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ESSENTIAL SPECTRUM Γ(j3) OF A DUAL ACTION

ON A VON NEUMANN ALGEBRA

YOSHIOMI NAKAGAMI

For a dual action β of a locally compact group G on a von
Neumann algebra N we define the essential spectrum Γ(β) as the
intersection of all spectrum sp βp of the restriction βp of β to Np

when p runs over all nonzero projections in Nβ. T(β) is then an
algebraic invariant for a covariant dual system {N, β}. Γ(β) is
a closed subgroup of G (Theorem 3.7). We introduce three
kinds of concept for β such as integrable, regular and dominant
(§§4, 5). The former concepts are weaker than the
dominance, ϊf β is regular, Γ(/3) coincides with the kerne! of
the action β on the center of the crossed dual product N ζξ)d

βG
(Theorem 6.1). If β is regular, Γ(β) is normal and Γ(β) —
Γ(β). If β is ergodic on the center Z(N) and Γ(β) = G, then
N(£)d

βG is a factor and vice versa (Theorem 6.4). If β is
regular, Γ(β) = G is equivalent to Z(N β )CZ(N) (Proposition
6.3). If β is integrable on a factor N and if Γ(β)= G, then
there is a lattice isomorphism between the closed subgroups of G
and the von Neumann subalgebras of N containing Nβ

(Theorem 8.4). Moreover, by N§ξ)d

β(H\G) we mean the von
Neumann algebra generated by β(N)and 1 (g)(Lx(G)Π λ'(H)'),
where H is a closed subgroup of G and Λ' is the right regular
representation of G. N§ξ>d

β(H\G) coincides with the set of
x Ξ N(g)^G such that βt(x) = x for all t E H (Theorem 7.2).

0. Introduction. In our previous paper [17, 16, 21] we have
generalized Takesaki's duality to a general locally compact group in
terms of a dual action and a crossed dual product as the following:

In this paper we continue our study on dual actions and Takesaki's
duality obtained in the above from the view point of covariant systems
{M, a} and covariant dual systems {JV, β}. Then we naturally raise some
questions:

a. What is an invariant of equivalent covariant dual systems?
b. When does Takesaki's duality hold as a covariant (dual) system?

Using the spectrum of β given in [17, §5], we can define the essential
spectrum Γ(j8) of β in §3 by the same manner as S set. Then Γ(β) is a
closed subgroup of G and an algebraic invariant of dual actions on a
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given von Neumann algebra. Therefore we can classify the dual actions
into the family of closed subgroups of G.

c. In case of Γ(β) = G, what can we say about β, Nβ and N(g)g G ?
For these questions Connes and Takesaki have obtained several interest-
ing results in their paper [6] from the stand point of nonabelian
cohomology in properly infinite von Neumann algebras. Following
these ideas, we try to reproduce their Chapter III in terms of covariant
(dual) systems. Our contents consist of following nine sections:

0. Introduction
1. Preliminary
2. Takesaki's duality
3. Essential spectrum Γ(β)
4. Integrable actions and dual actions
5. Regular actions and dual actions
6. Ergodic actions and dual actions
7. Subgroups and subalgebras
8. Galois correspondence
9. Appendix
More precisely, in §4 we shall recall two equivalent conditions given

by Connes and Takesaki for an action to be integrable. The dual
version of one of the conditions is utilized to define the integrability of a
dual action. However, we are still unclear, whether the both dual
versions of the above two conditions are equivalent or not.

In §5, for the sake of convenience, we call an action or a dual action
to be regular when it is dual to some dual action or some action. The
regularity is then stronger than integrability. Their characterizations
are already given by Landstad and others, [15,17,16, 21]. Furthermore,
we call a (dual) action to be dominant if it is regular and of infinite
multiplicity. The dominance in our paper is a generalization of the one
given by Connes and Takesaki to a non separable case. The utility of
regularity and dominance will become clearer in our later sections as we
analyze the equivalence class of covariant (dual) systems.

In §6, Γ(ά) turns out to be the set of all t E G such that at is trivial on
the center of M. Therefore, if β = d, Γ(/3) = H is characterized by the
fact that H is the largest closed subgroup satisfying that the center of
N 0jj G commutes with 1 (g) λ '(H), where λ' is the left regular represen-
tation of G. Further, if β is ergodic on the center of N, then Nβ is a
factor, in addition, if Γ(/3)= G, then N(g)£G is a factor.

Let MζZ)aH be the von Neumann algebra generated by a(M) and
1 0 λ ( J Ϊ ) , and let N(g)dβ(H\G) be the von Neumann algebra generated
by β(N) and 5£X{H\G\ where 5£X(H\G)^LX{G) Π λ'(H)'. In §7 we
shall characterize these von Neumann subalgebras, namely, M§Z)aH is
the set of y in M(g)β G with ά(y) CN <g) λ (H)" and N(g)d

β(H\G) is the set
of x in N(g)d

βG with βt(x) = x for all t E H.
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In §8 we shall give a Galois type correspondence between the closed
subgroups of G and the von Neumann subalgebras of a factor N
including Nβ under the assumption that G is separable, β is integrable
and Γ(β) = G. Let βd be a dual action of G on N(k)d

βG given by
(1.8). If N®βG is a factor and if L is a βd invariant von Neumann
subalgebraof N(g)^G including β(N), then L is of the form N®d

β(H\G)
for some closed subgroup H of G. Conversely, N(&β(H\G) is β d

invariant.
In the Appendix we shall give a sufficient condition for an action of

a locally compact abelian group to be regular.
The author wants to express his sincere gratitude to Professors M.

Takesaki and Y. Oka for their valuable discussion and to Professor M.
Tomita for his encouragement.

1. Preliminary, Let G be a locally compact group, at the
Haar measure, t»-» λ(t) the right regular representation of G on L2(G)
and R(G) the von Neumann algebra generated by λ(G). Let J be the
antiunitary involution on L\G) defined by (Jcξ)(t) = Δ(t)ιl2ξ(Cι) for
ξ G L2(G) and λ'(r) = Jcλ(r)Jc, where Δ is the modular function. Then
λ' is the left regular representation:

Let M and N be von Neumann algebras acting on Hubert spaces 3€
and 3ίf, respectively, γ and 8 are isomorphisms J?(G)-» R(G)(£)R(G)
and L3C(G)->L30(G)(8)L0C(G) satisfying

yλ(r) = λ ' ) ® λ ( r ) and (δ/)(M) = /(**)

for / E L~(G). An αcίi >n α of G on M is an isomorphism of M into
M (g) L*(G) satisfying

(1.1) a0i°a = i0δ°a,

where t denotes the identity automorphism and the association of the
tensor product (x) is stronger than that of the composition °. By [17,
Theorem 2.1] an action a is induced from an action / H> at of G on M in
the usual sense by (a(x)ξ)(ΐ) = at(x)ξ(t) for ξ<EW®L2(G). As
a(at(x)) = Ad 1 (g)λ(ί)(α(x)) for all ί, {M, a} is a covariant system. A
dual action β of G on N is defined as an isomorphism of N into
N(g)R(G) satisfying

(1.2)

Such a pair {N, β} is called a covariant dual system.
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The crossed product Aί (g>α G of M by G with respect to a is the von
Neumann algebra generated by a(M) and 1 (g).R(G). The crossed dual
product N<g)βG of N and G with respect to β is defined as the von
Neumann algebra generated by β(N) and l(g) L"(G).

Now we define a unitary W on L2(G)(g)L2(G) by

Then W* = Ad/<8>l(W), where (/f)(0 sΔ(0 I / 2 ί(r ') for £EL2(G).
We set

V = σ(W) and V'-σ(W),

where σ denotes the symmetric isomorphism

x 0 y π» y (g) x.

These unitaries satisfy (W'f)(s,ί) = Δ(s)1/2f(s,s"10, (Vξ)(s,t) = ξ(st,t)
and (V'^)(s,/) = Δ(ί)1/2f(ί-1s,ί). Therefore (1.1) and (1.2) are of the
forms

On the other hand, since

Ad 1 0 W*(a(x)®lG) = α(x)Θl o ,

o ) = λ,(r)®λ(r)

where λ,(r) = 1 (g)λ(r) and (ef)(s,t)=f(t~ιs), it follows that

Ad 1 (8) W*((M(g>βG)(g) 1G)C(M<g)βG)(g)R(G)

We denote their restrictions by a and /S:

for x G M(g)α G and y e N(g)g G. Since
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g) 1 G (t <g> σ ) ( W * (g) l c ) = = A d l G < g ) W
(1.6)

V'<g>lc(ι<g>σ)(V'<g>lσ) = Adlo<g>V(V'<g>lo),
it is shown in [17, Theorem 2.3] that ά is a dual action of G on M(g)α G
and β is an action of G on N{g)̂  G. a and β are said to be the dual
action dual to a and the action dual to β. We denote the action dual to a
by ά or ά and the dual action dual to β by β or β.

We know from (1.3) that

Ad 1 <g V(α(M) <g) 1G) C a <g) t (M <g) L'(G))
( L 7 ) Adl(gW*(/3(JV)(g)lG)C i8<g)ι(N<gJR(G)).

Since [ V,λ'(r)<g)/] = 0 and [W,/(g)lG] = 0, it follows that

Ad 1 <g> V(l (g) i? (G) (g) 1G) C1 <g) i? (G) <g) L=°(G)

Ad 1 (g) W*(l (8)L-(G)® 1G) = 1 (g)L-(G)® 1G.

Therefore

Ad 1 (g) V((M(g)α G) <g 1 G ) C(M(g)α G) (g) L"(G)

Adl<g)W*((N<g)iG)®lG)C(N(g)d

βG)®R(G),

which is compared with (1.4). If we define ad and jS'* by

ad0c) = Adl(£)V(x<£>lG)
(1.8)

for x G M(g)αG and y E N(g)βG, then α d is an action of G on
and /3d is a dual action of G on N(g)^G. Indeed, (1.3) for ad and β** is
proved by

(1.9) V(g)lo(ι<g>

and (1.6) for W.
On the other hand, since [V, l(g)/] = 0 and [W, 1 <g>λ'(/•)] = 0, it

follows from (1.7) that

Ad l(g) V*(α(M)'01o)Cα(M)'(g)L= o(G)

Ad l(g) W(β(N)'®lG)Cβ(N)'®R(G).

If we define α' and β' by
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for x E α(M)' and y E β(N)\ then we have the following theorem due to
Landstad, [16, the proof of Lemma 1].

THEOREM 1.1. βf is a dual action of G on β(N)f satisfying

(i) (β(iV)r = (N®|σy; and
(ii) there is an action a of G on (N^}d

βG)f satisfying

{β(Ny,β'}~{(N<g>d

βG)'®aG9ά}9

where (β(N)γ' ^{ytΞ β(N)': β\y) = y® 1G}.

As this theorem is important from the technical point of view, we
shall give a dual version, although it is unnecessary for our later use.

An isomorphism a of M into M<g)Lx(G) satisfying α ^ ) ι ° α =
ι{g)S coα (δc/ = AdV'*(/(g)lG)) is called an action of G on M with
respect to R(G)\ [17, Appendix].

THEOREM 1.2. a' is an action of G on a(M)' with respect to R (G)'
satisfying

(i) (a(M)γ=(M<g)aGy; and
(ii) there is a dual action βc of G on (M§ξ>aG)' with respect to R{G)'

such that

Proof. Since

we have

α'0 i °a'(x)

= Ad 1 <g) V* <g) 1G o t 0 1 0 σ o Ad 1 <g> V* (g) lG(x (g) 1G (g) 1G)

= Ad 1 (8) 1G (8) V;* o Ad 1 0 V* 0 1 G (JC 0 1 G (8) 1G)

where δc(f) = Ad V'*(f 0 1 G ) for / E LX(G). Therefore a' is an action
of G on α(M)' with respect to R(G)'.

(i) Put iV = (α(M)')α. Since M is standard, we have a weakly
continuous unitary representation u of G on $f implementing α,
[1,9]. ( M 0 α G ) ' i s then generated by M ' 0 1 G and I7(l(g)Λ(Gy)t/*,
where U is a unitary on ffl®L2(G) defined by (Uξ)(s) = u(s)ξ(s),
[7,10,16]. As (M® α G)'CN is clear, it suffices to show the converse
inclusion. For this we suppose that x E N. Then x E.a{M)' and
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Adi® V*(x01G) = x<S>lG. Therefore

x ® la e (1 ® ϊc <g> K (G))' n Λd 1 (8) V*(l (g> 1G <g> R (G))1

and hence

(ii) Since α(M) = (M®aG)ά by (2.7) and since α(M) =
(M(g)αG)Π(l(g)L;o(G:))' by Theorem 7.1, it follows that

α {My = ((M(g)α σy u (

Moreover,

for / G LX(G). By [16: 17, Theorem 8.3; 18] we have the desired result.

Finally, we recall the equivalence used in the above theorems. Let
a] (resp. β}) be an action (resp. a dual action) of G on My (resp. N}) for
/ = 1,2. We denote

{M „ α'} ~ {M2, α
2} (resp. {JV,, j8,} ~ {N2, /32}),

if there exists an isomorphism p of Mj (resp. NΊ) onto M2 (resp. N2)
satisfying

p(g)ι°α 1 = α:2op (resp. p(g)ιojβ, = jβ2°p).

Then it is direct from (1.1) and (1.2) that

{M, α} ~ {α(M), t <g) 5} and {N, β} ~ {j8(ΛΓ), t ® γ}.

2. Takesaki's duality. In this section we shall give a few
supplements to our previous results obtained in [17].

We begin by recalling Takesaki's duality [16, 17, 18]. If πM is an
isomorphism of M into (M® α G)®ί!G given by

for x in M, then (M(g)αG)(g)άG is generated by τrM(x) (x E M),
l(g>λ(r)<g)λ(r) ( r £ G ) and l(g)lG<g)/ (f S L°(G)% [17]. We denote
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by p an isomorphism of M <g>B(L2(G)) onto (M(g)a G) <S>ί G defined by

(2.1) Ad 10 V*°a®c.

Then p(x (g) l o ) = π M (x), p( l <g)λ(r)) = 1 <g>λ(r)<g)λ(r) and p(l <g)/)

THEOREM 2.1. 7/ α is an action of G on M, then

where [a] ^ Ad 1 0 V'°ι 0cr °a (g) t. In particular, [a]t =
at(g)Adλ'(t) for ί £ G .

LEMMA 2.2. //p is gίuen 6y (2.1),

ά °p = p 0 ι

on M(g) 1G, vv/iere a = ι0<τ°a(g

Froo/. Since

(2.2) V * 0 1 σ ( t 0 σ ) ( V * 0 1 G

we have

(2.3) (l o ® V')(V*(g)lo) = (V<g> 1O)(1G 0 V')ι Θ σ(V<8>lo).

If JC EM, then ι <g)σ(x (g)lG <g)lσ) = x 0 1 G 0 1 G . Therefore

p (g) i o Ad 1 (g) V'oά(χ (g)lG)

= Ad 1 <g> V* (g) l o °α (g) i <g) i ° Ad 1 (g> V'«»ά(x <g)lc) (By (2.1))

= Ad((l ® V* (g> l c )(l <g) l o (g) V'))°α (g) i (g) t °ά(x <g> l 0 )

= Ad((l(g)V*(g)l c )( l®l o 0V>(g)ι®σ(l®V(g)l c ))

«α0ι(g)ι(x(g)lo(g)lG) (By (1.3))

= Ad((l(g)lσ(g)V')(l(g>V*(g)lσ))oα(g)ι(g)ι(x®lc®lo)

(By (2.3))

= A d l ® l σ ® V Ό p 0 ι ( χ 0 1 σ 0 1 G ) (By (2.1))

= ά°p(x(g)lG).

This completes the proof.
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Proof of Theorem 2.1. It is immediate from the following calcula-
tion:

(p <g> i ) ' 1 ° ά o p (1 <g) A (r)) = (p <g) ι)-' ° ά (1 (g) λ (r) <g> λ (r))

= (p<S>O"'(l<8)λ(r)(g)λ(r)(g)lc)

and

This completes the proof.

The dual version of the above result is obtained as follows. If ττN is
an isomorphism of N into (N®βG)(g)βG given by

for y in N, then (N®d

βG)®βG is generated by τrN(y) (y EN), l<g>e/
(feL"(G)) and 1 (g)lG (g)λ(r) ( r £ G ) , [17]. We denote by p an
isomorphism of N®B(L2(G)) onto (N^G)0β-G defined by

(2.4)

where / is given by (Jξ)(t) = A(t)inξ(r') for ξ E L\G). Then

THEOREM 2.3. // β is a dual action on N, then

where [β] = Λrf l(g)V^ o ι(g)σ

LEMMA 2.4. // p is defined by (2.4),

on

Proof. Since

(2.5) W 0 1 G
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we have

(2.6) (W®lG)(lc®W)ι®σ(W*(g)la) = (lc

If y GIV, then i <g)σ(y <g)lc (g)lG) = y <g)lG (g)lG. Therefore

Ad 1 <g> 1G (g)/ (g) l o °p 01 °Ad 1 <g> W °/3(y <g> 1G)

= A<Π(g)W<g)lG°/3<g> t<g)ι°A ίΠ(g>W° Jβ(y(g)lG) (By (2.4))

(g) 1G)(1 (g) \a (g)

>ι®ι(g)σoj8(g) ι (g) t oj8(g) t (y(g) l o )

°/3<g)ι(gH(y<g>lo(g>lG) (By (1.3))

(g)lc))oj8(g)t(g)t(y(g)lo(g)lc)

(By (2.6))

- Ad{{\ (g)lc (g) W)(l <g)lG (g> J(g)lG))°p (g) ι(y <g)lc ® l 0 )

(By (2.4))

= Ad((l®lo(g)/<g)lc)(101σ<g)ϊV*)op(g)ι(y(g)lo(g)lo)

= Ad(l<g)lc(g)/®lσ)oj8op(y01o).

This completes the proof.

Proo/ 0/ Theorem 2.3. It is immediate from the

and

= (p (g) 1)"'(1 0 1 c (g) λ (r) <g) λ (r))

= 10λ'(r)0λ(r)=[j8](10λ'(r)).

This completes the proof.

By the use of operator valued weights Ea and Eβ we have shown in
[16; 17, Proposition 6.1 and 6.4; 18] that

(2.7) (M0aG)ά = a(M) and (N®d

βGγ = β(N).
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Combining (2.7) and Takesaki's duality in the above, we have the
following theorem.

THEOREM 2.5. (i) // a is an action of G on M, then

(2.8) M ® α G = (M(g)B(L2(G)))H.

(ii) // β is a dual action of G on ΛΓ, then

(2.9) N®d

βG = (N®B(L2(G)ψ].

Proof, (i) Let p be the isomorphism of M (g) B(L2(G)) onto
(M(g)α G) <g)d

ά Ggiven by (2.1). Then, by Theorem 2.1 and (2.7), we have

Since

by (1.3) and

as before, we have (2.8).
(ii) Let p be the isomorphism of N (g) β (L2(G)) onto (N®d

βG)(g)β G
given by (2.4). Then, by Theorem 2.3 and (2.7), we have

p((N®B(L\G))y ')= β(N®d

βG).

Since

by (1.3) and

as before, we have (2.9).

Hereafter we shall use the following notations:
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ά = t 0 σ o α 0 ι , [a] = Ad 1 (g) V'°ά

j β Ξ t 0 σ oβ(g)ι, [β] = Ad 1 (g) W ° β

without any reference.

3. Essential spectrum Γ(/3). In this section we shall define
an invariant Γ(/3) of a dual action β in analogy with Γ(α) defined for an
action a by Connes, [5]. The argument will proceed similarly as that
for a.

For a dual action β of G on N we define βφ and Φω for φ E i?(G)*
and ω E JV* by

), ω <g) φ> = <Φω(y), φ>.

Let ray and m denote the set of all φER(G)* with βφ(y) = O and
/3Φ = 0, respectively. The spectrum sp^(y) of y with respect to β and
the spectrum sp(β) arc given by

s n r(ψ) and
φ £

where Γ(φ) denotes the set of all t E G with (λ (ί), Φ) = 0. For a closed
subset E of G we denote by Nβ(E) the set of all y in N satisfying
spβ (y)CE. Then Nβ ({e }) = Nβ.

Now, we shall give some properties of spectrum spβ(y) and the
related ones.

LEMMA 3.1. For any φandψinR(G)* and for closed subsets E and
F of G the following eight statements hold:

(i) spβ(βφ(y))Cspβ(y)\Γ(φ)°, where Γ(φ)° denotes the interior of
Γ(Φ);

(ii) y 6 N β ( £ ) i/ and only if E°U CΓ(φ) /mp/ίes βφ(y) = 0 /or a//
neighbourhood °U of e and for all φ E R(G)*;

(iii) Nβ(E) is a weakly closed vector subspace of N\
(iv) 5pβ(jc*) = 5pβ(jc)"1;

(v) Ϊ / D /s weakly total in JV, ί/zen 5/?(jβ) w ί/ι̂  closure of union of all

ψβ(y) with yE£>;
(vi) t £ί sp(β) if and only ifNβ(°U)/ {0} for all compact neighbour-

hoods °U of t\
(vii) if λ*φ = λ*ψ on some neighbourhood of spβ(y), then βφ(y) =

βφ(y); and
(viii) if E or F is compact, Nβ(E)Nβ(F)CNβ(E F).

Proo/. (i) Put z=βφ(y). If j8, (y ) = 0, then βφ (z ) = & (β, (y )) =
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0. Indeed, (λ(t),φψ) = (λ(t)9φ)(λ(t),ψ) = (λ(t),ψφ) and βφβφ =
βφφ = βφβψ by the property of a dual action. Therefore my C mz and
hence spβ (z) C φ β (y).

If t is in Γ(φ)°, there exists a ψ in JR (G)* such that <λ (ί), Ψ) ̂  0 and
φψ = 0. Since φψ = 0 implies βψ(z) = 0, it follows that
tfέspβ(z). Therefore %(z)CG\Γ(ψ)°.

(ii) Suppose that y E Nβ(E). For any neighbourhood % of e and φ
in i? (G)*, if E<U CΓ(φ), then £ CΓ(φ)° and hence E\Γ(φ)° = 0 . Since
*ft> Oφ(y)) = 0 by (i), we have βφ (y) = 0.

Conversely, if f £ JE, there exist a neighbourhood °U of e and a φ in
R(G)* such that E°U CΓ(φ) and (λ( ί ) ,φ)^0. From assumption it
follows that jβφ(y) = O. Since (λ(0, Φ>^0, we have
tf£spβ(y). Therefore spβ(y)CE, namely, y ENβ(E).

(iii) If yκ E Nβ(E) and yκ converges weakly to y, then

(j3φ(y), ω) = (β(y), ω (g) φ) = Iim<j8(yfc), ω (g) φ)

for all ωEN*. Therefore E°U CΓ(φ) implies /3φ(y) = 0, and hence
y ENβ(E) by (ii).

(iv) Let m, denote the ideal {λ(t)Y of i?(G)*. If ί E spβ{x% then
mx*Cmt. Since (rax)* = rax* and (mί)* = mf-

1, we have mxCmr

ι and
hence Γ1 E spβ(x). Therefore 5/7β(x*)C5p/3(jc)"1. Changing the role of
x and JC*, we have spβ(x)Cspβ{x*)~\ Thus 5pβ(x*) = spβ(x)~\

(v) Let £ be the closure of union of all spβ(y) with y E D. Since
£ Csp(β) is clear, it suffices to show the converse inclusion. For this we
suppose tht sp(β)\E is nonempty and t is its element. For any compact
neighbourhood °U of e with t°lί Π E = 0 there exists a φ E R(G)* such
that (λ(ί),Φ>^0 and G\Γ(φ)°Ct°U. Since

we have spβ(βφ(y)) = 0 by (i) and so /3φ(y) = 0 for all y E D. Since D is
weakly total in JV, βφ = 0. Since (λ(ί), Φ)^ 0, we have tf£sp(β), which
is a contradiction.

(vi) Suppose that Nβ(°U)^ {0} for all compact neighbourhoods °U of
ί. Then °U has a nonempty intersection with some spβ(y) with y E
N. Thus ί belongs to the closure of union of sp^y) with y EN and
hence to sp(β) by (v).

Conversely, suppose tEsp(β). For any compact neighbourhood
°U of ί, there exists a φER(G)* such that <λ(f),Φ>^0 and G\Γ(φ)°C
°U. Since tGsp(β), jβφ(y)^O for some yGJV. Since spβ(j8φ(y))C°U
by (i), it follows that βφ(y)<Ξ Nβ(°U).

(vii) Since spβ(y)CΓ(φ - ψ)°, spβ(βφ-φ(y)) = 0 by (i). Thus
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(viii) We may assume that F is compact by (iv). Let x E Nβ(E) and
y E Nβ(F). I f ω G N , and φ E R(G)*, then

(Φβχ(rrφ{y)ω(x)λ(r)yφ)dr,

where the second equality is due to [17, Lemma 4.3]. Therefore

Φω(xy) = lim J zrλ (r) dr. (zr = Φβλ(,Γψ(y)ω(x))

Since spΎ(zrλ(r)) = spy(zr)r and since 5/?r(zr)C5p^(x) by [17, Proposition
5.4], it follows that spγ(z rλ(r))Csp/3(x)r. If % is a symmetric compact
neighbourhood of e, then r H> βλ(r)*φ(y) vanishes on G\°UF for all φ with
carλ *φ C°U. Therefore (iii) implies spy(Φω(xy))Cspβ{x)°lίF, which im-
plies (viii) by [17, Proposition 5.4].

For any projection p in Nβ we denote by βp the restriction of β
defined by

Pwhere xp is the restriction of px to pX. Then βp is an isomorphism of Nf

into Np 0R(G) satisfying βp (g)t °βp = t ® γ o / 8 p , that is, βp is a dual
action of G on Np.

DEFINITION 3.2. Γ(/3) is the intersection of all spβp, where p are
nonzero projections in Nβ.

LEMMA 3.3. If p is a projection in Nβ and q the central carrier of p in
Nβ

y then
(i) if Nβ(E) ΓΊ Nq^ {0}, then Nβ(E) Π N p ^ {0};
(ii) sp(βp) = sp(β«); and
(iii)

Froo/. (i) Let (Nβ)u be the set of all unitaries in Nβ. Since
q =sup{upu*: u E.(Nβ)u), if x ENβ(E)ΠNq and x^O, there exist two
unitaries u and t; in N'3 such that upu*xvpv* ^ 0. If we put y =
pu*xvp, then y E Np, y^ 0 and y E Nβ(E) by (viii) of Lemma 3.1.

(ii) It is clear from (vi) of Lemma 3.1 and (i).
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(iii) Since Z(Nβ

p) is isomorphic to Z{Nβ

q) by the correspondence
ep *•* eq for e £LZ(Nβ), the central carrier of ep in Nβ

q coincides with
eq. Since spβe'= spβe« by (ii), Γ(βp) = Γ(βq).

When u is a weakly continuous a twisted unitary representation of
G in M, i.e., κ(.sf)Ξ M(S)<ZS(M(0) Then the unitary U in M®L
defined by (LΓ£)(r)= u(r)£(r) for f G $f (g)L2(G) satisfies

(3.1) t/<g>lσ(α<g>ι)ί/ = ι<g>δ(u).

PROPOSITION 3.4. J/α unitary U in M(&L°{G) satisfies (3.1),
ex/5/5 a weakly continuous a twisted unitary representation u of G in M
such that (Uξ)(r) = u(r)ξ(r) locally almost everywhere. (We can use the
same letter for both U and u.)

Proof. For g in V(G) we define U(g) in M by

(3.2) (C7(g),ω> = <t/,

for all ω in M*. If / G L\G), then

= <[/,α*((ω(g)/)ίy)(g)g) (By (3.2))

= <t/(g)lσ(α(g>Ot/,ω(g)/(g)g>

(3.3) =<i®δ(LΓ),ω(2)/(8)g> (By (3.1))

= |g(ί)<Adλ1(ί)(t7),ω(8>/>Λ.

Therefore

belongs to α(M). If we make g(t)dt converge to the Dirac measure at
5, then it converges weakly to U*Adλx(s){U), which belongs to
a(M). Define a unitary u(s) in M by

(3.4) u(s) ^a-\U
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Then s *+ u(s) is weakly continuous. Combining (3.3) and (3.4), we have

= j g(t)u(t)dt.

It follows from (3.2) that (Uξ)(r)= u(r)ξ(r) locally almost
everywhere. Besides, since {M, α } ~ {α(M), t <g)δ} and a °at°a~ι =
(t ® δ), = AdA,(i), it follows from (3.4) that u(s)as(u(t))= u(st).

Let α 1 and a2 be two actions of G on M. We denote by a1 ~ α 2 if
there exists a unitary w in M ξ2)L™(G) satisfying (3.1) for α 1 and

a2 =

DEFINITION 3.5. Let jβ} and β2 be dual actions of G on N. Denote
by βι ~ β 2 if there exists a unitary i; in N®R(G) such that

u (8>1G(J3I® ι)ϋ = i ® γ(u) and β2 = Adv °βx.

It should be noted that, when u is a weakly continuous a twisted
unitary representation of G in N, u(t)^Ma for all ί if and only if
ά(u)= u 0 1 G .

L E M M A 3.6. Lei {ei; : ΐ,/ = 1,2} fee matrix units of a type I2 factor

F2. If βι~ βip there exists a dual action β of G_ on N 0F 2 satisfying
β(y ®ekk) = βk(y ®ekk) for k = 1,2, where βk = L (g)σ°βk ®ι on

Proof. Since β{ ~ β2, there exists a unitary t; in N®R(G) such
that j82 = Adϋ °βλ and

(3.5) ϋ (g) ίG(β{ (g) t)ϋ = 6

If we set w = tN 0 σ ( 1 0 1 G 0 e π 4- υ 0 ^ ) , then w belongs to
N0F20JR(G). Define a mapping j8 of N 0 F 2 into J V 0 F 2 0 R ( G )
by

*i(y2i £*) ̂ 21) + Λd(tN 0 σ(υ 0 6

Then β = Ad w ° βλ and hence β is an isomorphism. Moreover, since
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ι °ι (g)σ(l c 0 1 G (g)βn) = 6

CΓ (g) 6 o lN (g) I (g) σ o iN 0 γ (g) t F 2(ϋ

tN 0 ι*2 0 γ ° tN 0 σ(υ 0 β22)

it follows from (3.5) that

= lN 0σ 0ι(101

* (βi 0 %°tN 0 cr)(l 0 1G 0 en + ϋ 0 e22)

= tN 0 σ 0 i o ιN 0 t 0 σ(l 0 1 G 0 1 G 0 eπ

+ ϋ 0 1G 0 e22(jβ, 0 i 0 ιF2)(ϋ 0 e22))

= IN 0 σ 0 I o IN 0 I 0 cr(l 0 1G 0 1G 0 e n

+ tN 0 γ 0 ιF2(ϋ 0 e22))

Since β{ is a dual action of G on N 0 F2, β is also a dual action of G on
N0F 2 .

When G is abelian, if p,qENβ and p ~ g in N, then Γ(βp) =
Γ^^). However, if G is nonabelian, this is not necessarily assured.

Let β{ and β2 be dual actions of G on N such that β2 = Λdv °βx for
some v E N 0 J R ( G ) with ϋ 0 l G ( β i 0 ι ) r = t ® y ( u ) . Then we have
a dual action /3 of G on N 0 F 2 satisfying

1 0 e ; i G ( N 0 F 2 ) β and 1 0 e n ~ 1 0 e 2 2

as in Lemma 3.6. Then Γ ^ 1 ^ ) = Γ(ft ) and hence Γ(β2)5pβ(l 0e 2 1 ) =

' The condition (ii) in the following theorem is a consequence of
Theorems 5.2 and 6.1, which will be proved in §§5 and 6.

THEOREM 3.7. (i) Γ(β) is a closed subgroup of G.
(ii) If β is dual to some action (or if β is regular), Γ(β) is normal and

Γ(β) = Γ(β).

Proof (i) Since T(β) is clearly closed, it suffices to prove the group
property. Since Γ(β)"1 = Γ(β), by (iv) of Lemma 3.1, we have only to
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show Γ(β)spβp Cspβp for all projections p in Nβ. Since spβp is closed,
we have only to show that, for any compact neighbourhood °U of e,
spβp Dstύίί7έ0 for any s G Γ(β) and t G spβp. Choose a symmetric
neighbourhood Ύ of e with ΓιVtV C °U. Since ί G spβp, there exists an
element x in N such that spβ(x)CtV and x = pxp^O. Let q be the
carrier projection of x*. Since 5 GΓ(β) and 0<q ^p, s G spjβ̂  and
hence there exists an element y in N such that spβ(y\CsT and
y = <?y<?̂  0. Since yx G N, yx = py*P^ 0 and φ^ (yx) C sί^ by (viii) of
Lemma 3.1, it follows that spβp Π st°U^0.

(ii) When β is regular, Γ(β) coincides with the set oί t E G with
βt = i on Z(N0d

βG) by Theorem 6.1. Since Z(N(g)^G) is globally
invariant under jβs for all 5, Γ(jβ) is normal.

If β is regular, then {N,/3}~ {N,[/3]} and so Γ(/3) = Γ([jS]) =
Γ(/3). Since Γ(/3) = Γ(β) by Theorem 5.2, Γ(/3) = Γ(β).

4. Integrable actions and dual actions. Here and
hereafter, we denote the center of a given von Neumann algebra A by
Z(A).

This section is prepared only for Theorem 8.4. First we recall a
result on a weight on M®aG, [17, Section 6]. Let Δ be a semi-finite
faithful normal weight on LX(G) defined by

for all / in K(G). Here, we need no fair of notational confusion for
Δ. Let nα be the set of all x in M satisfying

|(α(x*x),ω{g)Δ)|^λ x | |ω| | (λx >0)

for all ω in M*. Then there exists a faithful normal Ma valued weight
Ea on M, whose domain is n*ana.

In case of compact G it is straightforward that
(a) Δ is bounded (it may be assumed a state);
(b) El=Ea and || JEe | | = 1 (if <1,Δ>=1);
(c) M α C π α ; and
(d) nα is σ-weakly dense in M.

However, for a noncompact G, the assertions (a), (b) and (c) do not
hold. Following Connes and Takesaki [6] we call a to be integrable, if
Ea is semi-finite, namely, a satisfies (d). It is shown in [17] that the
action β dual to some β is always integrable. Since (nα)pCnα P for
p G Mα, if a is integrable, so is αp.
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THEOREM 4.1. (Connes and Takesaki). Assume that G is
separable. If Ma is properly infinite, the following three conditions are
equivalent:

(i) a is integrable
(ii) for each non zero projection f in Ma there is an x in M satisfying

qxq/0 (q =f®lG) and

(4.1)

(iii) {M, ά) -~ {Mp, [a]p}for some projection p in M{a].

Proof, (i) => (ii) Since a is integrable by assumption (i), there exists
a nonzero z in nα with z = fzf. For any g in K(G) we set

(4.2) (xξ)(s)^A(sy2as(zH V = j g(t)ξ(t)dt

for ξ in ^(g)L2(G). Then qxq = (/(g) lG)jc(/(g) l c ) = x. Since z^O,
x^O. Since

x is bounded on ^ ( g ) L 2 ( G ) . If we replace^ by (x'(g) lG)ξ with JC' G M r

in (4.2), then [x, xr(g) 1G] - 0 and so x G M. Since

((1 <g> V ' )«(^) ί ) (^ 0 = Δ(0 1 / 2 (ά(x)^)(r ] 5, t)

(By (4.2))

we have ^xg ( = x) satisfies the equality in (ii).
(ii) φ (iii) It suffices to show that the set Ia of x in M with

(1 0 V)α(x) = x 0 1 G contains an isometry υ. Indeed, υυ* G M { α ] and
i) (g) 1G °α = [α]°Λdϋ.
The case where Ma is σ-infinite. Since

1 (g) V(g) l G ( α (g) t)( l 0 V) = LM (g) δ(l (g) V),
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we can define an action (a) of G on M(g)F 2 by

η ®eη)= {a}{xu®eu)

v * <g e22)
+ M̂ (g cr o α (g) IF2(Λ:22 (g e22),

where [ά] = tM (gσ"°[α](g tF2. Then Σx/y (ge ί ; G (M(gF 2 ) < α ) if and
only if

JCΠ G M [ α ϊ , J t 1 2 eJ α , x 2 1 6 J * and JC22 E M d .

Therefore the central carrier of 1M (g^22 in (M(g)F2)
< α ) is majorized by

the central carrier of 1M (g) en by (ii). Since Ma is properly infinite and
G is separable by assumption, 1M (g βn is properly infinite and 1M (g β22 is
σ-infinite in (M (gF2)

{a). Therefore 1M (g 2̂2 < U (g e π in (M (g F 2) ( α )

from the above discussion. Thus there exists a partial isometry v (gβ 1 2

in (M (g F 2) ( α ) whose initial and final projections are 1M (g 2̂2 and the one
majorized by l M ( g ^ i i , respectively. Then v is an isometry in Ia.

The general case. There exists a partition {et: 1 E. 1} in Z ( M α )
satisfying either

(a) eL is σ -finite in Ma or
(b) eL is divided into uncountable set {fκ: K E iί} of mutually

equivalent, properly infinite and cr-infinite projections in Mα . Since M α

is properly infinite, eL with (a) is also properly infinite in M α . Thus we
can apply the above σ -finite case of M α to {Meι,a

6ί} or {M/κ, α
/(<}.

(iii) => (i) Since ά is dual to ά, [α] is integrable. If p & M[a] is
nonzero, [a]p is also integrable on Mp. Therefore ά is integrable on M
by our assumption (iii). Let q be a projection in M of the form 1 (gβ
for some minimal e in B(L2(G)). Since g E M f i, ά* is integrable on
M r Since {M, α} is equivalent to {Mq,ά

q}, a is integrable on M.

Now we consider the dual version. Let ωe be the semi-finite faithful
normal weight on R(G) defined by

for g in K(G) and nβ the set of all y in N satisfying
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for all ω in N*. There exists a faithful normal Nβ valued weight Eβ on
N with domain n*βnβ. When G is discrete,

(a) ωe is bounded (it may be assumed a state);
(b) E2

β=Eβ and | |E β || = 1 (if <1, ωe) = 1);
(c) Nβ Cnβ; and
(d) nβ is cr-weakly dense in JV.

However, for a nondiscrete G, (a), (b) and (c) do not hold, and moreover,
(e) (Nβ({s}) Π nβ)\{0} = 0 for all 5.

DEFINITION 4.2. β is integrable if for any nonzero projection / in
Nβ there is an element y in N satisfying qyq^O (q = / ( 8 ) 1 G ) and

(4.3) (l®W)β(qyq) = qyq®lG.

THEOREM 4.3. Assume that G is separable and Nβ is properly
infinite. If β is integrable, then

for some projection p in N[β].

Proof We denote by Iβ the set of all y in N satisfying

(4.4)

Since β(y *y) = y *y ® 1 G , go = sup{5(y*y): y E / J belongs _to
Nβ, where s(y *y) is the carrier of y *y. Since Iβu = Iβ for u in
q0G Z(Nβ). Since β is integrable, g 0

= l Since

1 (8) W (g) lσ(j8 ® t ) ( l ® W ) =1^(8)7(1 (8)

we can define a dual action ()S) of G on N(g)F2 by

+ 1̂  (8) σ(l (8) W* (8) e22

+ I* (g) CΓ o β (g) 6(y22 (g) β22)

as shown in Lemma 3.6. Then Σ yl} ®eη G (N(g)F2)
<β) if and only if

yπ G iV[βl, y12 G /β, y21 G /* and y22 G N "̂.
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Since G is separable and Nβ is properly infinite, 1N ® e 2 2 < IN ®βn in
(N £ξ) F2)

{β) from the above. Therefore there exists an isometry w in Iβ.
Consequently, (4.4) implies

Adw <g)lσ°j3 =

Since [j3](ww*)= ww*(g)lG by (4.3), p = ww* belongs to JVίβl and
{Nβ}{N[β]pl

5. Regular actions and dual actions. In this section we
shall discuss the relation between a (dual) action dual to some one and a
dominant (dual) action. The former is initially characterized by Land-
stad and the latter concept is initially given by Connes and
Takesaki. For our convenience we shall introduce the following ter-
minology for a and β.

DEFINITION 5.1. An action a (resp. a dual action β) of G on M
(resp. N) is regular if there exists a covariant dual system {N, β) (resp.
covariant system {M, a}) satisfying {M, a} ~ {N 0 £ G, β) (resp. {N, β) ~

}

Therefore, β is regular if and only if there exists a weakly continuous
unitary representation u of G in N such that β(u(t))= u(t)ξζ)λ(t) for
all ί; and a is regular if and only if there exists an isomorphism π of
L"(G) into M such that α, °π = τr°.4dλ'(/) for all /, [15; 16; 17,
Theorems 8.1 and 8.3; 21]. It is immediate from our definition that ά, β,
a, β, [a] and [β] are regular.

The ergodicity of a (resp. β) on Z(M) (resp. Z(N)) is defined by
Mα Π Z{M) = Cl (resp. JV3 Π Z(N) = Cl).

THEOREM 5.2. (i) Z(M(g)αG)Cα(M) (reψ. Z{N®d

βG)Cβ{N)) if
and only if Z{M®άG)Cά(M) (resp. Z{N(&fG)Cβ{N).

(ii) a (resp. β) is ergodic on Z(M) (resp. Z(N)) if and only if a (resp.
β) is ergodic on Z(M) (resp. Z(N)).

(iii) Ker a \ Z(M) = Ker ά \ Z(M\ where Ker a \ Z(M) is the set of
all t in G with at = i on Z(M).

Proof. Our proof owes to Takesaki's duality:

(5.1) {M,ά}~{M,[α]} and {N,β}~{N,[β]}.

(i) The case of a. Let N = M 0 α G and β = a. According to (5.1)
we have only to show the equivalence of Z(N)CNβ and Z(N)C
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N[β]. Since Z(N) = Z(N)(g)lG, we have only to show that y<ENβ if
and only if y 0 1 G £ Nlβ] for all y E Z(N). However, this is clear from
the following equality

The case of β. Let M == N®d

β G and a = j3. According to (5.1)> we
have only to show the equivalence of Z(M)CM α and Z(M)C
M w . Since Z(M) = Z(M) 0 1G, we have only to show that x E Mα if
and only if x 0 1 G £ M w for all x E Z(M). This is clear from

A d 1 ® V' o i <g) σ - a ® t (x (8) 1G ) = x (g) 1G ® 1G.

(ii) The case of a. Since α(x) = x (g)lG if and only if [a](x ®1 G ) =
^ ® lσ <S)lσ> it follows that a is ergodic on Z(M) if and only if [a] is
ergodic on Z ( M ) ® 1 G . Thus we have (ii) for α by (5.1).

The case of β. Since j8(y) = y ® 1G if and only if [β](y ® 1G) =
y Θ lσ (8) lσ, both of the ergodicity of β on Z(N) and []8] on Z(N) (g) 1G

are equivalent. Thus we have (ii) for β by (5.1).
(iii) It is immediate from (5.1) that

Kerα \ Z(M) = Ker [a] \Z(M) = Kerά fZ(M).'

(iv) If y E N , zEB(L2(G)l ω, £ N,, ω 2£B(L 2(G))* and φ E
jR(G)*, then

<βφ(y Θz)>ω,(g)ω2> = (j3Φ(y)(g)z?ω1(g)ω2)

and hence jβφ = 0 is equivalent to βφ = 0. Since Z(N*) = Z(Nβ) (g) 1G, it
follows that spβp = spβp®ίG for p£Z(Nβ). Consequently, Γ(j8) =

When M is properly infinite and M contains a partition {eL: t E J} of
the identity such that eL — eκ in M for all i, K and dimL2(G)S Card/,
Takesaki's duality tells us that (M® βG)®ίJG is isomorphic to
M. Here we raise a question, when is {(M(g)α G) 02 G, α} equivalent to
{M,α}?, namely, when are they isomorphic as a covariant system?

We shall begin with the following lemma.

L E M M A 5.3. IfMa (resp. Nβ) contains a partition { e t : ι G 7} of the

identity satisfying

(i) eL - 1 in Ma (resp. Nβ) for all i e l ; and

(ii) dimHS Card/,
then {M, a} (resp. {N, β}) is spatially isomorphic to
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(5.2) {M<g)B(H),ι(g)σoα<g)ι} (resp. {JV(g)B(//), t <g)σ °/3 <g) t}).

Proof. From our assumptions (i) and (ii) we can obtain a partition
{/t: i E /„} of the identity such that Card/H = dim// and f - 1 in Mα

(resp. JVβ) for all i E /H. Let vL be an isometry in Ma (resp. JVβ) with
vLv*=f. Let p be the spatial isomorphism of M (resp. JV) onto
M0B(H) (resp. JV(g) £(//)) such that

for x in M (resp. JV), where {eικ: t, K E /H} is the set of matrix units of
B(H). Then

ρ(at(x))= X ^!«r(^)^κ ®e tK

resp. (p ®

where the second equality follows from the following reason. If spβ(x)
is compact, then, by [17, Lemma 4.3],

An action a (resp. a dual action β) is said to be of infinite multiplicity
if it satisfies the conditions (i) and (ii) for a Hubert space H = L2(G) and
an infinite G in Lemma 5.3.

DEFINITION 5.4. An action a (resp. a dual action β) oί G on M
(resp. N) is said to be dominant if

(i) a (resp. β) is of infinite multiplicity, and
(ii) {M, ά\ - {M, [α]} (resp. {N, £} ~ {ΛΓ, [0]}).
For a dominant α (resp. β) it holds that

{M, a} - {M, ά} (resp. {JV, β) - {JV, jS})

by Lemma 5.3.

REMARK 5.5. If G is infinite and a (resp. β) is regular, a (resp. /3)
is dominant.
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THEOREM 5.6. If a (resp. β) is regular, then

{M, ά) ~ {M, [a]} (resp. {N, β} ~ {N, [β]}).

Proof. The case of {M, a}. If a is regular, there exists a covariant
dual system {N, β} satisfying

(5.3) {M,a}~{N®d

βG,β}.

Let X denote the underlying Hubert space of N. Since

( 5 4 ) β,(l* ®f) = U (g)/,- = Adλ\{t){\x (8)/)

for λΊ(t) = lx0λ'(t), we have β, = Adλ;(ί)on N®d

βG. Let w be the
unitary on 3ίT(8>L\G)®L\G) defined by

Since Ad W(λ'(r)<g)la)= λ'(r)(g)λ(r), it follows that

w*Adλί(r)(8)lσ(w)=l3 r(8)lo<8)λ'(r).

Therefore, by (5.4)

(Adw)-'°β, <g>ι°Adw =j8,®Adλ'(O

on (N(g)βG)(g)β(L2(G)), which completes the proof for a.

The case of {N, β}. If β is regular, there exists a weakly continuous
unitary representation u of G in N satisfying β(u(t))~
u(t)0λ(ί) We denote by the same letter u the unitary in N 0 L " ( G )
denned _ by (uξ)(r)= u(r)ξ(r) for ξ G 5Γ(g)L2(G). Then
(l<g>W)/3(κ*)=κ*<g>lc. Indeed, if £ G J{®L2(G)®L2(G), then

, 0 = u(s)ξ(s, ts)

where (7 is a unitary on L2(G) <g> L2(G) defined by (Uη)(s, t) = r\(t,s)ior
all η in L\G)®L\G). Therefore
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Adu <g)lo Adi ® Woβ = β

and hence {JV,[j8]}~ {N,j3}.

It should be noted that the proof of Theorem 5.6 for β does not use
the homomorphism property of u.

COROLLARY 5.7. a (resp. β) is dominant if and only if it is regular
and of infinite multiplicity.

6. Ergodic actions and dual actions. This section is
devoted to further investigation of [6, §3 of Chapter III]. The following
theorem generalizes [6, Theorem III, 3.2], whose proof will go along the
same line of argument. By Lemma 3.3

(6.1) Γ(β)= n{spβp:p<ΞZ(Nβlpέ0}.

For a given action a we denote by Kerα f Z(M) the set of all t in G
satisfying at = i on Z(M).

THEOREM 6.1. (i) Γ(β) = Kerj3 \Z(N®d

βG) if β is regular.
(ii) Γ(ά) = Kerα

Proof (i) If β is regular, there exists an isomorphism p of Nβ(g)a G
onto N satisfying /3°p = pCgUod;, where a is an action of G on
Nβ. Then Takesaki's duality gives us that

Therefore

(6.2) Kerβ \Z(N®d

βG) = Ker[a]\Z(Nβ)®lG = Kerα \Z(Nβ).

Since {Nβ, a} is covariant and p °a(Nβ) = Nβ by (2.7), we have

a°t^(p °a)°at°(p °a)~1 E AutNβ.

Here we set u (t) = p (1 <g) λ (ί)). Since β (M (ί)) = M (ί) ® λ (f), N β ({r}) =
Nβu(t) by [17, Proposition 5.2]. If p is a nonzero projection in Z(Nβ),
then α°(p)= u(t)pu(t)* and

(6.3) pN^({ί})p = pN'ii(0p = pNβa°t(p)u{t).
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Consequently, s E Ker/3 \Z(N(g)d

βG) if and only if as = i on Z(Nβ) by
(6.2), if and only if a°s= t on Z(Nβ), if and only if pa°s(p)^0 for all
nonzero projection p in Z(Nβ), if and only if 5 E Γ(/3) by (6.1) and (6.3).

(ii) Combining (i) and Theorem 5.2, we have

Γ(ά) = Ker ά r Z(M) = Ker a \ Z(M).

Here we denote the von Neumann algebra generated by β(N) and
l(g)(LM(G)nλ'(H)') by N(g)d

β(H\G), whose characterization will be
discussed in §7.

COROLLARY 6.2. Assume β is regular. For a closed subgroup H of
G, Γ(β) = H if and only if H is the largest subgroup satisfying
Z(N®d

βG)CN®dβ{H\G). In particular, Γ(j8)=G if and only if
Z(N®d

βG)Cβ{N).

Proof. Γ(jβ) = H if and only if H is the largest subgroup satisfying
the condition that βt = 1 on Z(N(&d

βG) for all t E H by Theorem
6.1. The condition is equivalent to

Z(N(g)dG) C{x E N(g)dG: βt(x) = JC, t E H} = N®d

β(H\G)

by Theorem 7.2 in §7.

Here, if we combine Theorem 5.2 and Corollary 6.2, we have that
Γ(β) = G if and only if Z(N(g)dG)Cβ(N).

From our previous result [14, Proposition 3.1] we have the following
proposition.

PROPOSITION 6.3. If a (resp. β) is regular, the following two condi-
tions are equivalent:

(i) Z(M(g)αG)Cα(M) (resp. Γ(β)= G); and
(ii) Z(M a )CZ(M) (resp. Z(Nβ)CZ(N)).
If a (resp. β) in the above is ergodic on Z(M) (resp. Z(N)), then Ma

(resp. Nβ) is a factor.

Proof. The case of {M, a}. If a is regular, there exists a dual
action β of G on Ma such that

(6.4) {M7a}~{N(g)dGjh

where N = Ma.
(i) => (ii) Since Z(M(g)aG)Ca(M) by (i) and a(M) = (M(g)αG)ά, it

follows from (6.4) that
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Z(N) (g)1G = Z(N ® B (L2(G))) C (N <g) B (L2(G)ψ\

If z <ΞZ(N), then [j8](z <g)lG) = z <g)lG <g)lG and hence

Therefore β(z) = z ® l G for zGZ(N). Since β(z) commutes with
β(N) and 1 0 Γ ( G ) , β{z) belongs to Z(N(g)£G), which shows that
β(Z(N))CZ(N<g)dβG). Consequently, (6.4) implies that Z(Ma)C
Z(M\ because j3(ΛΓ) = (N<g)d

βGγ.
(ii) => (i) We apply Takesaki's duality to (6.4) and we have

(6.5)

If we can show that

(6.6) Z ( N ) ® l o CN®d

βG,

then Z(M(g)αG)C(M{g)αG)ίί = a{M) by (6.5). Therefore we want to
show (6.6).

Now, since β is a dual action of G on N, we have

(6.7) {N,/3}~{i8(N),t(8)y}

and (L (£)y)β(y) = Ad 1 0 W/*(β(y)(g)lG). According to our assump-
tion Z(M α )CZ(M), we have

by (6.4) and (6.7). Therefore (i (g)γ)β(Z(N)) commutes with
^ and hence β ( Z ( N ) ) ® l σ commutes with

®L"(G)). Since Z(/3(N))(g)lG commutes with
β(N)f01G7 we have

Z(/8(ΛΓ))(8)1G C{i8(Ny(g)lG, AJ 1 <g) W(l (g)l

the right hand side of which is j8(N)®f<8)yG by [16, Theorem 5].
Therefore, (6.6) is proved by (6.7).

The case of {JV, β). If β is regular, there exists an action a of G on
JVβ such that

(6.8) {N,/3}

where M = Nβ.
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(i) φ (ϋ) Since Ker/3 \Z(N®d

βG) = Γ(β) = G by Theorem 6.1 and
(i), βt = i on Z(N<g)d

βG) and hence [a]t = i on Z(M(g)B(L2(G))) by
(6.8). Therefore α, = i on Z(M) for all t and so α(z) = z (g)lG for
z E Z ( M ) . Since α(z)EM(g)αG and it commutes with a(M) and
l(g) i?(G), α(z) belongs to Z(M(g)αG), namely, Z(α(M))C
Z(M(g)αG). Consequently, (6.8) implies that Z(Nβ)CZ(N\ because
a(M) = (M<g)aG)ά.

(ii) φ (i) Since β is regular, there is a weakly continuous unitary
representation u of G in N such that | 8 ( M ( / ) ) = M ( / ) ® A ( / ) . Since
Z(Nβ) C Z(N) by (ii), if p is a nonzero projection in Z(Nβ), βp is a dual
action of G on Np and ί^w(ί)P is a weakly continuous unitary
representation of G in Np satisfying βp(u(t)p) =
W(0P 0 λ ( f ) . Therefore spβp = G for all /? in Z(Nβ). Consequently,
Γ(j8)=G.

Finally, if o: (resp. β) is ergodic on Z(M) (resp. Z(N)), then Mα

(resp. Nβ) is a factor from the above.

THEOREM 6.4. T/ie following two conditions are equivalent:
(i) Mξξ)aG (resp. N(g)d

βG) is a factor; and
(ii) Z(M<g)β G)Ca(M) (resp. Γ(β) = G) and a (resp. β) is ergodic

on Z(M) (resp. Z(N)).

Proof. The case of {M, a), (i) Φ (ii) If α ( z ) = z ® l G for
zEZ(M), a(z) commutes with a(M) and 1012(G), and hence it
belongs to Z ( M ® β G ) . Since M(g)aG is a factor, (ii) follows im-
mediately.

(ii) φ (i) We denote the covariant system {(M(g)aG)(g)aG, a} by
{M, a}. Since ί ( M ® α G ) = M", it suffices to show that Mά is a
factor. Since α is regular, it suffices to show that

(a) Z(M®άG)Cά(M)\ and
(b) a is ergodic on Z(M)

by Proposition 6.3. (a) and (b) are immediate from (ii) by Theorem 5.2.

The case of {N, β). (i) Φ (ii) Since T(β) = G is clear, it suffices to
show the ergodicity of β on Z(N). If j3(z) = z(g)lG for z E Z(N),
then j3(z) commutes with β(N) and 1 (gjL^G), and hence β(z) belongs
to Z(N(g)d

βG). Since N(g)g G is a factor by (i), ]8 is ergodic on Z(N).
_ ( i i )φ (i) Let {N,jS} = {(N(g)£G)(g)^G, ^ . ^ Since β(N®dG) =

Nβ, it suffices to show that Nβ is a factor. Since β is regular, it suffices
to note that

(c) Γ(/3)=G;and
(d) /3 is ergodic on Z(N)

by Proposition 6.3. (d) is clear from (ii) by Theorem 5.2.
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COROLLARY 6.5. If a (resp. β) is regular and if Z(Mξ>Z)a G)Ca(M)
(resp. Γ(β) = G), then ap (resp. βp) is regular for all p E Z{Ma) (resp.

Proof The case of a. Since a is regular, {M, a} is identified with
{N®d

βG,β} for some {N,β}. Since βt(β(y)) = β(y) and j8,(l(g>/) =
Kg)/,1, it follows that /3, = Adλ5(ί) on N(g)£G. Since Z(M α )CZ(M)
by Proposition 6.3, p belongs to B(J{)ζZ)L*(G), where JC is the
underlying Hubert space of N. An action t*->Adλ\(t) on
J3(3if)<g)Lx(G) coincides with βt on Z(M α ). Since β((p) = p,
Adλ[(t)(p) = p. Since ί/(G) Π i?(G) = C1G, p is of the form e(g)lG

for some projection e in B(JC). Let π be an isomorphism of LX(G) into
Mp defined by τr(/) = e 0 / (EM P ). Then TΓ satisfies α f

oτr =
τroAdλ'(ί) on LΓ(G). Therefore ap is regular on Mp.

The case of β. Since β is regular, there exists a weakly continuous
unitary representation u of G in N such that β(u(t)) =
u(t)<g)λ(t). Since Z(Nβ)CZ(N) by Proposition 6.3, t *> u(t)p is
a weakly continuous unitary representation of G in Np and hence βp is a
regular dual action of G on Np.

LEMMA 6.6. Let p be a projection in M. If
(i) a is regular and Z(M)CM α ; and
(ii) p is properly infinite,

then p(g)lG - a(p) in M®L~(G).

Proof. Since a is regular by (i), {M, α} is identified with {N§§d

β G, β}
for some covariant dual system {N,β}. Then a(x)-
Ad 1N <g) V'(JC 0 1 G ) for JC in M. Since

(6.8) AdlN<g)V'(l<g)/)=l<g>/, (1 = 1M = 1 N ® 1 G )

M (g) L°°(G) is globally invariant under Ad 1N (g) V by Lemma 8.2. Let
p be the restriction of Ad ίN (g) V to M (g) LX(G). Then the condition
(i) implies that p = i on Z(M)(g)L3C(G) by (6.8). Therefore p (g)lG ~
p(p) (=α:(p)) by Suzuki's Theorem [N. Suzuki, Tόhoku Math. J. 7
(1955), 186-191, Theorem 1]*.

THEOREM 6.7. //

(i) G is separable
(ii) jS is integrable and Γ(β)= G; and
(iii) _N β /s properly infinite,

then {N,ι®σ°/3(g)ι}~{N,[/3]}, where N ̂  N ®B(L\G)).

* The author thanks the referee for indicating him this paper.
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Proof. According to (i), (ii) and (iii) we have

(6.9) {Nj}-{N

for some p in N[β] by Theorem 4.3. Since N is properly infinite by (iii),
so is p. Let q be the central carrier of p in N[β\ Since

(6.10) Z(N®ΐβ]G)C[β](N)

by (ii) and Theorem 5.2, it follows_from Corollary 6.5 that [β]q is
regular. Therefore we can identify {N£, [β]q} with {M®α G, ά} for some
covariant system {M,a}_. Since Z(N l / 3 ))CZ(N) by Proposition 6.3,
(6.10) implies that Z{Nq®(βVG) is included in [β]q(N) and hence
Z ( M ) C M H . Therefore, if z<ΞZ(M), then [α](z <g)lσ) =
Z®1G(8)IG and hence α(z) = z ® l σ . Namely, Z(M)CMa or

Now we apply Lemma 6.6 to the covariant system {α(M), t ® 8 } and
the projection pEa(M). Then we have a partial isometry v in
α(M)(x)L°°(G) satisfying m>* = /?C§)lG and v*υ = i ®δ(p) =
α(g)ι(p). As 1M ® V is a function ί ^ l M ( g ) λ ( ί ) in
(1M 0 ΛίGJXgjL-ίG) and

* = υυ* = p (8) 1G (VM^ίM (g) V)

*ϋVM=Vΐ5α(g)t(p)VM=p(8)lσ,

it follows that w Ξ ( ϋ V M ) p 0 1 c is a unitary in Np 0Lx(G) and

Therefore the note given after Theorem 5.6 gives our desired results.

7. Subgroups and subalgebras.. Throughout this section
H, dH and ΔH denote a closed subgroup of G, the right invariant Haar
measure and the modular function, respectively. We define a sub-
algebra of M(g)aG (resp. N<^)d

βG) associated with H by

(7.1) M ® β H ^ { α ( M ) , l(g> λ(H)Γ

(7.2) (resp. N®d

β(H\G) = {/3(N), 1 <g> (Le(G) Π A '(//)'}")•

Utilizing ά (resp. β), we shall give a correspondence between a subgroup
of G and a subalgebra of M(g)α G (resp. N(g)^ G) of the form (7.1) (resp.
(7.2)), which generalizes a result due to Takesaki, [23, Theorems 7.2 and
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7.3]. For the notational convenience we set

g*(G/H) ΞE U(G) Πλ(H)f and ί£x{H\G) = LX(G) Π λf(H)r

in what follows.

THEOREM 7.1. let N = M(g)α G and β = a.

(i)

(ii) H coincides with the smallest closed subgroup H' of G satisfying
β(M®aH)CN®λ(H')".

Proof (i) Since

c and β(λ{(t)) =

it follows that β(M(g)αH)CN<g)λ(ff)''.
Next we shall show that β(y)GN®A(H)" implies y

y for y EN. For this we have only to show

(7.3)

Indeed, y ® l c commutes with Ad 1® W(N'®λ(ίί) ') and
1N (g)J3(L2(G)) by assumption and hence y commutes with
\®Se\GIH) by (7.3). Now, if / G 2"(G/H)Π C(G\ δcf G
gx(G/H)®Lx(G), where (δc/)(s, t) = f(ts). For any g, Λ e iC(G) with

H^ 1 we set

Since f E λ(H)' and δc/ = ΛdW(lG (g)/), Fg,, belongs to the right hand
side of (7.3). If ξ G L\G) (g> L2(G), then

Since r H* f(r~ιs) is continuous and bounded, if g(r~])dr converges to the
Dirac measure at the unit e, then FgM converges weakly to
f(g)(A~ιh). Therefore f®(Δ-ιh) belongs to the right hand side of
(7.3). Making Δ-1/ι converge weakly to 1G, we have the inclusion (7.3)
for £X(G/H) Π C(G) instead of ££X(G/H). Since ^{G/H) Π C(G) is
weakly dense in 5£X(G/H), we have (7.3).

Finally we shall show M(g)αH = NΠ (1 <g)iT(G/H))\ Our proof
will go along the same line as Takesaki's proof. Suppose that y G N Π

We may assume that M is standard. Let / be the
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modular conjugation operator of M§§aG. Since J = v(JM

(JM <S)JG)V for a certain weakly continuous unitary representation υ of G
in M, we have

/(I <g> 2~{GIH))'J = (1 <g> 2-(H\G)Y

and hence JyJ G N' Π (1 (g)c5Γ(H\G))\ Here we apply the modified
Blattner-Mackey's theorem for induced covariance representations [22,
Theorem 4.3]. There exists a natural isomorphism p of (M(g)atHHy
onto JV'Π(l(g)r(H\G))' such that

p(*'(g)l//) = x'<g>lσ and P (

for JC ' E M' and / E //, where u is a strongly continuous unitary represen-
tation of G on f̂ implementing a and where AH is the left regular
representation of H on L2(H). Therefore JyJ belongs to
p((M0α Γ H//)'), which is generated by x'<g)lG and M(ί)Θλ'(ί) for
x Έ Mr and ί E JF/. Since i; (ί)w (ί)* ̂  Λf' and since

/(x'(g)lG)/ = a(JMx'JM)

and

it follows that y belongs to M(g)aH.
(ii) It is clear from the first equality in (i).

In the above proof we have established a bijective correspondence
of a closed subgroup H and a subalgebra S£X(G/H) by the relation

Indeed, since ££x(GIH)r is generated by LX(G) and λ (//), it is included in
the right hand side. The converse inclusion is direct from (7.3).

The dual version of Theorem 7.1 is the following.

THEOREM 7.2. Let M = N0ί G and a = β.

(i) N(g)d

β(H\G) = {xEM: at(x) = x, t E H}
= M Π(l(g)λ'(H))\

(ii) H = {tϊΞG: at(x) = JC, JC E N®d

β(H\G)}.

Proof, (i) Since the action α dual to β is defined by a(z) =
Ad l(g> V'(z(g)lσ) for z EN(g)^G, we have
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( 7- 4 ) =nt)z((i®vγξ)(s,t)

= λ[(t)zλ\(t)*ξ(s,t),

where A | ( ί ) = 1 0 λ ' ( ί ) . Therefore the second equality in (i) is
proved. Moreover, a, = Ad λ[(t) on N®JjG.

Now we shall show the first equality. Put a"=a, for all
t G H. a" is then an action of H on Ntg>d

βG. Since N<g)d

β(H\G) is
clearly included in (N^jG)0", it remains to show the inclusion relation

(7.5) Nu

According to Theorem 1.1 we have

(No)*" C (β(N)γ' = (N®d

βG)'C ((N ®d

βGy")'

where βH is defined by (7.6) below. Moreover, 1 0 λ'(//) commutes
with (N(g)d

βG)aH. Therefore Lemma 7.3 below implies (7.5).
(ii) Let H{) be the set of all t such that at(x) = x for all

JC E N(g)d

β(H\G). Then H() is a closed subgroup of G. Since H C H 0

and N®d

β(H\G)CN®d

β(H{]\G) by (i), we have H = H{).

LEMMA 7.3. If βH is a mapping defined on (N(g)d

β(H\G))' by

(7.6) βH{y)

then (i) βH is a dual action of G on (N^ζ}d

β(H\G))f\ and
(ii)

Proof (i) Since [W,l σ <g)λ'(0] = 0 and

Ad\®W*(β(N)®lG)Cβ(N)®R(G)

Adi® W

we have βH(N ( ))CN ( )(g) tf (G), where N0^(N($d(H\G)y. Since
W(g)lG satisfies (2.5), /3H is a dual action of G on No.

(ii) As N0C(l(g)«Sr(H\G))', /3H(N()) is included in
N 0 ® λ ( H ) ' r . Let p be an isomorphism of λ( f ί )" onto λH(H)" with
p ( Λ ( ί ) ) = λ H ( 0 and let βH = i ® p °β H , where λH is the right regular
representation of H. Then βH is a dual action of H on No. Since
K g ) λ ' ( H ) C N 0 and j3H(l <g) λ'(r)) = 1 ®λ'( r)(g)λ H ( r) , No is generated
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by (N0)
βH and 1 ® λ '(H) by a characterization of a crossed product due to

Landstad. Since (N0)
βH = (N0)

βH, we complete the proof.

COROLLARY 7.4. There exists a semi-finite faithful normal operator
valued weight E on N(g)d

βG onto N(g)d

β(H\G).

PROPOSITION 7.5. Let a be an action of G on M and H a closed
subgroup of G. Then H is normal if and only //M 0 α H is invariant under
Adλ^t) for all t.

Proof. Since

Adλλ(t){a{x))=a{at{x)\ Adλ1(ί)(λ,(s))= λ^ίsr1),

if H is normal, M ® α H is invariant under Adλx(t). On the other hand,
if H is nonnormal, M (&aH is not invariant.

8. Galois correspondence. In this section we shall give a
Galois correspondence between closed subgroups of G and globally β
invariant von Neumann subalgebras of N containing Nβ in Theorem 8.4,
which generalizes [6, Theorem IΠ.4.3]. If Lo is an a invariant sub-
algebra, then α(Lo)CL0®L30(G), and vice versa. Therefore a von
Neumann subalgebra L of N is said to be β invariant if β(L)C
L (g)R (G). In such cases a \ Lo and β \ L are an action of G on Lo and
a dual action of G on L, respectively.

THEOREM 8.1. Let a be an action of G on M and L a von Neumann
subalgebra with a(M)CL CM® α G. If M is a factor, then the following
two conditions are equivalent:

(i) L is a invariant; and
(ii) there exists a closed subgroup H of G such that L = M(g)αH (or

Before going into the proof we shall prepare the following lemma,
which is implicitly proved in the proof of [17, Theorem 3.1].

LEMMA 8.2. M($LX(G) = {α(M), 1 <g)Lx(G)}".

Proof Since the right hand side is included in the left hand side, we
want to show the converse inclusion. For this we set y/g for /, g E K(G)
and y E M by

(8.1) y/.ί
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Since g E K(G) and ||(1 ®r>f)a{a-\y))\\^ ||/||.||y ||, the right hand side
of (8.1) is Bochner integrable and hence yfyg exists in
{a (M), 1 ® L"(G)}". U ξ,η(Ξ K(G, X), then

and (s,t)^g(ts)(a,-'(y)ξ(s)\η(s)) belongs to K(G x G). If /(r')Λ
tends to the Dirac measure at the unit e of G, then

Since lly/Jl^llgH-llΔ/yyll and K(G,3ίΓ) is dense in %®L\G), y,g

converges weakly to y (ξ)g. Since y and g are arbitrary in M and K(G)
respectively, M(g)Lx(G) is included in {a(M),l®L x(G)}".

Froo/ o/ Theorem 8.1. (i) φ (ii) We set N = Λί(g)α G. Let H be
the smallest closed subgroup of G satisfying ά(L)CN£x)λ(H)". Since
ά ( y ) G N 0 A ( H ) " is equivalent to spά(y)CH, H coincides with the
closed subgroup spanned by spά(y) for all y in L. Therefore, L is
included in the set of all y G N with ά (y) E N (g) λ (H)", or in M(g)α H by
Theorem 7.1. Let p be the isomorphism of M 0 α / ί onto M 0 α " H
satisfying p(α(x)) = αH(x) and p(λ(r))= λH(r). Then

(8.2) αH(M)Cp(L)CM(g)α«H.

If we denote (αH)Λ by ft then Γ(β) = KcraH \Z(M) by Theorem
6.1. Since M is a factor by assumption, T(β) = H.

Now, we shall show that ρ(L)§ζ)d

βHis a factor. Since Γ(β) = H, we
have only to prove β f Z(p(L)) is ergodic by Theorem 6.4. For this we
suppose that β(z) = z ®1H for z in Z(ρ(L)), that is, zG
Z(p(L))β. (8.2) implies that

Since M is a factor, so is p(L)β. Since Z(p(L))β is included in
Z(ρ(L)β), z is a scalar operator.

On the other hand, by (8.2) we have

(8.3)

If we apply Takesaki's duality to (8.3), we have an isomorphism p' of
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{M®a»H)®d

βH onto M®B{L\H)) as in the proof of Theorem 2.1
such that

M <g) L*(H) Cp\p(L)®d

βH)CM®B(L2(H)),

where the first inclusion is obtained by Lemma 8.2. Since p(L)§§d

βHis
a factor as shown in the above, we have p '(p (L) (g)£ /ί) = M (§) B (L2(H))
by [6, Lemma III.4.2]. Therefore

which implies ρ(L) = M <g)α»H by (2.7) and hence L = M<g)αH.
(ϋ) => (i) We have only to show that ά(L)CL (g)l?(G). Since

G and ά(λ1(r)) = λ

and L = M(g)β//, we have ά(L)CL (g)λ(H)"CL (g)JR(G).

The dual version of Theorem 8.1 is the following.

THEOREM 8.3. Let β be a dual action of G on N and L a von
Neumann subalgebra with β(N)CL CN(g)£G. If N(g)^G is a factor,
then the following two conditions are equivalent:

(i) L is βd invariant; and
(ii) there exists a closed subgroup Hof G such that L = N(g)dβ(H\G)

(or L ={x£N(g)d

βG:βt(x) = x, t E H}).

Proof We may assume without any loss of generality that N is
standard.

(i) Φ (ii) Let β' be the dual action of G on β(N)' defined by
(1.10). Theorem 1.1 gives an action a of G on ( N 0 ^ G ) ' satisfying

{β(N)'9β'}~{(N<g)d

βGy®aG,ά},

namely, there exists an isomorphism p of β(N)f onto ( N 0 ^ G ) ' 0 α G
satisfying ά°p = p®t° jS ' .

Since L is β d invariant by (i), Ad 1 0 W*(L ® 1G) is included in
L <g)2?(G). Since [W, 1 (8)λ'(r)] = 0, Ad 1 <g) W(L'(g) l σ ) is included in
L'(g)R(G). Therefore L' is β' invariant. Moreover, N(g)£G is a
factor by assumption and

(N®d

βG)'CL'Cβ(Ny.

Therefore we can apply Theorem 8.1 to {(N(g)dβGy,a} and obtain a
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closed subgroup H of G satisfying

Let's recall the proof of [17, Theorem 8.1]. Then p is of the form
Ad 1 ® V'°β' and it satisfies

p(y)=a(y) and p(λί(r))= 1® l σ ®λ(r)

for y G (N(g)d

βGy and r G G. Therefore L' is generated by (N®£G)'
and l(g)λ'(H) and hence

L = (N(g)d

βG) Π (1 ®λ'(/ί)) ' = N®d

β(H\G).

(iϊ) Φ (i) The commuίanί of L = N0d

β(H\G) is generated by
(N(g)d

βGy and l®λ'(H). Since j3'(y)=y®lσ for y G ( N ^ G ) ' by
Theorem 1.1 and

it follows that L' is β' invariant. Therefore A d i ® W(L'(g)lG) is
included in L®R{G). Since [W, 1 (g)λr(r)] = 0, L is βd invariant
similarly as before.

THEOREM 8.4. Assume that G is separable. If
(i) N is a factor, and
(ii) β is integrable and Γ(β) = G,

then there exists a bijective correspondence between the closed subgroups H
of G and the β invariant von Neumann subalgebras L of N containing Nβ

in such a way that

HL = Π {//

where H' runs over closed subgroups of G.

Proof. Let K be an infinite dimensional Hilbert space with dim K j ^
dimL2(G). We put JV = N ® B(X) and β = i ® σ ° j8 ® t. Then {N? j8}
is a covariant dual system. Since K is infinite dimensional, N^ =
Nβ(g)B(K) and dimK ^ dimL2(G), it follows that β i_s of infinite
multiplicity. Since β is integrable by assumption, so is β. If x G N,
yEB(Kl zEB(L2(G)) and /GL°°(G), then
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where π = ιN®ι®σ°ιN(g}σ(g}L. Therefore

Sinpe ΓfljβJ) = Γ(j3) = G by (ii), it follows from Corollary 6.2 that
Γ(β) = Γ([/3]) = G. Since N^ is properly infinite, Theorem 6.7 implies
that β is dominant. Therefpre {JV, β} is equivalent to {M®αG, ά}2

where M = N®βG and α_= /3. Since N is a factor by assumption (i), N
is also a factor and hence β is ergodic on Z(N). Since Γ(β) = G, M is a
factor by Theorem 6.4.

Now, suppose that L is β invariant. Put L = L ®B(K). Then L
is j8 invariant. Since Nβ C L C N, α (M) C L C M(g)α G. Therefore we
can apply Theorem 8.1 to {M, α} and obtain

LHL = L and HLH = H (By Theorem 7.1).

Now, since β(L)CN®λ(H)" is equivalent to β(L)CN®λ(H)\
we have HL = //f. Therefore, if x E LH o then JC ® lκ E LHί; = L and
hence x E L. Since L C L H L is clear, we have L = LHL.

Moreover, since LH = LH ®B(K) = (LH)~, we have H = HcH =
H LH(S>B(K) = HLH.

9. Appendix. 1. As shown by Araki and Haagerup [1,9], each
action a of G on a standard M is implemented by a unitary u in

satisfying

in such a way a(x) = Adu(x (g)lG) by Proposition 3.4. Then the
commutant of M(&aG is given by Digerness, [7, 10, 16] as follows:

The dual version of this result is the following:

THEOREM 9.1. If a dual action β of G on a standard N is im-
plemented by a unitary w in B(3{)§§R(G) satisfying

(9.1) w*(8)lG(ι(g)σ)(w*(g)lG)=
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in such a way β(y) = Adw *(y ®.1G), then

Proof. We set

for f<ΞLx(G). First we shall show ττ(/) G (JV®gG)'. For this it
suffices to show that [π(/), 1 ® g] = 0 for all g E L°{G). It is clear that
τr(/)eβ(ΛΓ)'. Since ι ®σ(w ® 1 G ) belongs to B(3Γ)® 1G

and since

by (9.1), we have

and hence j3'(π(/)) = τr(/) ® 1G, where β' is a dual action of G on j3(N)'
defined by (1.10). Then ττ(/)G (1 (gjL^G))' by the argument given
after Theorem 7.1.

Now, as M = N®βG is globally invariant under Ad 1 (ξ)λ'(ί), we
can define an action of G on M' by αf = Ad 1 ® λ '(ί) f M'. Since π is
an isomorphism of LX(G) into Mr satisfying at °π = π °Adλ'(t), Mf is
generated by π(Lx(G)) and (M')α by [16; 17, Theorem 8.3]. Besides

'Y = Mf Π (1 ® i? (G)7 = {j3(ΛΓ), 1 (8) L-(G), 1 (8) i? (G)Ύ.

It suffices to show the right hand side is N'(g)lG.
Since {N, β} and {β(N),ι ®y} are equivalent, it follows that

which is β(N)(g)B(L2(G)) by [16, (38) in the proof of Theorem
3]. Therefore (M')« = N r ® 1G.

COROLLARY 9.2. N(8)β(L2(G)) = {j8(iV), 1 ®£(L2(G))}".

2. Haga's factorization holds always for a regular action. Namely,
if a is regular, M(Z)aG is isomorphic to Mα (g)B(L2(G)) by Theorems
2.5 and 5.6. However, as for the converse, we have only the following
proposition for an abelian G.
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PROPOSITION 9.3. // G is abelian, the following two conditions are
equivalent:

(i) a is regular', and
(ii) there is an isomorphism p of M(g)α G onto Ma (g) B(V(G)) such

that p'\Ma ( g l G ) is ά invariant.

Proof (i) => (ii). If a is regular, {M, a} is equivalent to
{Mα(g)^G, β} for some covariant dual system {Mα, β}. Therefore

{M~«, [j8 ]} - {(Λf β Γ, β} ~ {M (g)β G, ά}.

Since G is abelian, [β](y (g)lG) = y (8> 1G <8)lc for y G M α . Thus we
have an isomorphism p of M(g) α G onto Ma ®B{L\G)) such that
ρ~ι(Ma 0 1 G ) is ά invariant,

(ii) φ (i) We set

= ρ<g)L°ά°p~] and β =

Then we have

(9.2) {M(8)α G, ά} ~ {M« (g) B(L2(G)),

Since (β) is a dual action of G on Ma §§B(U{G)) and since
AdW*(/(g)lG) = /<g)lc, A d r ( λ ( r ) ( g ) l c ) = λ ( r ) 0 λ ( r ) and
Ad W*(1G ®λ(r)) belongs to L"(G)(g)l?(G), β is an isomorphism of
Ma®B(L2(G)) into Mα 0B(L2(G))(g)i?(G). "However, G is abelian
by assumption, we have

(9.3) AdW*(l σ (g)λ(r))Gl®JR(G).

Since Mα(g)lG is (/3) invariant by (ii), it is β invariant by
(9.3). Therefore there is an isomorphism β of Ma into Ma (g)JR(G)
such that

(9.4) i <g) σ o β (g) t = £ ί Mα (g) 1G.

Now, we shall show that /3fMα(g)lG is a dual action of G on
Mα (g)lG. If y EN, then

= β (g) t

1G) (By (9.4))



478 YOSHIOMI NAKAGAMI

= τo<j3>(gHo<β)(y(g)iG) (By (9.4))

= τ oAd 1 <g) 1 G <g) W * o(|8) (g) t ( y (g) 1 G (g) 1G)

where the last equality follows from

Consequently, since β is a dual action of G on M a (g)l G and
ι = ι ®σ°β \ Ma (g) 1G, j3 is a dual action of G on Mα and

= Ad 1 (g) W~°β = [β]y which implies that

= (M<8)βG)ά

by (9.2). Therefore α is regular.
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