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ON THE PRIME DIVISORS OF
ZERO IN FORM RINGS

L. J. RATLIFF, JR.

A number of new results concerning the prime divisors of
zero in the form ring 5F(A, /) of a Noetherian ring A with
respect to an ideal I in A are found by using certain auxiliary
rings of the Rees ring 0ί(A, I). Then it is shown that in every
semi-local ring R there exist open ideals Q such that the prime
divisors of uS/lζR, Q) have a number of properties known to hold
when O is a normal ideal and R is analytically unramified.

1. Introduction, Form rings (= associated graded rings) have
been studied in a number of important papers (such as [3], where the
concept was introduced, and [7,15,16]) and many textbooks on com-
mutative algebra (such as [1,5,21]). Such rings are an important tool in
many investigations in commutative algebra, and therein they appear in
an auxiliary role. Our concern in this paper is with a certain aspect of
the form rings themselves, namely, their prime divisors of zero. It is
important to know about these prime ideals for a number of reasons,
such as: they can be used to help determine when a local ring is
quasi-unmixed [10^ Theorem 3.8(2)]; unmixed [5, (25.1)]; analytically
irreducible [5, (25.151]; or, analytically normal [5, (25.15)]. (Also, if /
and K are ideals in a Noetherian ring A and K is the I-form ideal of K_ in
9 = &(A, I) (the form ring of A with respect to /), then 9IK =
9(A/K,(I + K)/K), so knowledge about prime divisors of zero in form
rings immediately gives knowledge about the prime divisors of K.)

It turns out that, due to an important result of D. Rees [15, Theorem
2.1], the study of the prime divisors of zero in 9(A, I) is equivalent to
studying the prime divisors of the principal ideal u<3i in the Rees ring
<3i = £%(A,/), since SF=9llu0t (and in this isomorphism, X =
(KA[t, w] Π έ%, w)έ%). Now from this point of view, a number of aux-
iliary rings can be brought into play to help determine properties of the
prime divisors of u&t (and vice versa, these properties imply certain
results for the auxiliary rings). (And because of this, the results in this
paper are stated for the prime divisors of uέ%, and the corresponding
results for the prime divisors of zero in the form rings (or the prime
divisors of K) are not explicitly stated.)

The specific auxiliary rings which are of importance below are
9t(A9 In) (for n g 1), 9t(A *, IA *) (where A is semi-local and A * is its
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completion), and the integral closures of these rings. By using these
auxiliary rings, it is seen that there are certain one-to-one correspon-
dences and certain subspace properties between the prime divisors of u0l
and the prime divisors of (u) in these auxiliary rings. To explain this in a
little more detail, a brief summary of the results in this paper will now be
given.

Section 2 contains a few preliminary definitions and results which are
needed through §5.

In §3, it is shown that u0l(A7 In) has at most as many minimal prime
divisors as u0i (3.2), where 0i = 0l(A7I), and that there is a one-to-one
correspondence between the prime divisors of (u) in the integral closures
of these rings (3.3). Also, two additional important results are given in
(3.6) and (3.7). The first shows that if I is not nilpotent, then, for each
prime divisor p' of u0l' (01' = the integral closure of 01), p'Π 01 is a
relevant prime divisor of u0i (that is, not all homogeneous elements of
positive degree are in p'ΠSft). The other shows that if ICJ, the
Jacobson radical of A, then the depth of each homogeneous ideal H in 01
can be computed thru some maximal homogeneous prime ideal in 01 (so
this holds, in particular, for the prime divisors of u0l).

Section 4 is concerned with the prime divisors of (u) in 01 = 01 (i?, /),
where I is an arbitrary ideal in a semi-local ring JR, and it is shown that
there is a many-one correspondence between the prime divisors p° of (u)
in 01° = 0l(R*JR*) and the prime divisors/? of (u)in0l and, if p° and/?
correspond, then 0lp is a subspace of 0ί^ (4.2). Also, certain relation-
ships between the depths of the prime divisors of (u) in 01 and 01° and the
depths of the prime divisors of (0) in R * are given in (4.3). Then, similar
results are shown to hold for the prime divisors of (u) in the integral
closures of 01 and 01° (see (4.5) and (4.6)).

If / is an open ideal in R, then it is shown in §5 that the results of §4
can be considerably sharpened. For example, the correspondence
between the prime divisors of (u) in 01 and 01° is one-to-one, and then
depth p = depth p° and 0lp is a dense subspace of 0l°p« (5.1.1). Again,
related results hold for the integral closures of 01 and 01° (see (5.1.3) and
(5.1.4)).

Section 6 contains some additional preliminary results (on normal
ideals and g-ϋ-rings) which are needed to prove the results in §7.

In (7.1), it is shown that in every semi-local ring JR there exist open
ideals B such that the prime divisors of (u) in if = 01 (R,B) have many
properties in common with the case when R is analytically unramified
and B is a normal ideal (see the paragraph preceding (7.1)). Then it is
shown that there exists a one-to-one correspondence between the
minimal prime divisors of (u) in &, if\ 9", T1, and 0i(R7B

k), for all
k ^ 1 (7.4) and (7.6).

Section 8 contains a few applications of the results in this paper to:
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semi-local rings which are analytically unramified (8.1), analytically
irreducible (8.3), and quasi-unmixed ((8.4) and (8.5)); and, the (catenary)
chain conjectures (8.6). Then this paper is closed by asking three
questions in §9.

2. Preliminary definitions and known facts. In this
paper, all rings are assumed to be commutative with an identity, and the
terminology is, in general, the same as that in [5]. However, a number
of the concepts that are needed are, perhaps, not too well known. For
this reason, in this section we define some of these concepts and list the
facts concerning them that are needed through §5. (Section 6 contains
additional definitions and facts that are needed in §7.) We begin with
the definition of Rees rings.

(2.1) DEFINITION. Let / = {bu , 6g)A be an ideal in a Noetherian
ring A, let t be an indeterminate, and let u = 1/ί. Then the Rees ring
01 = 01 (A, /) of A with respect to I is the subring 0i = A [tbu , tbg, u] of
A[t,u].

It is clear from (2.1) that the elements in 01 are finite sums Σlmcit\
where ct E V (with the convention that Γ = A, for i ̂  0), so S? is a
graded Noetherian subring of A[t, u]. (2.2) lists a number of other
known facts concerning Rees rings of a Noetherian ring which will be
needed in what follows. (Most of the results are not proved in this
generality in the references, but the proof of the more general case is the
same.)

(2.2) REMARK. Let / = (bu -,bg)A be an ideal contained in the
Jacobson radical of a Noetherian ring A, let 0i = £%(A, /), and let B*
denote the ideal βA[ί,w]Π^, where B is an ideal in A. Then the
following statements hold:

(2.2.1) [14, p. 229]. u is a regular element in 01 and un<3i Π A = I",
for all n ̂  1. Moreover, the maximal homogeneous ideals in 01 are the
ideals (w, M*)0l = (w, M, tbu -,tbg)0l, where M is a maximal ideal in A.

(2.2.2) [15, Theorem 1.5]. If Π ^ is an irredundant primary de-
composition of an ideal B in A, where qι is ̂ -primary, then p * is prime,
q* is /?*-primary, and Π q* is an irredundant primary decomposition of
B*.

(2.2.3) [15, Lemma 1.1]. 0l(AJ)/B* = 0l(A/B,(I + B)/B).
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(2.2.4) [10, Remark 3.7]. Height B* = height B and altitude <3i =
altitude A + 1 = height (w, M*)έ%, for each maximal ideal M in A such
that height M = altitude A. Therefore, by (2.2.3), depth B* = height
(w, M*)9ilB * = depth B + 1, where M is a maximal ideal in A such that
depth B = height M/B.

(2.2.5) [15, Theorem 2.1]. <3ilu<3i = &(AJ), the form ring of A
with respect to /.

Although (2.2.5) is proved only for an M-primary ideal in a local ring
(i?, M) in [15], exactly the same proof shows that (2.2.5) holds, in fact, for
an arbitrary ideal / in an arbitrary Noetherian ring A. It is because of
this that Rees rings will be of considerable importance in this
paper. For, this shows that all the information concerning the number
of prime divisors of zero, their depths, etc. in the form rings ^(A, J) of A
with respect to / can be obtained from the corresponding Rees rings
91 (A, I). Also, Rees rings are easier to work with, and even more
information can be obtained by working with the Rees rings rather than
the form rings (such as certain one-to-one correspondences and certain
subspace properties; for example see (4.2.1) and (5.1.1)). Therefore,
most of the results in this paper will be concerned with the rings 91 (A, J)
— and the corresponding results for the form rings will usually not be
explicitly stated.

It will frequently be necessary to pass from a ring to its integral
closure or its completion. Therefore we adopt the following two
notational conventions, in order to avoid continual repetitions.

(2.3) NOTATION. (2.3.1) A ' denotes the integral closure of a ring A
in its total quotient ring.

(2.3.2) R * denotes the /-adic completion of a semi-local ring R,
where / is the Jacobson radical of R.

Since u9i and u9l' are principal ideals generated by a regular
element, such ideals will be of importance in what follows. Many facts
concerning the prime divisors of such an ideal are well known. Two of
the less well known such facts which will be needed through §5 are given
in the following remark.

(2.4) REMARK. Let b be a regular element in A', where A is a
Noetherian ring. Then the following statements hold:

(2.4.1) [11, Proposition 2.13]. bA' is a finite intersection of height
one primary ideals, and if p is a prime divisor of bA', then p contains
exactly one minimal prime ideal z and Ap/zAp is a DVR (discrete
valuation ring).
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(2.4.2) [11, Theorem 2.15]. If C is a (not necessarily Noetherian)
ring such that A C C C A ' and p is a prime divisor of bA', then p Π C i s
a prime divisor of each principal ideal generated by a regular element
which it contains.

One further definition and two facts concerning it are still needed.

(2.5) DEFINITION. Let I be an ideal in a ring A. Then an element
x E A is integrally dependent on I in case x satisfies an equation of the
form xn + cλx

n~ι + -f cn = 0, where c} E Γ (/ = 1, , n) [5, Exercises,
p. 34]. The set Ia of elements in A which are integrally dependent on I
is the integral closure of I in A, I is integrally closed in case Ia = I.

(2.6) REMARK. The following statements hold for an ideal / in a
ring A:

(2.6.1) [8, §6]. / C / α C R a d / and Ia is an ideal in A such that

(Ia)a=l.

(2.6.2) If A is Noetherian, then

where B = IAr.

Proof. (2.6.2) If c E ( B f c ) α , then by multiplying an equation of
integral dependence of c on Bk (say of degree n) by tnk, it is readily seen
that ctk E3#(A',JA') ' , so it follows that A'[w, ίBβ, ] C &(A', XA')' =
$ ( A , / ) ' . On the other hand, if r GA' and rί" E 3#(A,/)', then, from
an equation of integral dependence, it is seen that rG(InAf)a, so
rtn E A '[w, ίBβ, ]. (2.6.2) follows from this, since 91 (A, / ) ' is a graded
subring of A'[t, u].

3. Prime divisors of zero in 3F(A, I). The results in this
section are concerned with the prime divisors of zero in the form ring
ίF(A, /), where I is an arbitrary ideal in an arbitrary Noetherian ring
A. Actually, as noted after (2.2), the results are specifically concerned
with the prime divisors of u0ί(A, I). It is shown that knowledge of the
prime divisors of u(3i{A,ln) (with n S 2) and of u($l(A, I)') give some
information concerning the prime divisors of u0i(A,I), and vice
versa. We begin with the following result.

(3.1) PROPOSITION. Let I be an ideal in a Noetherian ring A, fix a
positive integer n, and let 01 = Sk(AJ) and $P = $ί(AJn). Then Sx =
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{depth q; q is a minimal prime divisor of u0>}CS2 = {depth p; p is a
minimal prime divisor of u0t}C S3 = {depth Q; Q is a prime divisor of

Proof. Let q be a minimal prime divisor of u0>, and let si -
A [tnln, un]. Then si = 0*, so there exists a minimal prime divisor q' of
unsi that corresponds to q under the isomorphism, and then depth
q' = depth q. Also, si Q0i and 01 is integral over si, so there exists a
minimal prime divisor p of uέ% such that p Γ\ si = q', and necessarily
depth p = depth <?'. Therefore Si C S2.

Let p be a minimal prime divisor of u0i. Now £% is integral over
si[u] and ̂ [w] and 01 have the same total quotient ring. Therefore,
since height p = 1, p ' = p Π i [ « ] is a prime divisor of wn^[w], by
(2.4.2). Also, sέ[u\ is a free ^-module (since w is transcendental over
A), so p Π si = p' Π si is a prime divisor of unsέ and depth p = depth
p Π si. Therefore, by the isomorphism noted above, there exists a
prime divisor Q of u0> such that depth Q = depth p, hence S2 C S3.

(3.2) REMARK. It was actually shown in the first paragraph of the
proof of (3.1) that if d is a given positive integer and u0> has exactly k
minimal prime divisors of depth = d, then u0i has at least k minimal
prime divisors of depth = d.

It follows from (3.2) that if u0i has only one minimal prime divisor,
then this also holds for u0>. Concerning this, see (5.3).

The next proposition shows that a considerably sharper result than
(3.1) holds for the prime divisors of (u) in 0tf and &'. (Besides being of
interest in its own right, (3.3) will be of importance in a number of proofs
below.)

(3.3) PROPOSITION. With A, I, 01, and 0> as in (3.1), there exists a
one-to-one correspondence between the (minimal) prime divisors p' ofu0i'
and the (minimal) prime divisors q' of u0>t such that if p' and q'
correspond, then depth p' = depth q'.

Proof. (Note that the prime divisors of u0t' and of u0>' are all
height one, by (2.4.1).) Let si = A[tnΓ, un], so si = 0>, hence si'=0>'.
Therefore it suffices to show that there exists a one-to-one correspon-
dence between the prime divisors of u0l' and the prime divisors of unsί'
such that corresponding ideals have the same depth. For this, note that
si'C 01' and 01' is integral over si', so if q is a prime divisor of unsέ',
then there exists a prime divisor p' of u0ί' such that p'Πsί' = q and
depth p' = depth q.

On the other hand, if p' is a prime divisor of u0l', then let B = IA'
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and c E (Bk)a (for some k ^ 0 ) such that ctk E p ' and ctk isn't in any
other prime divisor of u$l'. (Note that $t' is a graded subring of A '[ί, w ]
(so the prime divisors of u0l' are homogeneous), and 01' =
A '[K, tBm , V(B% ] and d' = A'[iΓ, tn(Bn)a, , tni(Bni)a, ], by
(2.6.2).) Then c n r k E p ' Γ l ^ ' and c n r k £ p " Π ^ ' , for all other prime
divisors p" of u$i'. Also, /?'Π ^ ' is a prime divisor of unsd' (as in the
last paragraph of the proof of (3.1)) and depth p ' = depth p'Πsί'.

(3.4) COROLLARY. Wfft ίfte notation of (3.1), {deptfi p ' ; pr is a
(minimal) prime divisor of u$t'} = {depth q'\ q' is a (minimal) prime
divisor of u0>'} C {depth P ; P is a prime divisor of u&t} Π {depth Q Q is a
prime divisor of u3>).

Proof. The first two sets are equal by (3.3), and it is contained in
each of the last two sets, since if p ' is a prime divisor of u0i\ then p' C\<3i
is a prime divisor of uSk (2.4.2) and depth pf Γ) 9ί = depth p1 (and a
similar statement holds for the prime divisors of ud*').

The next remark is concerned with u<3i(A, Ia). (Considerably more
will be said about the prime divisors of this ideal when A is semi-local
and / is an open ideal, in §7.)

(3.5) REMARK. With A, /, and 91 as in (3.1), k{^ k2^ k3, there kλ

(resp., fc2, k3) is the number of minimal prime divisors of u0l (resp.,
u9t(A,Ia), uW).

Proof. This follows from integral dependence, since 01 C
0t(A9Ia)CStr.

The next result is concerned with relevant prime divisors of u0ί. To
give one reason why these are of interest, the following terminology is
needed.

A homogeneous ideal H in a graded ring is said to be irrelevant if it
contains all homogeneous elements of sufficiently large degree; other-
wise, H is said to be relevant. If all prime divisors of zero in a form ring
2F(A, I) are relevant, then / has very strongly superficial elements of all
large degree k that is, there exist x E Ik such that Γ+k: xA = Γ, for all
n ^ O . (See [20, Theorem 2.5].) (3.6) shows that at least the prime
divisors p' (Λ0i of u0l are relevant, if height / > 0 .

I am indebted to the referee for the following proof of (3.6), which is
simpler than my original proof.
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(3.6) PROPOSITION. With A, /, and 9i as in (3.1), if height I >0,
then, for each (minimal) prime divisor pf of u9ί', tl£p' Π 9i.

Proof. Let p' be a prime divisor of u9i', so there exists a unique
minimal prime ideal z' in 91' such that z'Cp', and then (9l'p)lz'9l'p> is a
DVR (2.4.1). Therefore 9l'p> defines a valuation v on the total quotient
ring of 9i' (υ(x) = *> if and only if x = c/b with 6,cG3?' and c E z').

Assume height / > 0 (so I£zf), and suppose that tl C
p'Π9ί. Then ί/Cp', so υ(u)< ϋ(/) = v((IA%), where !>(/) =
min{ϋ(jc); x E I}<™ (since J £ zf). Define a homogeneous valuation v'
on 91' by ι/(for) = ι>(&)- rυ(I), where &G(/Ά')α (see (2.6.2)). Then
v'(btr) ^ ι>(&Γ), if r ̂  0, and υ{btr) > 0, if r < 0, so the center oίυ' ox\9i'
is contained in p' and v'(u)>0. It follows that υ' has center p' on 91',
and u' is extendable to 9l'p>, hence ϋ' coincides with v. But this is a
contradiction, since I/(JC) = O, for some x E ίί. Therefore tl£p'.

The final proposition in this section shows the very important (and
somewhat surprising) result that the depth of a homogeneous ideal in 9i
can be computed thru a maximal homogeneous prime ideal in 91. An
important corollary concerning the prime divisors of zero in 9t is given
in (3.8).

(3.7) PROPOSITION. With A, /, and 9i as in (3.1), assume that I is
contained in the Jacobson radical of A. Then, for each homogeneous
ideal H in 9i such that depth H < o°, there exists a maximal homogeneous
prime ideal Ji in 9i such that H CM and depth H - height Jt/H.

Proof. Since each prime divisor of H is homogeneous, it clearly
suffices to prove this in the case that H = P is a homogeneous prime ideal
of finite depth. If / is nilpotent, then tlQP, so either 91 /P =
A/(PΠ A) (if u EP) or u +P is transcendental over A/(PΠA) (if
u 0. P, since P - (P Π A)A[t,u]Γ)9l, as is shown below). The conclu-
sion readily follows in either case from (2.2.1).

Therefore assume that / isn't nilpotent. If u 0. P, then let p =
P Π A and Q = pA[t,u]Γ)9l. Then P = Q, as will now be
shown. Since u & P, pA [t, u] C PA [ί, u], so Q C P. Also, P and Q
are homogeneous, so it sufficed to show that Q[i} = P(/] (-oo<ί<oo) ?

where, for a homogeneous ideal C in 91, C{i] = {a E A; at1 EC). Since
Q C P, <?[,] C P m , for all /. Also, P{i] C Q [ φ for i ^ 0, since if a E P{i]

(i ^ 0), then auι E P and w fέ P, so α G P n A = O Π A C θ , hence
auι E Q, and so a E Q{i]. Finally, it is readily seen that, if i >0, then
Q[i} = p ΠΓ and P[i} = w 'P Π A C (P Π A) Π I1, so P m C O(ι]. Therefore
P = Q, so the conclusion follows from (2.2.4).
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Thus it may be assumed that u E P. Let N be a maximal ideal in 01
such that depth P = height N/P = (say) d. Let P = P{) C P] C C Pd =
N be a saturated chain of prime ideals in 0i between P and N, and let /
be the largest subscript such that P, is homogeneous. Then it may
clearly be assumed that i < d. Let b E / such that tb <£ N. (Since
u EN, if tie N, then 3#/N = Λ /(N Π Λ), so M = N Π Λ is maximal
and N — (w, ί/, M )ί% is homogeneous.) Assume temporarily that b is
regular in R. Let Sf = &t[ί/tb] and B = A [///>], so S? = β[ίfc,l/ίfe] and
tb is transcendental over B. Let p, = Py5^ Π B (/ = 0,1, , d). Then,
by [10, Remark 3.11]: O, = p}¥ Γ) 01 is homogeneous; O, C Py Q, - Py, if
Pj is homogeneous; and, O;5^ Π B = pr Using this, it will now be shown
that O, = OH i C O; f2 C C Qd. As just noted, Qt = ptf Π <% = P, and
O,4i — Pι+\^ Π Ŝ  CP i+i (since, by hypothesis, P, is homogeneous and Pι+X

isn't), so Pι = O, = Oi+i, since height P.+i/P, = 1. Also, for fc =
1, , d - i — 1, Oẑ k CP ί f f c CP I + k + i, since Pi+ίc isn't homogeneous. Now,
since it is well known that a chain of three distinct prime ideals in
B[tb, 1/tb] can't all lie over the same prime ideal in B, Qι+kΣf Π B =
pt+k = P , ^ n f l C P 1 + H 1 ^ n β = p i + k 4 1 = Qι+k + ιynB. Therefore, it
follows that Qt = O, +i C 0^2 C C Qd. Finally, Od is homogeneous and
depth Od^ — depth pdίP^\, so there exists a maximal homogeneous
prime ideal M in Ŝ  such that Qd CM. Therefore P = P()C CP, =
0 I + , C 0 / + 2 C C 0 d CJί, so height J ί / P ^ d - depth P, hence height
M/P = depth P.

Finally, if 6 is a zero divisor, then let K = U{(0): fc'A 5 ̂  1}, and
let K* = KA[ί, u] Π Sϊ. (Note that b isn't nilpotent, since tb&N, so
X ^ A.) Then X* C P, for if z * is a prime divisor of zero in 91 such that
z * C P , then tb£z* so / > £ z = z * Π A (since z * = zA [/, M] Π S?
(2.2.2)), hence K C z, so K * C z * C P . Therefore depth P = depth
P/X*, 9t/K* = 9t(A/K,(I + K)/K) (2.23), ί6 + K* ^ P / K * , and fe + K
is regular in A/K, so the conclusion follows from the case b is regular
in A.

The following corollary is an important special case of (3.7).

(3.8) COROLLARY. With A, /, and <3l as in (3.7), // altitude A < ̂
and p is a prime divisor of u0i, then there exists a maximal homogeneous
prime ideal M in 01 such that p CM and depth p = height Ml p.

Proof. This is clear by (3.7), since each prime divisor of u0i is
homogeneous.

(8.5) and the comments following (8.1) and (9.1) contain other results
which are related to the results in this section.
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4. Prime divisors of zero in ^(JR, I ) . The prime divisors
of u9l(R,I) are considered in this section, where / is an arbitrary ideal
contained in the Jacobson radical of a semi-local ring R. It is shown that
there is a close relationship between these prime divisors and the prime
divisors of u9l(R *, IR *) (2.3.2). (In §5, the case where / is open will be
considered, and the results in the present section will be considerably
sharpened in this case.) We begin with the following result which is a
slight generalization and sharpening of [10, Lemma 3.2]. (It should be
noted that the rings 9l(R,I) are special cases of the rings A in
(4.1).) The lemma will be of frequent use in the remainder of this paper.

(4.1) LEMMA. Let R be a semi-local ring, and let A =
R [Xu - - -, Xk, y b , yd], where the Xt are algebraically independent over
R and the y} are in the total quotient ring of R[Xu ,Xk]. Let
C = R*[Xh ,Xk,yi, ',yd] (2.3.2), soAQC. Then there is a one-to-
one correspondence between the prime ideals P in A such that P Π R is a
maximal ideal and the prime ideals P* in C such that P** Π R * is maximal
given by P = P * Π A and P * = PC. Moreover, if P and P * correspond,
then Ap is a dense subspace of CP* (so height P = height P*), depth
P = depth P *, and P is a prime divisor of an ideal B in A if and only ifP*
is a prime divisor of BC.

Proof The one-to-one correspondence and the fact that Ap is a
dense subspace of CP* both follow from [10, Lemma 3.2] (which proves
these two statements hold when R is local). Further, depth P = depth
P*, since C/P* = A IP (since P and P * lie over corresponding maximal
ideals in JR and R *). Finally, since Ap is a dense subspace of CP*, P is a
prime divisor of B if and only if P * is a prime divisor of BC, by [5,
(18.11)].

The next result shows that the prime divisors of u9i(R *, IR *) give
considerable information on the prime divisors of u9t(R,I), and vice
versa.

(4.2) PROPOSITION. Let I be an ideal in a semi-local ring R such that
ICJ, the Jacobson radical of R, let 9l = 9l(R,I), and let 91° =
91 (R *, IR *) (2.3.2). Then the following statements hold:

(4.2.1) If pQ is a prime divisor of u9t°, then p = p° Π 91 is a prime
divisor of u9i, p° is a prime divisor of pΘl°, and 9lp is a subspace of
9l\«. (In particular, this holds if z is a prime divisor of zero inR * andp0 is
any prime ideal in 91° which is minimal with respect to containing
(zR*[t,u]Γ)9lo,u)9l0, and then depth p° = depth z.)
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(4.2.2) Ifp is a prime divisor ofu&t, then, for each prime divisor p° of
°, p° is a prime divisor of u9i{) and 0ip is a subspace of 9lo

p°.

(4.2.3) With p as in (4.2.2), if p° is a minimal prime divisor of p0i{\
then height p° = height p and depth p° ^ depth p. Moreover, there exists a
minimal prime divisor P of p$l{) such that depth P = depth p.

Proof. (4.2.1) Let Jί° be a maximal homogeneous ideal in 9t° such
that p° C Jί\ and let M = M°n9t. Then $iM is a dense subspace of ^ V
(by (4.1), since M° Π R * is maximal (2.2.1)). Therefore, since u9t°M» is an
extended ideal from SfcM, p = p° Π <3l is a prime divisor of u$i and p° is a
prime divisor of p<3i\ by [5, (18.11)], hence 0ίp is a subspace of <3i\» [5,
(19.2) (3)].

For the parenthetical statement, let z* = zR*[t, u]Π&t°, where z is
a prime divisor of zero in R *, so z * is a prime divisor of zero in dt°
(2.2.2). Let p° be a minimal prime divisor of (z*,w)^°. (Note that
(z*, M ) I V « ( 1 , since 7 C /.) Then p° is a prime divisor of u9t°, by [21,
Lemma 1, p. 394] applied to 0lo

p». Also, since Sk°/z* =
$k(R*/z,(IR* + z)/z) (2.2.3) and tf */z is a complete /oca/ domain,
Sft°/z* is catenary [9, Corollary 3.7] and has exactly one maximal
homogeneous prime ideal N = M{)lz* (2.2.1). (Hence depth
p°/z* = height N/(p°/z% by (3.8). Therefore, since height p°/z*= 1
and height N = depth z + 1 (2.2.4), depth p° = depth p()/z* = height
N - height p°/z * = depth z.

(4.2.2) Let p be a prime divisor of u0i and let p° be a prime divisor
of p3#°. Then p° is homogeneous, since p is, so there exists a maximal
homogeneous ideal M° in ί%° such that p° C Jί°. Then, since Jί° Π ^ * is
a maximal ideal (2.2.1), 0lM is a dense subspace of 0lύ

M» (4.1), where
M = Jί{) Π 31. Therefore, since p is a prime divisor of uSft, p° is a prime
divisor of u@t° and 3lp is a subspace of ί%j!», by [5, (18.11)] and
[5, (19.2) (3)].

(4.2.3) Let p° be a minimal prime divisor of p$° . Then, with Jί°
and Λ£ as in the proof of (4.2.2), 9tM is a dense subspace of SίVj so height
p° = height p [5, (22.9)]. Also, it was shown in the proof of (4.2.1) that
depth p° = height M()lp(). Thus, since $lMlp$lM is a dense subspace of
®>0M°lp®>0M0, depth p° ^ height Jί/p^ depth p. Finally, let Jibe a maximal
homogeneous prime ideal in $i such that p CM and height M/p = depth
p (3.8). Then $iMlp&M is a dense subspace of 3iWlp^ou^ by (4.1), so
there exists a minimal prime divisor P of p9t° such that F C M&10 and
height Jί/p = height Jί&t°/P S depth P. Therefore depth p ^ depth F,
and, as shown above, depth P ^ depth p.
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(4.3) shows that, because of (4.2), quite a lot of information relating
the depths of the prime divisors of u0i and of u0l° can be obtained. (It
should be noted that (4.3) greatly extends part of [10, Proposition 3.9]
where it was shown that the first set in (4.3) is contained in the third set
when I is an open ideal in a local ring R.)

(4.3) COROLLARY. With R, J, 01, and 01° as in (4.2), {depth p pisa
minimal prime divisor ofu0l) C {depth p°; p° is a minimal prime divisor of
u0l0} C {depth z z is a minimal prime ideal in R *} and {depth P\ P is a
prime divisor of u0i}U {depth z\ z is a prime divisor of zero in R*}C
{depth P°; P° is a prime divisor of u0l0}.

Proof. Let the sets be, in order of appearance, S, (/ = 1, ,6).
Then S,CS 2 and S 4 C S 6 , by (4.2.3). Also, S 5 C S 6 , by (4.2.1), since
(zR*[t, w ] Π $ ° , u)0i*^0i\ for all prime divisors z of zero in R* (since
/ C / ) . Finally, if p° is a minimal prime divisor of u0l°, then there exists
a minimal prime ideal z in R * such that z* = zR *[t, u] Π 0i{)Cp° (2.2.2),
and then depth p° = depth z (4.2.1), so 5 2 C 5 3 .

The following remark, part of which is needed for the proof of (4.5),
generalizes parts of (4.2). The proof of the remark is essentially the
same as that given for (4.2), so it will be omitted.

(4.4) REMARK. With the notation of (4.2), let H be a homogeneous
ideal in $i. Then the following statements hold:

(4.4.1) If P° is a prime divisor of H&\ then P = P° Π 01 is a prime
divisor of if, P° is a prime divisor of Pέ%°, and $lP is a subspace of 9t°Po.

(4.4.2) If P is a prime divisor of H and P° is a prime divisor of
then P° is a prime divisor of H0l° and $iP is a subspace of 3?p<>.

(4.4.3) With P as in (4.4.2), if P° is a minimal prime divisor of P<31\
then height P° = height P and depth P° ^ depth P. Moreover, there
exists a minimal prime divisor P° of P0i{) such that depth P° = depth P.

The following proposition is considerably more general than is
actually needed when considering prime divisors of u$t'. However, the
more general result is of importance for other considerations, and its
proof isn't appreciably more difficult than when just considering prime
divisors of u$ftf. For these reasons, it was decided to prove this more
general version of the result.

(4.5) PROPOSITION. With JR, J, 01, and 01° as in (4.2), let Pf be a
homogeneous prime ideal in 0tr. Then the following statements hold:
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(4.5.1) There exists a prime ideal P 0 ' in 01°' such that POf Π Sϊ' = P',
height POf = height P', and depth POf = depth Pr.

(4.5.2) Assume that height P' — 1 and P' contains a regular element,
and let T be the total quotient ring of R*. If z is the minimal prime ideal
in R* such that zT[t,u]Π Sfti)fCΓ (with P()f as in (4.5.1)), then depth
P1 = depth POf= depth z.

Proof. (4.5.1) Let c E P' such that c isn't in any other prime ideal in
01' which lies over p = Pf Π % and let P = PfΠ0l[c], so height P =
height P' and depth P = depth P'. Now p is homogeneous, since P is,
so there exists a maximal homogeneous prime ideal M in 01 such that
depth P = depth p = height M/p (3.8). Also, M ΓΊ 0ί is a maximal ideal
(2.2.1). Therefore there exists a maximal ideal Jf in 0i[c] such that
Jf Π2/1 = M (so Λf (Ί i? is maximal) and depth P = height J{/P. Then
«yV° = ̂ ^ί o [c] is a maximal ideal and 3#[C].Λ is a dense subspace of ί%°[c]y»
(4.1). Therefore there exists a minimal prime divisor Q of P0ί°[c] such
that Q Π 9?[c] = P, height Q = height P, and depth Q g height JV°/Q =
height ^V/P = depth P. On the other hand, (Q Γ) 5ft{))n S/l = P Γ\ ffi = p,
so Q ΠS?° contains a minimal prime divisor p° of pSί0, hence depth
Q = depth O ί i r ^ depth p° ^ (4.4.3) depth p = depth P. Thus depth
Q = depth P. Now there exists a prime ideal P 0 ' in 5#°' such that
P 0 ' Π 3T[c] = O and height P 0 ' = height Q (and depth P 0 / = depth Q),
and then P ° ' n « ' = P', since POfn&[c] = P.

(4.5.2) By assumption and (4.5.1), height P 0 ' = 1 and P°' contains a
regular element. Therefore, by (2.4.1), there exists a unique minimal
prime ideal z*' in ®0' such that z* 'CP° ' 5 and then z*' = zΓ[ί, w] Π $°',
where z = z * ' Π i ? * i s a minimal prime ideal. Let z * = z *' Π9t° and
p° = P o / Π 0ί\ so 3#%r * satisfies the chain condition for prime ideals (by
[9, Corollary 3.7], since R*/z does [5, (34.4)]), hence height p°/z*= 1,
since height P°'/z *' = 1 and (P0//z *') Π (9t°/z *) = p°M *. Also, as in the
second paragraph of the proof of (4.2.1), depth p° = depth z, so depth
P°' = depth p° = depth z.

Concerning (4.5), it would be interesting to know to what extent
similar statements hold concerning a given homogeneous prime ideal P°'
in 0tOf and P' = P()'CλSkf. For example, I am unable to show (or to
disprove) that if P 0 ' is a (minimal) prime divisor of u$ίot, then POf (ΛW is
a (minimal) prime divisor of u3ί'. (This does hold if / is open, as will be
shown in (5.1.3) below.)

The next result specializes (4.5) to the prime divisors of u9l' and of
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(4.6) COROLLARY. With R, J, 01 and 01° as in (4.2), {depth p' p' is a
prime divisor of u0if} C {depth p°'\ pOf is a prime divisor of u0lΰ'} = {depth
z; z is a minimal prime ideal in R *}.

Proof Let p ' be a prime divisor of u0i\ so height pf=ϊ
(2.4.1). Therefore, by (4.5.2), there exists a prime divisor pOf of u0ί01

such that p°'Γ\0lr = p' and depth p°'= depth p'. Therefore the first
containment holds.

Now let por be a (minimal) prime divisor of u0ί{)t. Then depth
p 0 ' = depth z, for some minimal prime ideal z in R * (4.5.2), so the second
containment holds.

Finally, if z is a minimal prime ideal in R * and z * = zT[t, u] Π 0t°\
then there exists a minimal prime divisor pOf of wS?0' such that z* Cp0'
[12, Corollary 2.23], and then depth z = depth p°\ as in the proof of
(4.5.2). Therefore, the last two sets are equal.

The last corollary to (4.2) shows that, in the semi-local case, certain
additional prime divisors of u0l(R,In) (besides those considered in §3)
give information on the prime divisors of u0ί{R,I).

(4.7) COROLLARY. Let R, /, 0t, and 91° be as in (4.2). Fix a
positive integer n and let 0> = 0l(RJn) and 0>°=0l(R *, ΓR *). Then, if
qOf is a prime divisor ofu0*°\ then there exists a prime divisor p of u0ί such
that depth p = depth qOf Π 0>.

Proof. Let qOf be a prime divisor of U&01 and q = q0' Π 3>, so q is a
prime divisor of w0>, by (2.4.2) and (4.2.1) applied to 0> and 3P°. Let
M = R[tnΓ,un] and sί° = R*[tn(ΓR*),uΛ], so s4°'=&>0f and si = 9,
hence uns£Ot has a prime divisor mOf which corresponds to qOf under the
isomorphism, so m — m01 Π si is a prime divisor of w"^ί such that depth
m = depth q. Now ί%0' contains and is integral over sί°\ so there exists
a prime divisor pOf of w^0 / such that p0> Π ̂ ° ' = m 0 ' (since height m 0 ' = 1
(2.4.1)). Then p = p°'Π0l is a prime divisor of u0£ such that p Π si =
m. Therefore, since 01 is integral over si, depth p = depth m = depth q.

5. Prime divisors of zero in 2F(R, Q ) . In this section,
we consider the prime divisors of u0l{R, Q), where Q is an open ideal in
a semi-local ring JR. For this case, it is shown that most of the results in
§4 can be considerably sharpened.

Concerning (5.1), it should be noted that (5.1.1) (respectively, (5.1.2),
(5.1.3), (5.1.4)) sharpens (4.2) (respectively, (4.3), (4.6), (3.3) and
(4.6)). It should also be noted that part of (5.1.1) is known [1, Proposi-
tion 10.22(ii)]. (Note that this result in [1] isn't applicable in §4 of this
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paper, since the completion in [1] is the Sί-adic completion, whereas, in
§4, R * is the completion of JR with respect to its Jacobson
radical.) Finally, there is some overlap between (5.1.1) and [13,
Theorem 5.9] (which is concerned with an equi-characteristic local ring).

(5.1) THEOREM. Let Q be an open ideal in a semi-local ring R, let
<3l = 0l{R,Q), and let &t° = 0l(R *, IR *). Then the following statements
hold:

(5.1.1) There exists a one-to-one correspondence between the prime
divisors p of u$l and the prime divisors p° of u0ί° such that p and p°
correspond if and only if p = p° Π ί% and p° = p$l\ and then 0ίp is a dense
subspace of $fc°p» (so height p = height p°) and depth p = depth p°.

(5.1.2) {depth p p is a minimal prime divisor of u<3l) = {depth p°; p°
is a minimal prime divisor of uΘl"} C {depth z; z is a minimal prime ideal
in R *} C {depth w\ w is a prime divisor of zero in R *} C {depth P\ P is a
prime divisor of u0i} = {depth P°; P° is a prime divisor of u$fc0}.

(5.1.3) {pot Γ)S/tf; p°' is a prime divisor of u0l0'} = {p';p' is a prime
divisor of u0lf}. Moreover, if pOf is the only prime divisor of uffl0' which
lies over pf = pOfn$l\ then (^ ;)/(RadS?;) is a, dense subspace of

p°ύ,), and these rings are DVR's.

(5.1.4) For each n ^ 1, there is a one-to-one correspondence between
the prime divisors of uSk (i?, Qn)' and the prime divisors of u$k', and {depth
q'\ q' is a prime divisor of u0i(R, Qn)'} = {depth z; z is a minimal prime
ideal in R *}.

Proof (5.1.1) Since Q is open and u0l Π JR = Q, this follows from
(4.1).

(5.1.2) Let Si denote, in order, the ith set (/ = 1, ,6). Then
S, = S2 and S5 = S6, by (5.1.1), and clearly 5 3 C S 4 . Also, 5 2 C S 3 and

'SACS59 by (4.3).

(5.1.3) If p' is a prime divisor of u0ί\ then height p( = 1 (2.4.1), so
there exists a prime divisor pOf of u&lor such that pOf Π0lf = p\ by
(4.5.1). On the other hand, if pOf is any prime divisor of u$fc°\ then
height pω = 1 (2.4.1). To see that height pOf Π &' = 1, let n be large, let
B=(Qn)ai let ®=R[tnB9u

n], and let 3b°= R*[tn(BR*),un]. Then
91' contains and is integral over S3, since 01 contains and is integral over
d = R[tnQ\un] and ^ C ^ QsΛ'Q9i'. Likewise $ 0 / contains and is
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integral over » 0 ' . Let qω = pOf Π 38°' and q = q0' Π S3. Then, by the
proof of (3.3), height qi]r = 1. Also, height q = 1 (by (7.1), since n is
large and 38 = S? = 9t{R, B) and 35°' = ^°' = 9ί(R*, JBi?*)'). Therefore,
since ( p o ' n s r ) n 3 3 = q, height p°rΓl9t'=l.

The proof of the subspace part of (5.1.3) requires some preliminary
information (that will be given in §6). Therefore the proof of (5.1.3) will
be completed in the proof of (7.4).

(5.1.4) The one-to-one correspondence is given by (3.3), and the
first set is contained in the second, by (3.3) and (4.6). Now let d be an
element in the second set and let pot be a prime divisor of u9tQI such that
depth pot = d (4.6). Let p° = pOf Π0l\p= p° Π $, and p ' = pot Π 9i\ so
ptΓ\9t=p, hence depth pf = depth p and depth p°' = depth p°, by
integral dependence. Also, p° is a prime divisor of u0i° (2.4.2), so p is a
prime divisor of u0i and depth p - depth p° - d, by (5.1.1). Therefore
depth p' - depth p = d, and p ' is a prime divisor of u0l', by (5.1.3), so the
two sets are equal, by (3.3).

In regard to (5.1.2), one is tempted to say that if there exist g prime
divisors of zero in R *, then u9tQ has at least g prime divisors. But this
isn't true. For example, if (R, M) is a Macaulay local domain and Q is
generated by a system of parameters, then u0ί{R, Q) is a primary ideal,
by [16, Theorem 2.1(i)], so, by (5.1.1), u0l(R *, QR *) is primary, regard-
less of how many prime divisors of zero there are in R*.

In the next remark, (5.2.1) sharpens (4.2.1).

(5.2) REMARK. With the notation of (5.1), the following statements

hold:

(5.2.1) If z is a prime divisor of zero in JR * and p° is a prime ideal in
91° which is minimal with respect to containing (zR *[ί, u] Π $° , u)<3l\
then p = p°Π9l is a prime divisor of u$ί, 0ίp is a dense subspace of 5?|J»,
height p - height p{\ and depth p = depth p° = depth z.

(5.2.2) For each positive integer n, the conclusions of (5.1) and
(5.2.1) hold with m(R,Qn) and $ ( J R *,QnR*) replacing 01 and 9t°,
respectively. Therefore, in particular, {depth z\ z is a prime divisor of
zero in R*}C {depth q\ q is a prime divisor of u0l(R,Qn)}.

Proof. (5.2.1) p° is a prime divisor of u9ί\ by (4.2.1), so the
conclusions follow from (5.1.1) and (4.2.1).

(5.2.2) is clear, since (5.1) and (5.2.1) hold for all open ideals in all
semi-local rings.
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The following corollary is an interesting application of (5.2.1).

(5.3) COROLLARY. Let Q be an ideal generated by a system of
parameters in a local ring (R,M). Then, for all n ̂  1, u0l(R, Q") has
only one minimal prime divisor. Moreover, for each prime divisor z of
zero in R *, there exists a prime divisor p of u&l{R, Qn) such that depth
p = depth z and height p = altitude R + 1 - depth p.

Proof Let 01 = 0l(R, Q), 9 = 9t(R, Qn), and d = fl[inQn, iΓ], so
si = 0> and 01 is integral over si. Also, by [10, Lemma 4.3], N =
(M, u)0ί is the unique minimal prime divisor of u0i height N = 1; depth
N = altitude R = (say) a and, 01/N is a polynomial ring in α indetermi-
nates over i?/M. Therefore, since 0i is integral over si, N Π d is the
unique minimal prime divisor of und. Also, 91/N is integral over
d/(N Πsί), so, since every maximal chain of prime ideals in 01 IN has
length = α, the same holds for d/(N Π d) [5, (34.3)]. Further, altitude
si = altitude 9t = a + 1 (2.2.4), so it follows that height P + depth
P = a + 1, for all prime ideals P in d such that un E P. Therefore,
since 9 = d, the conclusions follow from (5.2.1) and what has already
been shown.

In (5.3), if Q isn't generated by a system of parameters, then the
conclusions don't necessarily hold. For example, in [10, Proposition 3.9]
it is shown that in every local ring (R, M) there exists an M-primary ideal
Q such that there is a minimal prime divisor of u$ft(R,Q) which has
depth = d if and only if there exists a minimal prime ideal z in R * such
that depth z = d. (So, if JR isn't quasi-unmixed, then u$l(R, Q) has a
minimal prime divisor p such that height p + depth p < altitude 01.)

6. Integrally closed ideals, normal ideals, and q-
ι>rings To prove the theorem in §7, quite a lot of information
concerning normal ideals and g-υ-rings is needed. The information on
normal ideals is known (but will be reviewed for the convenience of the
reader) while the information on g-i -rings is new (at least to the
author). We begin by recalling the definition of a normal ideal, and then
recall some facts on the integral closure of an ideal and on normal ideals.

(6.1) DEFINITION. An ideal / in a ring A is said to be normal in
case every power of / is integrally closed (that is, (Jn)α = /n, for all n ̂  1).

For example, it is well known that the maximal ideal in a regular
local ring is a normal ideal.

(6.2) REMARK. The following statements hold for an ideal / in a
Noetherian ring A:
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(6.2.1) Z = Rad A C Ia and IJZ = ((/ + Z)/Z)a.

(6.2.2) [11, Lemma 2.4(5)]. A = A' if and only if (&A )β = bA, for
all regular nonunits b in A.

(6.2.3) If b is a regular nonunit in A such that (bA )a = ftA, then bA
is a normal ideal.

(6.2.4) [12, Lemma 2.5]. (un<3i(A, J))β Π A = (Jn)α, for all n g 1.

(6.2.5) (w$(A, J))α = u9t(AJ) if and only if J is a normal ideal.

(6.2.6) [18, Theorems 1 and 2]. If A is semi-local and analytically
unramified, then (In)a is a normal ideal, for all large n.

(62 J) If A is semi-local and / is an open ideal, then laA * =
(M*)α.

Proof. (6.2.2), (6.2.4), and (6.2.6) are proved in the cited references,
and the proof of (6.2.1) is straightforward by working with equations of
integral dependence (since Z is nilpotent).

The proof of (6.2.3) is an easy induction argument, using the readily
seen facts: if c E A, then c/bEAf if and only if cE(bA)a; and,
bA'C\ A = (bA)a. (See [12, Lemma 2.3].)

(6.2.5) Let 01 = $t(AJ) and assume that (u0i)a = u$l. Then, by
(6.2.3), (unm)a = un(3i, for all n ^ 1, so Γ = un0t ΠA = (un(3i)a ΠA =
(In)α, by (6.2.4), so / is normal. For the opposite implication, if / is
normal, then let xtk be a homogeneous element in (u0ί)a. Then
xtk+λ E W [12, Lemma 2.3], so x E uk+ιmf Π A = (Ik+% by [12, Lemma
2.3] and (6.2.4). Therefore x E Ik+\ by hypothesis, so xtk+1 E 3$, and so
xtk E wί%. Thus, since w$! and (wέ%)α are homogeneous ideals, it
follows that u$l = (u3l)a.

(6.2.7) It is clear that IaA * C (/A *)α, so let JC E (/A *)β Π A. Then
there exist n and qEΓA* such that xn + cxx

n~ι+ + cn = 0, so
xπ E I(JC, / ) n l A * Π A = /(x, iy-'A, hence x E Jα. Therefore (IA *)β Π
A = Iα = JαA * Π A, so, by the one-to-one correspondence between open
ideals, (IA*)a = IaA*.

In [11, Definition, p. 213], a quasi-local ring (S,N) was called a
quasi-ϋ-ring in case altitude 5 = 1 and N = bSy for some regular element
b E S, and a prime ideal p in a ring A was called a quasi-i;-ideal in case
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Ap is a quasi-i -ring. There is a closely related concept which we must
work with in §7, so we now give the definition and make some comments
on it.

(6.3) DEFINITION. Let A be a ring and let p be a prime ideal in
A. A is a q-v-ring in case A is local (Noetherian), altitude A = 1,
(0): M = (0), and A/(Rad A) is a DVR. p is a q-v-ideal in case Ap is a
q-v-ήng.

(The reason for the very similar terminology in the preceeding
definition and that given in [11] is that the two concepts are quite closely
related. Of the two concepts, only g-i -rings will be considered in the
remainder of this paper.)

(6.4) REMARK. The following statements hold for a ring A:

(6.4.1) If A is a q-υ-ήng with maximal ideal P, then RadA is
prime and is the unique prime divisor of zero, and P = (RadA, b)A, for
some regular element b E P.

(6.4.2) If A is Noetherian and b is a regular nonunit in A, then
(bA )a = bA if and only if Ap is a DVR, for all prime divisors p of bA (so
each such p is a g-i -ideal). If (bA)a - bA, then there exists a one-to-
one correspondence between the prime divisors p of bA and the prime
divisors p' of bA' such that p and p' correspond if and only if Ap = A f

p>.

(6.4.3) If A is a q-υ-ring, then A* is a q-υ-ήng.

(6.4.4) If the completion of a local ring A is a q-v-ήng, then A' is
quasi-local.

Proof. (6.4.1) is clear from the definition.

(6.4.2) The first statement is proved in [11, Corollary 2.11 and
Proposition 2.7(6)]. Thus, if {bA )a = bA and p is a prime divisor of bA,
then Ap is a DVR and A'A-P is integral over Ap and contained in its
quotient field, so Ap = AA-P, hence p' = pAp Ω A' is a prime divisor of
bA' such that Ap> = Ap. On the other hand, if p' is a prime divisor of
bA', then p = p'ΠA is a prime divisor of bA (2.4.2), so by what has
already been shown, Ap is a DVR and Ap = A'p.

*
(6.4.3) Let z be the minimal prime ideal in A, so A/z is a

DVR. Therefore A*/zA* = (A/z)* is a DVR, so zA* = RadA
(since every minimal prime ideal in A * contains zA *). Therefore it
follows that A* is a q-i -ring.
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(6.4.4) Let z = Rad A *, so z is prime and w = z Γ) A =
RadA. Also, A/w C A'/(Rad A') C (A/w)'. Further, (A/w)* =
A*/wA* has a unique minimal prime ideal, so (A/w)f is quasi-local,
hence A ' is quasi-local.

It should be noted that, in (6.4.4), A need not be a q-v-ήng, even if
A is a local domain. In fact, an example of this is given in [5,
(E3.2)]. In (7.3) below, additional examples of this will be given.

This section will be closed with the following proposition which is an
important specific case of a more general result of M. Nagata [4,
Proposition 4].

(6.5) PROPOSITION. Let Rbe a local ring which is a quotient ring of a
finitely generated ring over a complete local ring RQ. Then the following
statements hold:

(6.5.1) // P E Spec JR, then R/P is unmixed and analytically
unramified.

(6.5.2) IfP*E SpecR* and P* is a prime divisor of (P* Π R)R*,
then height P* = height P* Π R and depth P* = depth P* Π R.

Proof (6.5.1) Let P be a prime ideal in JR and let L =
R0/(P Π JR0). Then R/P is pseudo-geometric (by [5, (36.5)], since L is
pseudo-geometric [5, (32.1)]), so R/P is analytically unramified [5,
(36.4)]. Also, R/P is quasi-unmixed (by [9, Corollary 3.7], since L,
being a complete local domain, is quasi-unmixed), so R/P is quasi-
unmixed and analytically unramified, hence R/P is unmixed.

(6.5.2) Let P = P* Π R. Then R/P is unmixed (6.5.1), so depth
P* = depth P and P* is a minimal prime divisor of PR*, hence height
P* = height P [5, (22.9)].

7. Prime divisors of zero in 5F(JR, ( Q " ) α ) . In this sec-
tion, the prime divisors of uΘt(R,(Qn)a) are considered, when n is
large. It turns out that, in this case, a number of the previous results in
this paper can be sharpened even more than in §5.

(7.1) is one of the main results in this paper. It shows that in every
semi-local ring R and for every open ideal B = (Qn)a with n large, the
prime divisors of u0l(R,B) have many properties in common with the
prime divisors of this ideal in the analytically unramified semi-local ring
case. Specifically, if R is analytically unramified and B is as above,
then, with 0ί = 0l{R,B), u$k is integrally closed (by (6.2.6) and
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(6.2.5)). Therefore, if p is a prime divisor of w£%, then height p = 1 and
Skp is a DVR (6.4.2). (7.1) shows that much the same thing can be said
for arbitrary semi-local rings.

(7.1) THEOREM. Let R be a semi-local ring, and let Q be an open
ideal in R. Fix a large integer n, let B = (O") f l, let & = $fc(R,B), and let
if° = £%(!?*, RR*). Then there exists a one-to-one correspondence be-
tween the prime divisors pOf of uίfOt and the minimal prime divisors p ofuOf
such that por and p correspond if and only if ifp is a dense subspace of
5^Vny>. Moreover, for each such p, pif° = pOt (Mf° is a q-v-ideal (6.3)
and depth p = depth pω.

Proof Let Z = R a d £ * , so R*/Z is analytically
unramified. Also, it is clear that, for all n ^ 1, Z C (QnR *)a = (6.2.7)
(Qn)aR\ and ((QR*/Z)n)a = (QnR*/Z)a = (6.2.1) (QnR*)JZ. There-
fore, for each large n, (QnR*)a/Z is normal (6.2.6). Thus, with 9 =
&(R*/Z,BR*/Z), u& = (u&)a (6.2.5). Also, SP = y°/Z* (2.2.3),
where Z * = ZR*[t,u]Π T (so Z * = R a d ^ ° (2.2.2)).

Now, if p° is a minimal prime divisor of M5?°, then p°/Z* is a prime
divisor of u¥°/Z* = (u6f°/Z*)a (since u& = (uP)a), so ^ o / Z * ^ > =
(S^7Z*)po/z. = (say) V is a DVR (6.4.2). Therefore Rad # > = Z*^°po is
prime, so, since w is regular, Sf°p<> is a qf-ϋ-ring (6.3). Further, since B is
open, there exists a one-to-one correspondence between the minimal
prime divisors p of uϊf and the minimal prime divisors p° of u£f° such
that p and p° correspond if and only if p = p° Π if and p° = pίf°, and then
depth p = depth p° and 5^ is a dense subspace of 5̂ <> (5.1.1). Therefore,
for each minimal prime divisor p of uίf, pif0 is a g-u-ideal.

To complete the proof, it suffices to show that there exists a
one-to-one correspondence between the prime divisors pOf of u9*Of and
the minimal prime divisors p° of uίf° given by p° = pOf Π if (by the one-
to-one correspondence between the minimal prime divisors p° of uif° and
the minimal prime divisors p of uif noted above). For this, let
Z * ' = Z Γ [ ί , M ] n ^ 0 / , where T is the total quotient ring of R*9 so
Z * ' = Rad S T Then ^°'/Z*' is integral over ^°/Z* and is contained in
the total quotient ring of 5^°/Z*. Also, w5^0/Z* is integrally closed (as
noted above), so there exists a one-to-one correspondence between the
prime divisors of uϊfo/Z* and the prime divisors of u£f{)'IZ*f given by
contraction (6.4.2). Further, there exists a one-to-one correspondence
between the minimal prime divisors of uίf° and the (minimal) prime
divisors of M5^°/Z*, and there exists a one-to-one correspondence
between the (minimal) prime divisors of uif01 and the (minimal) prime
divisors of uSr°ΊZ*' (since Z * = R a d ^ ° and Z * r = Rad5^0/). (Each
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prime divisor of uS^/Z*, of I I ^ / Z * ' , and of uT' is minimal, by (6.4.2)
and (2.4.1).) Therefore the desired one-to-one correspondence follows.

We note some facts concerning the proof of (7.1) for future
reference.

(7.2) REMARK. With the notation of (7.1), the following statements
hold:

(7.2.1) BR */(Rad R *) is a normal ideal (equivalently, by (2.2.3)
and (6.2.5), wŜ °/(Rad if0) is integrally closed), and it is because of this
fact (and not because B = Ba) that the conclusions of (7.1) hold.

(7.2.2) Although w^7(Rad^°) is integrally closed, w57(Rad^)
may not be integrally closed. (If w5 /̂(Rad ίf) is integrally closed, then
jR/(Radi?) is analytically unramified — see (8.2).)

(7.2.3) If there exists an imbedded prime divisor z of zero in JR*,
then uίfQ has an imbedded prime divisor (5.2.1), but every prime divisor
of w^°/(Rad T) has height one (6.4.2).

In (7.1), p need not be a g-u-ideal (even though p¥° is and 5̂ p is a
dense subspace of S^y. In fact, the following example shows that over
many local domains there exists a locality L such that L* is a q-u-ring,
but L isn't a q-υ-ήng.

(7.3) EXAMPLE. Let (JR, M) be a local domain such that there exists
at least one minimal prime ideal w in JR * such that depth w = altitude
JR* and w isn't the w-primary component of zero. Then there exists a
locality (L, P) over R such that L * is a g-u-ring and L isn't a q-v-ήng.

Proof. Let n be large, let B =(M n ) α , let ^=9^(R,B), and let
¥° = 0l(R*,BR*). Let p° be a minimal prime divisor of (w, w*)^°,
where w* = wR*[t, u] Π Sf\ let p=ponif, let L = S?p, and let P =
pL. Then height p° = 1, since depth w = altitude 1?*. Therefore Sf°po
is a g-i;-ring (by the proof of (7.1)), and L is a dense subspace of Sf°p<>
(5.1.1), so L* is a g-i -ring (6.4.3) and altitude L = 1. Therefore, by
the definition and with z the unique prime divisor of zero in L *, L */z is
a DVR and P* = (z,6)L*, for some regular element bEP*. Now
z^ (0), since z ΓΊ Sf°po = w *S^«^ (0) (since w isn't the H>-primary compo-
nent of zero). Suppose that L is a q-v-ήng. Then L is a DVR, since L
is a local domain, hence L * is a DVR; contradiction. Therefore L isn't
a g-υ-ring.

We now give three corollaries to (7.1).
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(7.4) COROLLARY. With the notation of (7.1), let 3)°' = {p0'; p 0 ' is a
prime divisor of u£fOr), 3° - {p°; p° is a minimal prime divisor of uίf0},
3f = {pf; pf is a prime divisor of u^'}, and 3) = {p; p is a minimal prime
divisor of u^}. Then there exist one-to-one correspondences between
these sets given by contraction. Moreover, if p 0 ' , p°, p ' , andp correspond,
then these ideals have the same depth, ίfp is a dense subspace of £f°p<>, and
(5^)/(Rad^;) is a dense subspace of (#»/(Rad Sf»p«) = (#»/(Rad # »
{and these last three rings are DVRs).

Proof By the last paragraph of the proof of (7.1) (and since
uS?°/Z* = {uίf°IZ*)a), there exists a one-to-one correspondence between
the p°E 3° and the p ° ' e r such that (^«)/(Rad^«) = (5^7Z*)po/z.=
(6.4.2) (^°'Z*V/z- = (50;o')/(Rad5^»? and these rings are DVR's, since
p° is a q-v-ideal (7.1). Thus, by this and (7.1), there exists a one-to-one
correspondence between the p E 2 and the p°E 3° such that Sfp is a
dense subspace of 5̂ <>. Moreover, the one-to-one correspondence
between 3' and 3Of follows from the first statement in (5.1.3) and the fact
that the p°Έ 3Of contract in if to distinct height one prime ideals (by
what has already been shown), so the p0' contract in 9" to distinct height
one prime ideals. Thus if p0', p', p°, and p correspond, then p° =
p 0 ' Π ίf\ p ' = p0 / Π <f\ and p = p° Π if = p' Π y, so, by integral depen-
dence and the fact that depth p° = depth p (5.1.1), it follows that depth
p(); = depth p° = depth p' = depth p.

Finally, that (^;)/(Rad Tj) is a dense subspace of ( ^ ) / ( R a d ^
follows from the one-to-one correspondence and the more general result
stated in (5.1.3), and which will now be proved (using the notation of
(5.1)).

Let p°' be a prime divisor of utfl0', let p' = pω Π&t\ and assume that
p0 ' is the only prime divisor of u0ίQr lying over p'. Then, to show that
U = {9tp')/(Rad0lp') is a dense subspace of V = (^»/(RadS?°», note
that U and V are DVR's, by (2.4.1). Also, [/CVCV*, so, by [6,
Theorem 7, p. 96], there exists an ideal K in (7* such that U C U*/K C
V*, hence K = (0) and £/* C V*, since J7, [/*, and V* are DVR's. Let
c Ep' such that c isn't in any other prime ideal in έ%' which lies over

tp'fλ 9t. Let d = 01 [c] and sέ° = 0t°[c]. Then, with q = p' Π 3ϊ[c] and
ήf° = po 'Π 9ϊo[c], height qf = 1, dq is a dense subspace of sί\^ by (4.1),
and (d^y = 01^ (since height qQ = height ^ = 1 and p0 / and p ' are the
only prime divisors of (u) lying over p ' and g, respectively). Let
C = (iJ«.)/(RacWJ..), so V = C is a finite C-algebra (by [5, (36.4) and
(32.2)], since C is pseudo-geometric [5, (36.5)]), hence C * C C * ' =
V*. Also, by (6.5.1) and since dq is a dense subspace of sί°q<>,

C* = (^o)*/(Rad(<<>)*) = K ) * / ( R a d K ) * ) .
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Let L = stq/(Radsdq), s o L C l / C [/*, hence L CL*/I C [/*, for some
ideal / in L* [6, Theorem 7, p. 96], and / is prime, since U* is a
domain. Also, L* is a homomorphic image of (sdq)* = (stffi (whose
kernel is contained in Rad(^°<>)* and Rad(^°<>)* is prime, since C* is a
domain (since C* C V*)). Therefore C* = L*/(RadL*), so, since C* is
a domain and altitude L = 1, it follows that /•= RadL* andC* = L*/IC
I/*. Thus (/*CV*= C*' C I/*' = I/*, so (7 is a dense subspace of V.

(7.5) REMARK. It follows immediately from (5.1.4) and (7.4) that
{depth p p is a minimal prime divisor of uif} - {depth z z is a minimal
prime ideal in R *}.

The next corollary to (7.1) shows that, with B of (7.1) replacing / of
(3.1), the first containment in (3.1) becomes an equality. It also shows
that equality holds in (3.2).

(7.6) COROLLARY. Let R, B and if be as in (7.1), fix k ^ 1, and let
si = $l{R,Bk). Then there exists a one-to-one correspondence between
the minimal prime divisors p of uif and the minimal prim: divisors q of us£,
and if p and q correspond, then depth p = depth q.

Proof There exists a one-to-one correspondence between the
prime divisors p' of uif' and the minimal prime divisors p of uif given by
contraction, by (7.4). Also, B nR */(Rad R *) is a normal ideal (since
BR */(Radi? •) is normal (7.2.1)), hence, by (7.1) applied with Bn in place
of B, there exists a one-to-one correspondence between the prime
divisors q' of usέ' and the minimal prime divisors q of usί given by
contraction. Therefore, by the one-to-one correspondence between the
prime divisors pf of uif' and the prime divisors q' of usί' (and since depth
p' = depth q') (3.3), the conclusion follows.

The last corollary to (7.1) shows that, with B as in (7.1) replacing / in
(3.5), the two inequalities in (3.5) become equalities.

(7.7) COROLLARY. With the notation of (7.1), let k be a positive
integer, and let C be an ideal such that Bk C C C (Bk)a. Then there is a
one-to-one correspondence between the minimal prime divisors of (u) in
the rings m(R,Bk), $1{R,C), and m{R,Bk)'.

Proof. This follows readily from (3.3), (7.1), and (7.6).

An alternate proof to (7.7) is to note that (7.4) is applicable with
m(R,Bk) replacing if (by (7.2.1), since B fc#*/(Radi?*) is a normal
ideal).
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8 Some applications. In this section, we give applications
of the preceeding results. The first of these is to analytically unramified
semi-local rings.

(8.1) PROPOSITION. The following statements are equivalent for a
semi-local ring R:

(8.1.1) R is analytically unramified.

(8.1.2) u$t{R, Q) = (u&(R, Q))fl, for some open ideal Q in R.

(8.1.3) M^(jR*,O*) = (w^(l?*,O*))α, for some open ideal Q*
inR*.

Proof. If (8.1.1) holds, then there exists an open ideal Q in R such
that Q is normal (6.2.6), so, with 3? = 2fc(R, Q), {uSk)a = u9ί (6.2.5),
hence (8.1.2) holds.

If (8.1.2) holds, then Q is normal (6.2.5), so QR* is normal, by
(6.2.7), hence u9t(R*9 QR*) = (uSt(R*9 QR*))a (6.2.5), and so (8.1.3)
holds.

Finally, if (8.1.3) holds, then Q* is normal, so Q = Q*ΠR is
normal (by (6.2.7), since Q*= QR *), so (8.1.1) holds [18, Theorem 2].

If JR is analytically unramified in (8.1), then, for all ideals I in R and
for all large n, (In)a is a normal ideal (6.2.6), so u$l(R, (In)a) is integrally
closed (6.2.5).

(8.2) REMARK. If there exists an open ideal Q in R such that
(M$)α = w ^ + (Rad$), (equivalent^, if u$/(Rad$) is integrally
closed), where <3ί = <31{R, O), then #/(Rad JR) is analytically unramified.

Proof Let Z = Radi? and Z* = ZR[t,u]Π 38, so Z*
(2.2.2). Then JR/(Radi?) is analytically unramified, by (8.1) applied to
R/Z, since (μ9t + Z*)/Z* = (u$)α/Z* = ((u9t + Z*)/Z*)a (6.2.1).

Therefore, if R is a local domain which isn't analytically unramified,
then, for all open ideals Q in R and with &t ̂ 9t{R,Q) and S?° =
S?(i?*,OJR*), u<3ί and u&° aren't integrally closed, by (8.1). But
wέ%°/(Rad έ%°) is integrally closed, by the proof of (7.1), whenever Q is as
in (7.1).

It is well known that if (R, M) is a regular local ring, then M has the
properties of the ideal Q in the following proposition.
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(8.3) PROPOSITION. Let (R,M) be a local ring which has an M-
primary ideal Q generated by a system of parameters such that Q is
normal. Then R is analytically irreducible and, for all k î  1, u0l(R, Qk)
is integrally closed and is a primary ideal.

Proof Let 0i = &(R, Q). Then u0i = (ιM)a (6.2.5), since Q is
normal, so every prime divisor of u$ft is height one (6.4.2). Also, since
Q is generated by a system of parameters, p = (M,u)Sfc is the only
minimal prime divisor of uSk [10, Lemma 4.3]. Therefore u0l is
p-primary. Thus, with S/l° = 2/ί(R *, QR *), p° = p2ft° is the only prime
divisor of w£%° (5.1.1), so every prime divisor of zero in S?° is contained in
p\ by (5.2.1). Therefore, since % is a DVR (6.4.2) and S/lp is a dense
subspace of $£« (5.1.1), (0) is prime in 35°. Therefore (0) is prime in i? *
(2.2.2), so R is analytically irreducible.

For k > 1, Qk is normal, so u9l(R, Qk) is integrally closed (6.2.5) (so
each of its prime divisors has height one) and has only one minimal prime
divisor (5.3). Therefore uSft(R,Qk) is a primary ideal.

The next application concerns quasi-unmixed semi-local rings. To
simplify the statement of (8.4), it will be said that an ideal / in a ring A is
pure depth d in case every prime divisor of J has depth = d.

(8.4) PROPOSITION. Let R be a semi-local ring, and let altitude
R — d. Then the following statements are equivalent:

(8.4.1) R is quasi-unmixed.

(8.4.2) For every open ideal Q in i?, (u$ft(R, Q))a is pure depth d.

(8.4.3) There exists an open ideal Q in R and a large integer n such
that every minimal prime divisor of uif has depth — d, where if —

(8.4.4) There exists an open ideal Q in R such that u$ft(R, Q)f is pure
depth d.

Proof (8.4.4) <=> (8.4.1), by (5.1.4), and (8.4.1) O (8.4.3), by (7.5).
If (8.4.1) holds, then let Q be an open ideal in R and let

9t = 9l(R,Q). Then, since (u0l)a = u$lr Π 91, the prime divisors of
{u0l)a are among the ideals p'ΠS/l, where p' is a prime divisor of
u$ft'. Therefore, since all prime divisors of u2ftf have depth = d, by
hypothesis and (5.1.4), (uSft)a is pure depth d.

Finally, assume that (8.4.2) holds and let B and if be as in §7, so
there exists a one-to-one correspondence between the prime divisors of
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and the minimal prime divisors of uίf (7.4). Therefore, if p' is a
prime divisor of uif', then height p' Π 5 ^ = l , s o p Ί Ί 5 ^ i s a prime divisor
of (w5 )̂α, hence depth p' - depth p' Π if = d, by hypothesis, hence (8.4.4)
holds.

Concerning (8.4), the equivalence of (8.4.1) and (8.4.2) for the local
domain case was given in [19, Corollary 4.17].

(8.5) REMARK. If R is quasi-unmixed and altitude R = d, then for
all ideals / in R, every minimal prime divisor of u0l{R, /), of (u$l(R, /))α,
and of u0i{RJ)f has depth = d.

Proof. This holds for u$l(RJ)\ by (4.6), so it holds for u$l{RJ)
and (u0l(R, J))α, by integral dependence.

The last application that will be given is related to the (catenary) chain
conjectures.

(8.6) PROPOSITION. Let Q be an open ideal in a semi-local domain
R, let 9t = 9t(R,Q), and let <3i* = 3<U(JR*, Q#*). Then {PGSpec^;
M £ P , height JP>1, and there exists a height one maximal ideal in
(flip)'} = {P° Π 01 P° G Spec &°, height P° > 1, and P° is a minimal prime
divisor of (w, z*)£%°, /or some minimal prime ideal z* in $i°}.

Proof. Let the first set be Ex and the second set E2. Let P G JSb so
u ELP, and so F° = PS?0 is prime and 0iP is a dense subspace of £%£<>
(4.1). Also, there exists a depth one minimal prime ideal in the
completion of <3iP (by [9, Proposition 3.5], since P G £Ί), so there exists a
depth one minimal prime ideal in the completion of £%V Therefore
there exists a depth one minimal prime ideal in $k%^ by (6.5.2). Thus P°
is a minimal prime divisor of (M, Z *)fli°, for some minimal prime ideal z *
in <3i\ so P G £ 2 , since P = P°Γ)&.

On the other hand, if P G £ 2 and P° is the prime ideal in 01° such
that P° Π 0ί = P, then 3£P is a dense subspace of 9tP° (4.1). Also, there
exists a depth one minimal prime ideal in 01 °P°, so there exists a depth one
minimal prime ideal in the completion of S?P, hence there exists a height
one maximal ideal in the integral closure of 0lP [9, Proposition 3.5], and
so it follows that P G Eλ.

The equal sets in (8.6) are finite, since each (M, Z*)£%° has only
finitely many minimal prime divisors and there are only finitely many z *.

9. Three questions. There are many questions concerning
prime divisors of zero in form rings which haven't been answered in this
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paper. The following three are certainly not the most important, but
answers to them would be of some interest.

(9.1) QUESTION.1 Let P a prime ideal in a Noetherian ring A and
let ί% = S?(A, P). If u$i is primary and integrally closed, is u0l prime?

Concerning (9.1), the following result has appeared in two recent
papers: u$l is prime if and only if 3?(AP,PAP) is a domain and Pn is
P-primary, for all n S 1 [2, Theorem 1] and [17, Corollary 1.2]. Now, if
u0i is prime, then u0i is integrally closed (6.4.2) and primary. Moreover,
it follows from any one of [5, (25.15)], [7, Theorem 5], or [21, Theorem 2,
p. 250] that AP is analytically irreducible. This last also holds if u*3l is
primary and integrally closed (by using (5.1.1), (6.2.5), (6.2.7), (6.4.2), and
(5.2.1) applied to 9l(AP, PAP) and $1{A ?, PA %)). But I don't know if it
implies that u0ί is prime.

(If P isn't required to be prime in (9.1), then it is easy to see that the
answer is no: let (JR, M) be a regular local ring and let P = Mk (for a fixed
k > 1), so w£% is integrally closed (by (6.2.5), since P is normal (since M
is)) and is primary (by (6.4.2), since it has only one minimal prime divisor
(5.3)), but u0i isn't prime, since u0i Π R isn't prime. Also, see (8.3).)

(9.2) QUESTION. For what local rings (JR, M) does there exist an
M-primary ideal Q such that the number of prime divisors of u2fc(R, Q)f

is equal to the number of minimal prime ideals in JR*, and what
properties hold for the rings in this class of rings?

Note that every regular local ring has this property. (Also, see
(8.3).)

In [5, (25.1)], M. Nagata shows that if all prime divisors of zero in
$ί{R, Q) have the same depth, where Q is an open ideal in a local ring R,
then JR is unmixed. The last question concerns the converse of this.

(9.3) QUESTION. If R is an unmixed local ring, does there exist an
open ideal Q in R such that every prime divisor of u$/t(R,Q) has
depth = altitude R ?

If R is also analytically unramified in (9.3), then the answer is seen to

1 The following example, due to the referee, shows that the answer is no. Let C be the field of
complex numbers, and let A = C[[X, Y,Z]]/K, where K = (X2+ Y2 + Zs). Then A is a UFD, by
Theorem 25.1 in [J. Lipman, Rational Singularities with Applications to Algebraic Surfaces and
Unique Factorization, Inst. Hautes Etudes Sci. Publ. Math., No. 36, Presses Universitaires de France,
Paris, France, 1969, pp. 195-279], so A = A'. Also, the maximal ideal M in A is a normal ideal, by
Theorem 7.1 [Ibid.], so $ = &(A, M) = &', by (2.6.2), hence u& = (u9t)a. Finally, &/u& = (2.2.5)
^(A, M) ss C[X, Y, Z]/(X2) (since (X + Kf G M3 implies (t(X + K)f G u9%, so Rad u<3i =
(u, t(X + K))0l is prime (by the structure of 0l/(u, t(X 4- K))&)), so uΘi is primary and integrally
closed, but not prime.
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be yes, by letting Q be the ideal B of (7.1). (For then, u$i = {uΘl)a

(6.2.6), so each prime divisor of wέ% has height one (6.4.2), so the
conclusion follows from (7.5).)
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