrow P(A, x)$ is a monotone retraction of X onto A mapping $X \backslash A$ into $\operatorname{Fr}(A)=\left\{x \in A \mid x \notin D^{0}\right.$ for any cyclic element D of $A\} \cup\{$ cut points of $A\}$. A set M is nodal in X if $M \cap(X \backslash M)^{*}$ contains at most one point. A point is an end point of X if it has a basis of neighborhoods having one point
boundary. A node of X is either (i) a true cyclic element which is a nodal set or (ii) an endpoint. By $\operatorname{Com}(x, A)$ we mean the component of x in A. The interior of A is denoted by A°.
I. Preliminary results.

Theorem 1.1. [12]. Any cell-cyclic Peano continuum admits the structure of a semilattice.

We note that in the proof of 1.1 given in [12], I^{n} and T^{n}, as defined above, could have been used for the semilattice structures on the individual cyclic elements. Thus the structure may be so constructed that each cyclic element is a semilattice with identity; also the zero may be chosen to by any predetermined point.

The following is an unpublished result due to Phyrne Bacon. We include a proof for completeness.

Theorem 1.2. Let X be a compact semilattice and C an arc chain containining 0 . If Π_{C} is defined by $\Pi_{C}(x)=\sup \{a \in C \mid x \in M(a)\}$, then
(i) Π_{C} is a homomorphism from X onto C
(ii) Π_{C} is continuous iff whenever $x, y \in C$ and $x<y$ then $y \in M(x)^{0}$.

Proof. X compact implies Π_{C} is well-defined. For (i), first note that Π_{c} is order preserving. Let $x, y \in X$ and suppose $\Pi_{c}(x) \leqq \Pi_{c}(y)$. Since Π_{C} is order preserving we have $\Pi_{c}(x y) \leqq \Pi_{C}(x)$. If $\Pi_{c}(x y)<$ $\Pi_{C}(x)$, then there exists $z \in C$ such that $\Pi_{c}(x y)<z<\Pi_{c}(x)$. Thus $x \in M(z)$ and $x y \notin M(z)$. But $\Pi_{c}(x)<\Pi_{c}(y)$ and $x \in M(z)$ implies $y \in M(z)$. We conclude $x y \in M(z)$, a contradiction. Thus

$$
\Pi_{c}(x y)=\Pi_{c}(x)=\Pi_{c}(x) \Pi_{c}(y)
$$

By symmetry, if $\Pi_{c}(y) \leqq \Pi_{c}(x)$ then the same conclusion is reached, and Π_{C} is a homomorphism.

For (ii), suppose whenever $x, y \in C$ and $x<y$, then $y \in M(x)^{o}$. For each $x \in C$ define $V(x)=X \backslash M(x)$. Then each $V(x)$ is open, and we claim that $x<y$ implies $V(x)^{*} \subset V(y)$. First note that $M\left(M(x)^{\circ}\right)$ is open by the continuity of multiplication, contains $M(x)^{\circ}$, and is contained in $M(x)$. Thus $M\left(M(x)^{\circ}\right)=M(x)^{\circ}$, and $M(x)^{\circ}$ is increasing. So if $x<y$, then $y \in M(x)^{\circ}$, and $M(y) \cong M\left(M(x)^{\circ}\right)=M(x)^{\circ}$. Thus $V(y)=X \backslash M(y)$ contains $X \backslash M(x)^{o}=[X \backslash M(x)]^{*}=V(x)^{*}$. Since C is an arc chain, $\inf \{a \in C \mid x \in V(\alpha)\}=\sup \{a \in C \mid x \in M(\alpha)\}=\Pi_{c}(x)$. Thus a proof like that for Urysohn's lemma [3] shows Π_{C} is continuous. This completes the proof.

It is implicit in results of Lawson [9] that if X is a semilattice on a finite dimensional Peano continuum, then (i) each point of X lies on an arc chain C containing 0 , and (ii) if $x<y$ in C, then $y \in M(x)^{\circ}$. We conclude

Corollary 1.3. Each point of a finite dimensional Peano continuum X lies on an arc chain C containing 0 and there is a homomorphic retraction of X onto C.

THEOREM 1.4. Any finite dimensional cell-cyclic chain $C(p, q)$ admits a semilattice with identity. Moreover, if $q \in \operatorname{Fr}(C(p, q))$ then q can be chosen to be the identity.

Proof. Note that the true cyclic elements of $C(p, q)$ form a countable collection $\left\{D_{i}\right\}$. We consider two cases:

Case 1. Some true cyclic element D_{0} of $C(p, q)$ contains q. Then D_{0} admits a semilattice structure with zero $a=P(D, p) \neq q$ and identity e. Moreover if $q \in \operatorname{Fr}(C(p, q))$ then $q \in \operatorname{Fr}\left(D_{0}\right)$, so we may choose $e=q$. By 1.1, $C(p, a)$ admits a semilattice in which each cyclic element D_{i} is a semilattice with identity e_{i} and zero $P\left(D_{i}, p\right)$. In each D_{i} there is an arc chain T_{i} from e_{i} to $b_{i}=P\left(D_{i}, q\right)$ and also an arc chain T_{0} in D_{0} from e to a and a homomorphism $h: D_{0} \rightarrow T_{0}$ which is a retraction. Let $f_{i}: T_{0} \rightarrow T_{i}$ be an onto homomorphism for each i. Now define a semilattice structure * on $C(p, q)$ to agree with those on $C(p, \alpha)$ and D_{0} and such that if $x \in C(p, a)$ and $y \in D$ then

$$
x * y=y * x=\left\{\begin{array}{l}
x \text { if } x \text { is a cut point of } C(p, a) \\
x \cdot f_{i}(h(y)) \text { if } x \in D_{i}
\end{array}\right.
$$

This obviously idempotent and commutative. Associativity and continuity follow since h and f_{i} are homomorphisms and continuous. Note that e is an identity for *.

Case 2. q is not in any true cyclic element of $C(p, q)$. Then there is a sequence $\left\{c_{i}\right\}$ of distinct cut points of $C(p, q)$ such that $\left\{c_{i}\right\} \rightarrow q$ and c_{i+1} separates c from q. This implies

$$
C(p, q) \backslash \bigcup_{i=1}^{\infty} C\left(c_{i}, c_{i+1}\right)=\{q\}
$$

Endow each $C\left(c_{i}, c_{i+1}\right)$ with a semilattice structure as in 1.1 so that c_{i} is the zero of $C\left(c_{i}, c_{i+1}\right)$ and each cyclic element D_{j} is a semilattice with zero $P\left(D_{j}, p\right)$ and identity e_{j}, and let T_{j} be a (possibly degenerate)
are chain in D_{j} from e_{j} to $P\left(D_{j}, q\right)$. Let S_{i} be an arc chain in $C\left(c_{i}, c_{i+1}\right)$ from c_{i} to c_{i+1} and let $h_{i}: C\left(c_{i}, c_{i+1}\right) \rightarrow S_{i}$ be a homomorphism and retraction. For each $i, j \in Z^{+}$, let $f_{i, j}: S_{i} \rightarrow T_{j}$ be an onto homomorphism. Now define an operation * on $C(p, q)$ to agree with that on each $C\left(c_{i}, c_{i+1}\right)$ and such that if $x \in C\left(c_{m}, c_{m+1}\right)$ and $y \in C\left(c_{n}, c_{n+1}\right)$ then

$$
y * x=x * y=\left\{\begin{array}{c}
x \text { if } x \text { is a cut point and } n=m+1 \\
x \text { if } n>m+1 \\
x f_{n, j}\left(h_{n}(y)\right) \text { if } x \text { is not a cut point } \\
\left.\quad \text { (i.e., } x \in D_{j} \text { for some } j \in Z^{+}\right) \text {and } \\
n=m+1 \\
x y \text { if } n=m
\end{array}\right.
$$

Define q to be an identity for $C(p, q)$.
This is obviously idempotent and commutative. The proof of associativity is similar to that in Case 1 except in the following case: Suppose $x \in C\left(c_{n}, c_{n+1}\right), y \in C\left(c_{n+1}, c_{n+2}\right)$ and $z \in C\left(c_{n+2}, c_{n+3}\right)$. If x is a cut point, then $x * y * z=x$ in any order, and if y is a cut point then $x * y * z=x * y$ in any order. If neither is a cut point then $x \in D_{z}$ and $y \in D_{k}$ for some true cyclic elements D_{j} and D_{k}. So

$$
(x * y) * z=x * y=x f_{n+1, j}\left(h_{n+1}(y)\right) .
$$

Now $x *(y * z)=x *\left(y f_{n+2, k}\left(h_{n+2}(z)\right)=x f_{n+1, j}\left(h_{n+1}\left(y f_{n+2, k}\left(h_{n+2}(z)\right)\right)\right)\right.$. But $h_{n+1}\left(y f_{n+2, k}\left(h_{n+2}(z)\right)\right)=h_{n+1}(y) h_{n+1}\left(f_{n+2, k}\left(h_{n+2}(z)\right)\right)$ since h_{n+1} is a homomorphism. Also $h_{n+1}(y) \leqq P\left(D_{k}, q\right)=h_{n+1}\left(f_{n+2, k}\left(h_{n+2}(z)\right)\right)$ since $S_{n+1} \cap D_{k}$ is an arc chain with maximum element $P\left(D_{k}, q\right)$ and T_{k} is an arc chain with minimum element $P\left(D_{k}, q\right)$. It follows that

$$
x *(y * z)=x f_{n+1, j}\left(h_{n+k}(y)\right)=x * y=(x * y) * z
$$

Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. If $x \neq q \neq y$, then one can prove $x_{n} * y_{n} \rightarrow x y$ using the continuity of the functions h_{i} and $f_{n, j}$ and the fact that the cyclic chains $C\left(c_{i}, c_{i+1}\right)$ meet only at cut points. If $x=q \neq y$ and $y \in C\left(c_{i}, c_{i+1}\right)$ then eventually $c_{i-1} \leqq y_{n} \leqq c_{i+2}$ and $c_{i+4} \leqq x_{n}$ so that $x_{n} * y_{n}=y_{n} \rightarrow y=x y$. If $x=q=y$ and if $W\left(x_{n}, y_{n}\right)$ denotes the smaller of i and j where $x_{n} \in C\left(c_{i}, c_{i+1}\right)$ and $y_{n} \in C\left(c_{j}, c_{j+1}\right)$ then $W\left(x_{n}, y_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Since $x_{n} * y_{n} \in C\left(c_{W\left(x_{n}, y_{n}\right)}, c_{W\left(x_{n}, y_{n}\right)+1}\right)$ and since $C(p, q)$ is locally connected we conclude that $x_{n} * y_{n} \rightarrow q=x y$. This completes the proof.

We note that in Case 2, if c_{n+1} separates x from p and c_{n} separates y from q then $x * y=y$.

II. Ruled continua.

Definition 2.1. Suppose X is a topological space and $E \subseteq X$,
$0 \in X$. Let $A=\{[0, e]: e \in E\}$ be a collection of arcs in X satisfying:
(i) $X=U\{[0, e]: e \in E\}$.
(ii) $[0, e] \cap[0, f]$ is a proper subarc of each when e and f are distinct elements of E.
(iii) For each $e \in E$, there is a unique $[0, e] \in A$.
(iv) If $x_{\alpha} \rightarrow x$ then $\left[0, x_{\alpha}\right] \rightarrow[0, x]$ in the sense of lim sup-lim inf convergence.

Then A is said to be a ruling of X and X is said to be a ruled space with zero 0 . The concept of a ruled space was introduced by Eberhart in his dissertation [4]. Spaces admitting a stronger type of ruling have been studied by Koch and McAuley [7]. We note that if X is ruled then for each $x \in X$ there is a unique arc $[0, x]$ which is contained in every [$0, e$] containing x.

Definition 2.2. A metric d is radially convex with respect to a partial order \leqq on X if $x \leqq y, y \leqq z$ and $y \neq z$ imply $d(x, y)<$ $d(x, z)$.

Lemma 2.3. Let X be a compact metric ruled space. Define $x \leqq y$ iff $x \in[0, y]$. Then \leqq is a closed partial order on X. Moreover X admits a metric radially convex with respect to this order, so that if $r \leqq d(0, e)$ there is a unique $x(r) \in[0, e]$ such that $d(0, x(r))=r$.

Proof. This is clearly a partial order; that it is closed follows from property iv) of ruled spaces. By a result of Carruth [2], X admits a metric radially convex with respect to this order. The lemma now follows.

Theorem 2.4. Any cell-cyclic Peano continuum X admits a ruling, and 0 may be chosen to be any point of X.

Proof. By 1.1, X admits a semilattice with zero 0 chosen arbitrarily. As in the proof of 1.1 given in [12], for each true cyclic element D of X let h_{D} denote the homeomorphism from I^{n} or T^{n} to D used to define this semilattice. Set $E=\operatorname{Fr}(X) \backslash(\{$ cut points of $X\} U\{0\})$. For each $e \in E$ and each true cyclic element D of $C(0, e)$ define $T(D, e)$ to be the image under h_{D} of the straight line segment $\left[h_{D}^{-1}(P(D, 0)), h_{D}^{-1}(P(D, e))\right]$ in I^{n} or T^{n}. Then define $[0, e]=(\cup\{T(D, e):$ $D \in C(0, e)\}) \cup\{$ cut points of $C(0, e)\}$. Then $[0, e]$ is a metric, compact (since $C(0, e) \backslash[0, e]$ is open in $C(0, e)$) order dense chain in the semilattice X and hence an arc. We now show the four conditions are satisfied.
(i) $X=U\{0, e]: e \in E\}$. If $x \in X \backslash E$ then x is either an interior point of some cyclic element D of X or a cut point of X. If x is an interior point of D then $x \in h_{D}\left(h_{D}^{-1}\left(P(D, 0), h_{D}^{-1}(e)\right]\right)$ for some $e \in \operatorname{Fr}(D)$. If $e \in E$ then $x \in T(D, e) \subseteq[0, e]$. If $e \in E$ then choosing an end element e^{\prime} of a component of $X \backslash\{e\}$ other than the one containing $0, x \in\left[0, e^{\prime}\right]$
(ii) and (iii) are clear
(iv) If $e_{\alpha} \rightarrow e$, then $\left[0, e_{\alpha}\right] \rightarrow[0, e]$. This follows from the fact that $\left[0, e_{\alpha}\right] \subseteq L\left(e_{\alpha}\right)$ and from techniques like those in [12]. We omit the details.

Theorem 2.5. Any cell-cyclic Peano continuum with a nodal cyclic element admits a commutative semigroup with identity and zero.

Proof. Let X be a cell cyclic Peano continuum and suppose $X=C \cup D$, where $C \cap D=\{0\}$ and D is a true cyclic element. Then C is a cell-cyclic Peano continuum and hence admits a ruling $A=\{[0, e]: e \in E\}$ with zero 0 and a radially convex metric. Let h be a homeomorphism from I^{n} or T^{n} to D, depending on whether 0 is in the boundary or interior of D, and define a semilattice with identity e on D using h. Then there is in D an arc chain S from 0 to e and a retraction $f: D \rightarrow S$ which is a homomorphism. Moreover we may assume that S is radially convex so that for $x, y \in S$, $d(0, x y)=\min \{d(0, x), d(0, y)\}$. Without loss of generality we may assume $d(0, e)$ is maximal among $\{d(0, x) \mid x \in X\}$. Now define a semigroup on X by

$$
y * x=x * y=\left\{\begin{array}{l}
0 \text { if } x, y \in C \\
x y \text { if } x, y \in D \\
\text { The point in }[0, x] \text { of distance } r= \\
\min \{d(0, x), d(0, f(y))\} \text { from } 0 \text { if } x \in C, y \in D .
\end{array}\right.
$$

Associativity is obvious in all cases except the following: Suppose $x \in C$ and $y, z \in D$. Then $(x * y) * z$ is the point in $[0, x]$ of distance $\min \{d(0, x), d(0, f(y)), d(0, f(z))\}$ from 0 , whereas $x *(y * z)$ is the point in $[0, x]$ of distance $\min \{d(0, x), d(0, f(y, z))\}$ from 0 . Bu.t $d(0, f(y z))=$ $d(0, f(y) f(z))=\min \{d(0, f(y)), d(0, f(z))\}$ so $(x * y) * z=x *(y * z)$. Continuity follows from the properties of ruled spaces and the fact that f is continuous. It is clear that e is an identity and 0 a zero. This completes the proof.

We conjecture that any X as in 2.5 admits a semilattice with identity. In fact, if X can be embedded in a plane then X can be embedded in a two-cell N and ruled in such a way that $X \cap \operatorname{Fr}(N)$ is one of the arcs ruling X. One can now apply a theorem from

Eberhart's dissertation to show that X admits a semilattice with identity.
III. Cell-cyclic Peano continua without a nodal cyclic element. The goal of this section is a result like 2.5 for finite dimensional cell-cyclic Peano continua without a nodal cyclic element.

Lemma 3.1. Let X be a cell-cyclic Peano continuum. Then there exist two sequences $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ in $\operatorname{Fr}(X)$, with p_{1} and q_{1} chosen arbitrarily, such that
(i) If we set $H_{n}=\bigcup_{i=1}^{n} C\left(p_{i}, q_{i}\right)$, then for each $n>1$, $\left\{p_{n}\right\}=C\left(p_{n}, q_{n}\right) \cap H_{n-1}$
(ii) If we set $H=\bigcup_{n=1}^{\infty} H_{n}$, then each point of $X \backslash H$ is an end point of X, and so $H^{*}=X$.
(iii) The diameter of the components of $S \backslash H_{n}$ tends to 0 uniformly with $1 / n$.

Proof. This was proved by Whyburn ([10], p. 73) without the condition that $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ are in $\operatorname{Fr}(X)$. We show this condition can also be assumed. Whyburn's proof considers a dense sequence $\left\{r_{i}\right\}$ and sets $p_{1}=r_{1}, q_{1}=r_{2}$. Clearly these may be chosen arbitrarily in $\operatorname{Fr}(X)$. In Whyburn's proof, for $j>1 q_{j}$ is the r_{i} of smallest index such that $r_{i} \notin H_{j-1}$ and $p_{j}=P\left(H_{j-1}, q_{j}\right)$. Thus $p_{j} \in F r(X)$. If $q_{j} \notin \operatorname{Fr}(X)$, then q_{j} is an interior point of some true cyclic element D. Let q_{j}^{\prime} be any point in $\operatorname{Fr}(D)$ other than $P\left(D, p_{j}\right)$. Then $C\left(p_{j}, q_{j}\right)=$ $C\left(p_{j}, q_{j}^{\prime}\right)$, so we may assume $q_{j} \in F r(X)$. The lemma follows.

Now let X be a finite dimensional cell-cyclic Peano continuum without a nodal cyclic element. Then X has at least 2 end points ([10], p. 77); let 0 and 1 denote end points of X. Let $\left\{p_{i}\right\},\left\{q_{i}\right\},\left\{H_{n}\right\}$, and H be as described in 3.1, with $p_{1}=0, q_{1}=1$. Each $C\left(p_{i}, q_{i}\right)$ admits a semilattice with zero p_{i} and identity q_{i} by 1.3. We now define inductively an algorithm for defining a semilattice with identity on H.

Let $\left\{c_{j}\right\}$ be the sequence of cut points of $C(0,1)$ converging to 1 such that c_{j+1} separates c_{j} from 1 used in 1.3 to define the semilattice on $C(0,1)$. Let n_{1} be one more than the smallest i such that c_{i} separates p_{2} from 1 in X. Set $Q_{1}=C\left(p_{2}, q_{2}\right), P_{1}=\left[\operatorname{Com}\left(1, C(0,1) \backslash\left\{c_{n_{1}}\right\}\right)\right]^{*}$, and $R_{1}=\left[\operatorname{Com}\left(0, C(0,1) \backslash\left\{c_{n_{1}}\right\}\right]^{*}\right.$. Let T_{1} be an arc chain from p_{2} to q_{2} in Q_{1} and S_{1} be an arc chain from $c_{n_{1}}$ to 1 in $C(0,1)$. Let $f_{1}: S_{1} \rightarrow T_{1}$ be a continuous onto homomorphism such that $f_{1}^{-1}\left(q_{2}\right)=M\left(c_{n_{1}+1}\right) \cap S_{1}$, and let $h_{1}: P_{1} \rightarrow T_{1}$ be the continuous onto homomorphism obtained by composing f_{1} and a homomorphic retraction r_{1} of $C\left(c_{n_{1}}, 1\right)$ onto S_{1}. We now define a semilattice $*$ on $H_{2}=C\left(p_{1}, q_{1}\right) \cup C\left(p_{2}, q_{2}\right)=H_{1} \cup Q_{1}$ by

$$
x * y=y * x=\left\{\begin{array}{l}
x y \text { if } x, y \in C(0,1)=P_{1} \cup R_{1} \text { or } x, y \in Q_{1} \\
x p_{2} \text { if } x \in R_{1}, y \in Q_{1} \\
h_{1}(x) y \text { if } x \in P_{1}, y \in Q_{1}
\end{array}\right.
$$

where juxtaposition means whichever of the previously defined operations on H_{1} or Q_{1} fits the context.

Associativity is clear in all cases except when $r \in R_{1}, p \in P_{1}$, $q \in Q_{1}$. In this case $r *(p * q)=r *\left(h_{1}(p) q\right)=r p_{2}$, whereas

$$
(r * p) * q=(r p) p_{2}=r\left(p p_{2}\right)=r p_{2}
$$

by the note at the end of Section I. Continuity is easily checked since P_{1}, Q_{1} and R_{1} meet only at cut points of X. Note that any point in $C\left(c_{n_{2}+1}, 1\right)$ acts as an identity for any point in

$$
\left[\operatorname{Com}\left(0, H_{2} \backslash\left\{c_{n_{1}}\right\}\right)\right]^{*},
$$

and 1 acts as an identity for all of H_{2}.
Suppose that a semilattice structure with zero 0 and identity 1 has been defined on H_{k-1} so that the structure agrees with those on $C\left(P_{i}, q_{i}\right)$ for each $i \leqq k$. Also suppose $c_{n_{k-1}} \in\left\{c_{i}\right\}$ has been chosen so that any element of [Com (1, $\left.H_{k-1}\left\{\left\{c_{n_{k-1}+1}\right\}\right)\right]^{*}$ acts as an identity for any element [Com ($\left.\left.0, H_{k-1} \backslash\left\{c_{n_{k-1}}\right\}\right)\right]^{*}$.

Let n_{k} be one more than the smallest integer greater than n_{k-1} such that $c_{n_{k}}$ separates p_{k+1} from 1. Set $Q_{k}=C\left(p_{k+1}, q_{k+1}\right)$, $P_{l_{k}}=C\left(c_{n_{k}}, 1\right)=\left[\operatorname{Com}\left(1, H_{k} \backslash\left\{c_{n_{k}}\right\}\right)\right]^{*}$, and $R_{k}=\left[\operatorname{Com}\left(0, H_{k} \backslash\left\{c_{n_{k}}\right\}\right)\right]^{*}$. Let T_{k} be an arc chain from P_{k+1} to q_{k+1} in Q_{k} and $S_{k}=S_{1} \cap P_{k}$. Let $f_{k}: S_{k} \rightarrow T_{k}$ be a continuous onto homomorphism such that

$$
f_{k}^{-1}\left(q_{k+1}\right)=M\left(c_{n_{k}+1}\right) \cap S_{k}
$$

in P_{k}, and let $h_{k}: P_{k} \rightarrow T_{k}$ be a continuous onto homomorphism obtained by composing f_{k} and the homomorphic retraction $r_{k}=r_{1} \mid P_{k}$ of $C\left(c_{n_{k}}, 1\right)=P_{k}$ onto S_{k}. We now define a semilattice $*$ with identity 1 on H_{k} by

$$
x * y=y * x=\left\{\begin{array}{l}
x y \text { if } x, y \in H_{k-1} \text { or } x, y \in Q_{k} \\
x p_{k} \text { if } x \in R_{k}, y \in Q_{k} \\
h_{k}(x) y \text { if } x \in P_{k}, y \in Q_{k}
\end{array}\right.
$$

where juxtaposition means whichever of the previously defined operations on H_{k} or Q_{k} fits the context.

Again associativity is clear in all cases except when $r \in R_{k}$, $p \in P_{k}, \quad q \in Q_{k}$. In this case $r *(p * q)=r *\left(h_{k}(p) q\right)=r p_{k}$, whereas $(r * p) * q=(r p) p_{k}=r\left(p p_{k}\right)$ since the operation on H_{k-1} is associative. But $p \in\left[\operatorname{Com}\left(1, H_{k-1} \backslash\left\{c_{n_{k-1}+1}\right\}\right)\right]^{*}$ and $p_{k} \in\left[\operatorname{Com}\left(0, H_{k-1} \backslash\left\{c_{n_{k-1}}\right\}\right)\right]^{*}$ so by hypothesis $p p_{k}=p_{k}$, and $r *(p * q)=(r * p) * q$. Continuity is again
easily checked. Again any point in [Com (1, $\left.H_{k} \backslash\left\{c_{n_{k}+1}\right\}\right)$]* acts as an identity for any element $\left[\operatorname{Com}\left(0, H_{k} \backslash\left\{c_{n_{k}}\right\}\right)\right]^{*}$. By induction we have proved the following:

Lemma 3.2. Each H_{n} admits a semilattice with zero 0 and identity 1 so that the operations agree whenever possible.

Lemma 3.3. The function $P\left(H_{n}, \cdot\right): H \rightarrow H_{n}$ is a retraction and a homomorphism for each n.

Proof. It has been previously noted that each $P\left(H_{n}, \cdot\right)$ is a retraction. To show that each is a homomorphism it suffices to show that the restriction of $P\left(H_{n}, \cdot\right)$ to H_{n+1} is a homomorphism, since $P\left(H_{n}, \cdot\right)$ is the composition of this restriction and $P\left(H_{n+1}, \cdot\right)$. Let $x, y \in H_{n+1}=H_{n} \cup Q_{n}$. If $x, y \in Q_{n}$ then

$$
P\left(H_{n}, x\right) * P\left(H_{n}, y\right)=p_{n} * p_{n}=p_{n}=P\left(H_{n}, x * y\right)
$$

since $x * y \in Q_{n}$. If $x \in Q_{n}, y \in H_{n}$ then there are two cases. If $y \in P_{n}$ then $P\left(H_{n}, x\right) * P\left(H_{n}, y\right)=p_{n} * y=p_{n}$ since $p_{n} \in R_{n-1}$ by definition and any element of P_{n} acts as an identity for any element of R_{n-1}. However $P\left(H_{n}, x * y\right)=P\left(H_{n}, x * h_{n}(y)\right)=p_{n}$ since $x * h_{n}(y) \in Q_{n}$. If $y \in R_{n}$ then $P\left(H_{n}, x\right) * P\left(H_{n}, y\right)=p_{n} * y=x * y=P\left(H_{n}, x * y\right)$. This completes the proof of the lemma.

Lemma 3.4. Let X be as above and let $x, y \in X$, and suppose $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are sequences in H such that $x_{n} \rightarrow x, y_{n} \rightarrow y$. Then there exists $z \in X$ such that $\left\{x_{n} * y_{n}\right\} \rightarrow z$, where $*$ denotes the operation on any H_{n} containing x_{n} and y_{n}, and z is independent of the choice of the sequences.

Proof. We distinguish four cases.
Case I. $x=y=1$. From the definition of multiplication on H, if $a, b \in P_{k}=\left[\operatorname{Com}\left(1, H \backslash\left\{c_{k}\right\}\right)\right]^{*}$ then $a * b \in P_{k}$. Now $\left\{P_{k}\right\}$ forms a neighborhood basis at the end point 1. Since both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are eventually in each $P_{k},\left\{x_{n} * y_{n}\right\}$ is eventually in each P_{k} and hence $\left\{x_{n} * y_{n}\right\} \rightarrow 1$.

Case II. x, y, and 1 all distinct. Let N be an integer so large that $P\left(H_{0}, x\right)$ and $P\left(H_{0}, y\right)$ are in $\operatorname{Com}\left(0, H_{0} \backslash\left\{c_{N}\right\}\right)$ and that the diameter of any component of $X \backslash H_{N}<d(x, y) / 2$. This implies $\operatorname{Com}\left(x, X \backslash H_{N}\right)$ and $\operatorname{Com}\left(y, X \backslash H_{N}\right)$ are disjoint open sets, and we may assume $x_{N} \in \operatorname{Com}\left(x, X / H_{N}\right)$ and $y_{n} \in \operatorname{Com}\left(y, X \backslash H_{N}\right)$ for all n. Also we may assume $d\left(x_{n}, y_{n}\right)>d(x, y) / 2$ for all n. We now show
$x_{n} * y_{n}=P\left(H_{N}, y_{n}\right) * P\left(H_{N}, y_{n}\right)$ for all n. The statement is obvious if $x_{n}, y_{n} \in H_{N}$. Suppose it is true whenever $x_{n}, y_{n} \in H_{m}$ for some $m \geqq N$, and let $x_{n}, y_{n} \in H_{m+1}=H_{m} \cup Q_{m}$. If $x_{n} \in Q_{m}$ and $y_{n} \in H_{m}$ then $x_{n} * y_{n}=$ $p_{m} * y_{n}$. By hypothesis, since $p_{m}, y_{n} \in H_{m}$ then

$$
p_{m} * y_{n}=P\left(H_{N}, p_{m}\right) * P\left(H_{N}, y_{n}\right)
$$

But $P\left(H_{N}, p_{m}\right)=P\left(H_{N}, x_{n}\right)$ since $Q_{m} \subset\left[\operatorname{Com}\left(x_{n}, X \backslash H_{N}\right)\right]^{*}$. Thus $x_{n} * y_{n}=$ $P\left(H_{N}, x_{n}\right) * P\left(H_{N}, y_{n}\right)$. By symmetry the statement is true if $x_{n} \in H_{m}$ and $y_{n} \in Q_{m}$. The statement is obvious if both $x_{n}, y_{n} \in H_{m}$, whereas the case $x_{n}, y_{n} \in Q_{m}$ is impossible for it implies $d\left(x_{n}, y_{n}\right)<d(x, y) / 2<$ $d\left(x_{n}, y_{n}\right)$.

We know H_{N} is a semilattice and hence

$$
x_{n} * y_{n}=P\left(H_{N}, x_{n}\right) * P\left(H_{N}, y_{n}\right) \longrightarrow P\left(H_{N}, x\right) * P\left(H_{N}, y\right)
$$

since $P\left(H_{N}, \cdot\right)$ is continuous.
Case III. $x=y \neq 1$
(a) $x=y \notin H$. Then $x=y$ is an end point of X and $\left\{U_{i}\right\}=$ $\left\{\left[\operatorname{Com}\left(x, X \backslash H_{i}\right)\right]^{*}\right\}$ is a neighborhood basis at $x=y$. We show that if U_{i} is fixed and if $x_{n}, y_{n} \in U_{i} \cap H_{N}$ then $x_{n} * y_{n} \in U_{i} \cap H_{N}$, for any N. Note the statement is true for $N \leqq i$. Suppose it is true whenever $x_{n}, y_{n} \in U_{i} \cap H_{m}$ for some $m \geqq i$, and let

$$
x_{n}, y_{n} \in U_{i} \cap H_{m+1}=U_{i} \cap\left(H_{m} \cup Q_{m}\right)
$$

If $x_{n} \in Q_{m}$ and $y_{n} \in H_{m}$ then $x_{n} * y_{n}=p_{m} * y_{n} \in U_{i} \cap H_{m} \subset U_{i} \cap H_{m+1}$ by the induction hypothesis. By symmetry the statement is true if $x_{n} \in H_{m}$ and $y_{n} \in Q_{m}$. If $x_{n}, y_{n} \in Q_{m}$ then $x_{n} * y_{n} \in Q_{m} \subset U_{i} \cap H_{m+1}$, and if $x_{n}, y_{n} \in H_{m}$ the statement follows from the induction hypothesis.

Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are eventually in each U_{i}, and since for each n and each i we can find $N(n, i)$ such that $x_{n}, y_{n} \in U_{i} \cap H_{N(n, i)}$, we conclude that $\left\{x_{n} * y_{n}\right\}$ is eventually in each U_{i}. Thus $\left\{x_{n} * y_{n}\right\} \rightarrow x=y$.
(b) $x=y \in H_{N}$, some N. Let $\varepsilon>0$. There exists $L>N$ so that the diameter of any component of $X \backslash H_{L}$ is less that $\varepsilon / 2$, and so that $B(x, \varepsilon / 2) \cap P_{L}=\varnothing$. We may assume $d\left(x_{n}, x\right)<\varepsilon / 2$ and $d\left(y_{n}, y\right)<\varepsilon / 2$ for each n. Divide $\left\{x_{n} * y_{n}\right\}$ into two (perhaps finite) sequences: If $x_{n} * y_{n} \in H_{L}$ then

$$
\begin{aligned}
x_{n} * y_{n} & =P\left(H_{L}, x_{n} * y_{n}\right) \\
& =P\left(H_{L}, x_{n}\right) * P\left(H_{L}, y_{n}\right) \rightarrow P\left(H_{L}, x\right) * P\left(H_{L}, x\right)=x y=x=y,
\end{aligned}
$$

by Lemma 3.3 and the continuity of multiplication on H_{L}. If $x_{n} * y_{n} \notin H_{L}$, then $x_{n} \notin H_{L}$ and $y_{n} \notin H_{L}$ because $B(x, \varepsilon / 2) \cap P_{L}=\varnothing$ and using the definition of multiplication on H. Also, using the definition of
multiplication $x_{n} * y_{n} \in \operatorname{Com}\left(x_{n}, X \backslash H_{L}\right)$ or $x_{n} * y_{n} \in \operatorname{Com}\left(y_{n}, X \backslash H_{L}\right)$. Thus

$$
d\left(x, x_{n} * y_{n}\right) \leqq d\left(x, x_{n}\right)+d\left(x_{n}, x_{n} * y_{n}\right)<\varepsilon
$$

or

$$
d\left(y, x_{n} * y_{n}\right) \leqq d\left(y, y_{n}\right)+d\left(y_{n}, x_{n} * y_{n}\right)<\varepsilon
$$

In either case $d\left(x, x_{n} * y\right)=d\left(y, x_{n} * y_{n}\right)<\varepsilon$. We conclude that $\left\{x_{n} * y_{n}\right\} \rightarrow$ $x=y$.

Case IV. $y \neq x=1$. We first establish two facts.
(A) If $a, b \in H$ so that $P\left(H_{0}, a\right) \in \operatorname{Com}\left(1, H_{0} \backslash\left\{c_{n}\right\}\right)$ and $P\left(H_{0}, b\right) \in$ Com ($0, H_{0} \backslash\left\{c_{n}\right\}$) for some n, then $a^{*} b=P\left(H_{0}, a\right)^{*} b$.

The proof is by the induction on the H_{i} containing a. It is clear for $a \in H_{0}$. Suppose the statement is true for $a \in H_{m}, m \geqq 0$, and let $a \in H_{m+1}=H_{m} \cup Q_{m+1}$. Suppose $a \in Q_{m+1}$, for the induction hypothesis assures the statement is true if $a \in H_{m}$. Then since a and b are separated by $c_{m}, b \notin Q_{m+1}$. Hence $a * b=p_{m+1} * b$. But $p_{m+1} * b=P\left(H_{0}, p_{m+1}\right) * b$ by the induction hypothesis, and

$$
P\left(H_{0}, p_{m+1}\right)=P\left(H_{0}, a\right),
$$

so

$$
a * b=P\left(H_{0}, a\right) * b
$$

Thus (A) is established.
(B) If $a, b \in H$ so that $a \in \operatorname{Com}\left(1, H_{0} \backslash\left\{c_{n}\right\}\right)$ and $b \in \operatorname{Com}\left(0, H_{0} \backslash\left\{c_{n}\right\}\right)$ for some n, then either $a^{*} b=a^{*} P\left(H_{n}, b\right)$ or $a^{*} b \in \operatorname{Com}\left(b, X \backslash H_{n}\right)^{*}$.

The proof is by induction on the H_{i} containing b. If $b \in H_{n}$ then $P\left(H_{n}, b\right)=b$ and the statement is true. Suppose the statement is true when $b \in K_{m}$ for some $m \geqq n$, and let $b \in Q_{m+1}$. If $a \in \operatorname{Com}\left(1, H_{0} \backslash\left\{c_{m}\right\}\right)$ then $a * b \in Q_{m+1} \subset \operatorname{Com}\left(b, X \backslash H_{n}\right)^{*}$. If $a \in$ [Com ($0, H_{0} \backslash\left\{c_{m}\right\}$)]* then $a * b=a * p_{m}$. But $a * p_{m}=a * P\left(H_{n}, p_{m}\right)$ by the induction hypothesis, and $P\left(H_{n}, p_{m}\right)=P\left(H_{n}, b\right)$. Thus $a * b=a * P\left(H_{n}, b\right)$ and (B) is established.

We now distinguish two subcases of Case IV.
Subcase 1. $y \in H_{M}$, some M. Let $\varepsilon>0$. Choose M so large that c_{m} does not separate y from 0 and the diameter of any component of $X \backslash H_{M}$ is less than $\varepsilon / 2$. We may assume that for each n, $P\left(H_{0}, y_{n}\right) \in \operatorname{Com}\left(0, H_{0} \backslash\left\{c_{m}\right\}\right)$ and $P\left(H_{0}, x_{n}\right) \in \operatorname{Com}\left(1, H_{0} \backslash\left\{c_{m}\right\}\right)$. Then by (A), $x_{n} * y_{n}=P\left(H_{0}, x_{n}\right) * y_{n}$, and by (B), $P\left(H_{0}, x_{n}\right) * y_{n}=P\left(H_{0}, x_{n}\right) * P\left(H_{M}, y_{n}\right)$ or $P\left(H_{0}, x_{n}\right) * y_{n} \in \operatorname{Com}\left(b, X \backslash H_{n}\right)$. If the former then

$$
x_{n} * y_{n}=P\left(H_{0}, x_{n}\right) * P\left(H_{u}, y_{n}\right) \longrightarrow 1 * P\left(H_{M}, y\right)=y
$$

by the continuity of the multiplication on H_{M} and Lemma 3.3. In the latter case $d\left(P\left(H_{0}, x_{n}\right) * y_{n}, y_{n}\right)<\varepsilon / 2$. We may assume $d\left(y_{n}, y\right)<\varepsilon / 2$, so $d\left(y, P\left(H_{0}, x_{n}\right) * y_{n}\right)<\varepsilon$. Thus we conclude that $\left\{x_{n} * y_{n}\right\} \rightarrow y$.

Subcase 2. $y \notin H$. If $V_{k}=\left[\operatorname{Com}\left(y, X \backslash H_{k}\right)\right]^{*}$ then $\left\{V_{k}\right\}$ is a neighborhood basis, so we need only show $\left\{x_{n} * y_{n}\right\}$ is eventually in each V_{k}. Fix a V_{k}. We may assume again that for each n, $P\left(H_{0}, y_{n}\right) \in \operatorname{Com}\left(0, H_{0} \backslash\left\{c_{u}\right\}\right), P\left(H_{0}, x_{n}\right) \in \operatorname{Com}\left(1, H_{0} \backslash\left\{c_{n}\right\}\right)$, and $y_{n} \in V_{k}$ for some $M \geqq k$. By (A) and (B), $x_{n} * y_{n}=P\left(H_{0}, x_{n}\right) * P\left(H_{m}, y_{n}\right)$ or $x_{n} * y_{n} \in$ $\operatorname{Com}\left(y_{n}, X \backslash H_{\mu}\right)^{*} \subset V_{k}$. However $P\left(H_{\mu}, y_{n}\right) \in V_{k}$, and $P\left(H_{0}, x_{n}\right) \in H_{0}$, so $P\left(H_{0}, x_{n}\right) * P\left(H_{m}, y_{n}\right) \in V_{k}$. This completes the proof of the lemma.

Theorem 3.5. Let X be a finite dimensional cell-cyclic Peano continnum without a nodal element. Then X admits a semilattice with identity.

Proof. By the above, the dense set H admits a semilattice with identity. For each $x, y \in X$ let $\left\{x_{n}\right\} \rightarrow x,\left\{y_{n}\right\} \rightarrow y$ where $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are sequences in H. Define $x y=\lim \left\{x_{n} * y_{n}\right\}$. By 3.4 this limit exists and is independent of the choice of the sequences. It follows that this operation is a semilattice with identity on X. Combining this with Theorem 2.3 we have

Corollary 3.6. Let X be a finite dimensional cell-cyclic Peano continuum. Then X admits a commutative semigroup with identity and zero.

Corollary 3.6. Any retract of a two-cell admits a commutative semigroup with identity.

Proof. Borsuk [1] has shown that a subset X of a two-cell A is a retract of A if and only if A is a locally connected continuum which does not separate the plane. Whyburn [11] has shown that for locally connected continua in the plane, not separating the plane is equivalent to every cyclic element being a simple closed curve with interior, i.e., a two-cell. Thus a retract of a two-cell is a cell-cyclic Peano continuum, and the result follows from Corollary 3.6.

Definition 3.8. A space X is homogeneous if for each pair of points x and y in X there is a homeomorphism of X onto itself carrying x to y.

THEOREM 3.9. Any finite dimensional homogeneous cell-cyclic

Peano continuum (in particular, any homogeneous retract of a twocell) is a point.

Proof. By a result of Hudson and Mostert [5], any homogeneous compact connected semigroup with identity is a group. Combining this with Corollaries 3.6 and 3.7 , unless X is a point X admits the structure of a group with two idempotents, a contradiction.

References

1. K. Borsuk, Theory of Retracts, Polska Acad. Nauk Monografie Mat., Tom 44 (1967).
2. J. H. Carruth, A note on partially ordered compacta, Pacific J. Math., 24 (1968), 229-231.
3. J. Dugundji, Topology, Allyn and Bacon, 1966.
4. C. A. Eberhart, Some classes of continua related to clan structures, Doctoral Dissertation, Louisiana State University, 1966.
5. A. L. Hudson and P. L. Mostert. A finite dimensional homogeneous clan is a group, Annals of Math., 78 (1963), 41-46.
6. R. J. Koch, Some open questions in topological semigroups, An. Acad. Brasil. Ci., 41 (1969), 19-20.
7. R. J. Koch and L. F. McAuley, Semigroups on continua ruled by arcs, Fund. Math., 56 (1964), 1-8.
8. C. Kuratowski and G. T. Whyburn, Sur les elements cycliques et leurs applications, Fund. Math., 16 (1930), 305-331.
9. J. D. Lawson, Topological semilattices with small semilattices, J. London Math. Soc., (2), 1 (1969), 719-724.
10. G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Pub., 28 (1942).
11. -, Concerning the structure of the continuous curve, Amer. J. Math., 50 (1928), 167-194.
12. W. W. Williams, Semilattices on Peano Continua, Proc. Amer. Math. Soc., 49 (1975), 495-500.

Received November 3, 1975. Portions of this paper generalize unpublished parts of a dissertation presented to the Graduate School of Louisiana State University. The author wishes to thank Professor R. J. Koch for encouraging the work on these results.

