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ON PRESERVATION OF ^-COMPACTNESS

S. MROWKA AND J. H. TSAI

In this paper we study preservation of E- compactness
under taking finite unions (the finite additivity theorems of
E- compactness) and under taking quotient images.

Throughout this paper spaces are assumed to be Hausdorfϊ, and
maps are continuous onto functions. Given a space E, we shall call a
space X E-completely regular (E-compact) provided that X is
homeomorphic to a subspace (respectively, closed subspace) of a product
Em for some cardinal m.

As far as additivity theorems are concerned, the first author has
shown in [1] that if a space X is normal and if it can be expressed as the
union of a countable collection of closed R-compact spaces (R denotes the
space of all real numbers), then X is R-compact. The assumption that X
is normal in the above theorem is essential. In fact, in [2], [4] the first
author has constructed an example of a completely regular, non-/?-
compact space X which can be expressed as the union of two closed
R -compact subspaces. This example shows that finite additivity relative
to closed subspaces fails for R -compactness. It can be shown that the
same example satisfies the above statement with "R -compact" replaced
by "N-compact". (N denotes the space of all nonnegative
integers.) Using the same example it was shown that the image of an
R-compact (N-compaCt) space under a perfect map need not be in-
compact (respectively, JV-compact). In [4], some positive results in this
direction have been obtained. The purpose of this paper is to generalize
some of the results in [4] to a certain class of E-compact spaces which
contains both the class of R -compact spaces and the class of N-compact
spaces. Many theorems concerning the preservation of £-compactness
can be stated in a more comprehensive form as rules concerning
"E-defect" of spaces (for definition of E-defect, see next
paragraph). In §2 we shall state the additivity theorems of E-
compactness both in words and as rules concerning E-defects of spaces.

The reader is referred to [3] for basic results of E-completely regular
spaces and E-compact spaces. For convenience we review the notations
and terminology. Given two spaces X and E, C(X, E) denotes the set
of all continuous functions from X into E. A class & CC(X,E) is
called an E-non-extendable class for X provided that there is no proper
extension eX of X such that every / E 3* admits a continuous extension
/*: eX—>E. The E-defect of a space X (in symbols, defEX) is the
smallest (finite or infinite) cardinal p such that there exists an E-non-
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extendable class for X of cardinal p. A subspace Xo of a space X is said
to be complementatively E-compact in X provided that every closed
subspace of X disjoint from Xo is E-compact. Xo is said to be
E-embedded in X provided that every continuous function /: X0—>E
admits a continuous extension /*: X-»JE. For two subsets A, B of a
space X, B is said to be E -functionally contained in A (in symbols,
JB CfA) provided that there exists a map g: X->E such that

cl(g(X-A))Γlcl(g(J5)) = 0 .

It should be noted that in §§2 and 3, E is assumed to satisfy a set of
rather complex conditions; a way of avoiding these conditions is indi-
cated in §4.

2. Additivity theorems of JΞ- compactness. In §§2 and
3 we assume that JB is a space with a continuous binary operation θ and
two fixed distinct points e0 and e] satisfying the following properties:

(a) eθe() = e0, eθex = e for every e G £
(β) for every closed subset A of En (nGJV) and for every p G £ " -

A, there exists an f EL C(En, E) such that /(A) = e0 and f(p) = ex.
(γ) /or every two disjoint closed subsets A, B of E, there exists a

g G C(£,£) such that g(A)= e0 and g(B)= eλ.

We first observe the following results.

2.1. If E satisfies (β), then it is regular and if it satisfies (γ), then it is
normal.

2.2. Lei E be a space satisfying (β). Then X is E-completely
regular iff for every closed subset F of X and every point x E X - F, there
exists an / G C(X, E) swc/i Λαί /(X) = eu f(F) = e0.

2.3. Let E be a space satisfying (β) and (γ). Then X is E-
completely regular iff for every closed subset F of X and every point
x G X - F, there exist two disjoint neighborhoods U and V of x and F,
respectively, and a map g G C(X, E) such that g(U)= eu g(V) = e0.

2.4. Let E be a space satisfying (γ). Then for two subsets A and B
of X, B CfA iff there exists a map g G C(X, E) such that g(X - A) = e0

and g(B)= ex.

2.5. Let E be a space satisfying (a), (β) and (γ). If A, B are two
closed subsets of X with B C/A, then for each /G C(A,E), there is an
/ Έ C(A,E) such that f admits a continuous extension /* G C(X, JE)
such thatf*\B=f\B.
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Proof. 2.1-2.4 are straightforward. We now prove 2.5. By 2.4,
there exists a map g E C(XyE) such that g(X - A)= e0 and g(B) =
ex. Let / G C(Λ, E) be given. We define f: A-^E as follows f\x) =
/(jc)0g(x) for every J C G A Clearly / Έ C ( Λ , £ ) . Then /* can be
defined by letting /*(x ) = /'(*) for x E A and/*(*) = e0forx E X - A.

From now on all spaces will be assumed to be £-completely
regular. We first prove two lemmas which are needed for the proof of
our main theorems.

2.6. LEMMA. An E-compact, E-embedded subspace Xo of an
E-completely regular space X is closed in βEX.

Proof Since Xo is £-compact, βEX0 = Xo. Hence it suffices to
show that c\βEχX0 = βEXo First, c\βEXX0 is obviously E-compact. Also,
since XQ is £-embedded in X, it is also £-embedded in βEX, so it is
E-embedded in c\βEXX0. Thus by 4.14 (a), (b) of [3], c\βEXX0= βEX0.

2.7. LEMMA. // a space X contains a complementatiυely E-
compact subspace Xo which is closed in βEX, then X is E-compact.

Proof Assume that X is not E-compact. Choose a point p0 in
βEX - X and let eX = X U {p()} Then eX is a proper extension of X
and X is E-embedded in eX. Clearly, p0 0. Xo and Xo is closed in
eX. By 2.3, there exist a map g E C(βX, E) and two disjoint neighbor-
hoods U and V in eX of p0 and Xo, respectively, such that g(U) = ex and
g(V) = e(). We claim that X- V is not E-compact. First note that
p 0 Ecl € X (X-V) . Now given / E C ( X - V , E), we define a map
ft: X ^ E as follows: h(x) = f(x)θg(x) for x E X - V and h(x) = e0 for
x E V. One easily verifies that /z E C(X, E) and consequently ft admits
a continuous extension ft*E C(eX,E). Now for any x E (7 Π X, we
have /ι*(jc) = ft(x) = f(x)θg(x) = f(x)θeι = /(x), i.e.,/ agrees with ft* on
a deleted neighborhood of p(b hence / can be extended
likewise. Therefore, X - V is not E-compact and this contradicts the
fact that Xo is complementatively E-compact.

We are now ready to prove the main theorems. In the following for
a space X and a subspace Xo of X we shall use D(X0) and FC(X0) to
denote the class of all closed subsets of X which are disjoint from Xo and
which are E-functionally contained in Xo, respectively.

2.8. THEOREM. // X contains a compact and complementatively
E-compact subspace Xo, then X is E-compact.

More precisely, we have the following formula for E-defect of X:
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( a ) d e f E X S Σ { c a r d ( F C ( A ) ) d e f E A : A E D 0 ( X 0 ) }
where D0(XQ) is a cofinal subset of D{X0).

Proof. The first part follows immediately from 2.7. We now prove
formula (a). For each A G D(X0), let &A be an £-nonextendable class
for A with card 9^A - def£A. Let B be an arbitrary set of
FC(A ). Then by 2.5, for each / G 9A, there are two maps f'B G C(A, £) ,
f%eC(X,E) such that f%\B = / |B . Let 9iAtB) be the class of such
f%. Then card^ ( Λ,β )^def£A for each B<ΞFC(A). Let ^ J =
U {&{A,B): B E FC(A)}. Then card 9\ =S Σ{card ^ ( A, β ) : B G FC(A)} S
card FC(A) def£Λ. Finally, let 9 = U {^£: Λ G D0(X0)}. Then

card ^ ^ Σ ^ard 3^ : A G D0(X0)}

^ 2 {card FC(A) def£Λ: A G D0(X0)}.

It is easy to show that 9 is an E-nonextendable class for X.

2.9. THEOREM. If Xu- - ,Xn are E-compact, E-embedded sub-
spaces of X such that Ur=i Xt is complementatiυely E-compact, then X is
E-compact.

More precisely, we have the following formula for the E-defect ofX:
(b) def£X =gΣΓ-idefEX, 4-Σ{cardFC(A) def£A :

A6D 0(U?.,X,)}
where D0(UΓ-iXi) is Λ co^nα/ subset o/D(UΓ-i

Proo/. The first part follows from 2.6 and 2.7. We now prove
formula (b). For each / = 1, % n, let 9t be an £-nonextendable class
for X; with cardίFt = def£Xt. Since X4 is £-embedded in X, for each
/ G 5̂ , we choose an extension /* G C(X, E) of / and denote by "̂f the
class of all such extensions. Clearly, card 9*^ def£Xi for i =
1, , n. Let 9X = UΓ-i ̂ ? . Then card ^ g Σf-i def£Xf. For each
ΛED(U" = iXi), let 3*A be an JB-nonextendable class for A with
card 9A = def£ A. Let B be an arbitrary set of FC(A). Then for each
/G ^ Λ , by 2.5, there exist two maps f'BE C(A,J5), fBeC(X,E) with
/S| J3 = / |B. Let 9iAtB) be the class of all such f%. Then card 9(AtB) =
def£ A for each B G FC(A). Let 9A = U {^(Λ,B): B G FC(A)}. Then
card 3 ^ g Σ{card f ( Λ 5 ) : B 6 F C ( Λ ) } S cardFC(A) def£A. Finally,
let ^ = U {&*A: A G D0(UΓ=i Xi)} Then

card ^7 / S 2 {card ^ * : ^ E A>(Ur«i Xt)}

S 2 {cardFC(A)- def£A: A G D0(Uu X,)}.
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It is easy to see that the class 2F = 3Fι U $Fn is an E-nonextendable class
for X.

The following corollaries follow from 2.7, 2.8 and 2.9.

2.10. COROLLARY. If X = X, U X2 where Xx is E-compact and X2

is closed in /3EX, then X is E-compact.

2.11. COROLLARY. If X = Xλ U X2 where X, is E-compact and X2

is compact, then X is E-compact.

2.12. COROLLARY. If X is the union of finitely many E-compact
subspaces, each of which is E-embedded in X, except at most one, then X is
E-compact.

2.13. REMARK. Unlike 2.9, considering more than one subspace
in 2.7 and 2.8 will not generalize the theorems. In fact, if Xu , Xn are
subspaces of X which are closed in βEX (compact) such that UΓ=iX, is
complementatively E-compact, then we could simply let Xo= UΓ=iX«
which is closed in βEX (respectively, compact) and is complementatively
E-compact.

2.14. REMARK. We shall now show that formulas (a) and (b) of 2.8
and 2.9 are the best estimations for the E-defects of X.

For each ordinal a, let S(a) = {λ:λ<a} and let Ω be the
first uncountable ordinal. Let X = (R x S(Ω)) U {p0} where
pof£Rx S(Ω). Topologize X as follows: every open set in R x S(Ω) is
open in X: a base of neighborhoods of p0 consists of sets of the form
(R x B)U{p0} where B C S(Ω) and S(ίl)-B is countable. It follows
from 2.8 that X is R -compact and def^X g N}. Also, it is easy to show
that defΛXSN0. In order to show that formula (a) in 2.8 is the best
estimation for defRX, we must show that def^X^No. Assume the
contrary, i.e., assume that def^X = Ho. Let 8F be an i?-nonextendable
class for X with card SF = K(). For an arbitrary rational number r and for
each / E ^ , there is an ordinal afES(Cί) such that / is constant on
{r}x (5(Ω)- S(af)). Obviously, the set {af: / E ^} has an upper bound,
say an in S(Ω) and every / E 9 is constant on {r} x (S(Ω) - S(ar)). It is
also clear that the set {ar: r E P}, where P denotes the set of all rational
numbers, has an upper bound, say α, in S(Ω) and every / E ίF is constant
on Px(S(Ω)-S(α)) . Since P is dense in ί?, every / E ^ is then
constant on R x (S(Ω) — S(a)). Now choose a point /?! E βX — X such
that p{ E cl^xil? x {α}). Then X U {pi} is a proper extension of X with
the property that every f E. 3F admits a continuous extension /*: XU
{px}^> R. This contradicts the fact that 3F is an i?-nonextendable class
for X.
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2.15. REMARK. Recall that for E - R and £ = N w e have the
following countable theorem for £-compactness: If X = UΓ=iX, where
Xi is E-compact, E-embedded in X for each i, then X is E-compact. We
shall now show that, however, for the infinite additivity theorems of
^-compactness, it is impossible to find formulas for the ^-defects
analogous for formulas (a) and (b) of 2.8 and 2.9.

Let X = U*=] [0, n]m where m is an infinite cardinal. Then X,
being σ-comapct, is R -compact. We shall prove our claim by showing
that d f X ^

CASE 1. m = Mo. If defRX < m, then by Theorem 5.9 of [3] X is
Lindelδf and locally compact which is a contradiction (since X is not
locally compact).

CASE 2. m>H0. If deiRX = p<m. Let 9 be an R-
nonextendable class for X with card 3F = p. It is well known that for
each / E 9>, there exists a countable subset Bf CΞ such that if xu x2 E X
and JC,|S/ = JC2| ah then /(*,) = /(x2). Let Ξ* = U {3/: / E &}. Then
card Ξ^ < m. Hence there exists ξ0 E Ξ - 3*. Let Xo - {x E X: πξ (x) = 0
for every £ ^ £0} Then every / E ̂  is constant on Xo Now choose a
point pj in βX - X such that pλ E cl^xX0. Then every / E ̂  admits a
continuous extension /*: X U{pi}-»-R. Hence ^ is not an R-
nonextendable class for X which is a contradiction.

3. Quotient images of JE- compact spaces. We now turn
to the preservation of E -compactness under quotient maps. Given a
map φ:X->Y and a point y in Y, we shall call cardφ~\y) the
multiplicity of y (with respect to φ). A point of Y is called a multiple
point of φ provided that its multiplicity is greater than one.

3.1. THEOREM. Given a quotient map φ:S-^X. If S is an
E-compact space and if the set M of all multiple points of φ satisfies one of
the following conditions, then X is E-compact.

(i) M is closed in βEX.
(ii) M is compact.
(iii) M can be expressed as the union of finitely many E-compact

E-embedded subspaces of X.

Proof. It is obvious that if M satisfies any of the three conditions
then it is closed in X. Hence S - φ -1(M) is open in 5 and φ restricted to
5 - ψ~\M) is a homeomorphism. If F is a closed subset of X disjoint
from M, then F is homeomorphic to ψ~\F)\ consequently, F is in-
compact, i.e., M is complementatively E-compact in X. By 2.7, 2.8 and
2.9, X is ί?-compact.
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4. Applicability of the theorems. In §§2 and 3, E was
assumed to satisfy rather complex conditions (α), (β) and
(γ). However, sometimes the results can be applied to an E which does
not satisfy these conditions. The procedure is to find another represen-
tative Ef of ί$(E) which satisfies the assumptions of the theorems. As
an example of this procedure we shall show that all theorems of §§2 and 3
are true when E is an arbitrary 0-dimensional linearly ordered
space. (Obviously, these theorems are true for E = R and for E =
N.) The statements which lead to this result are as follows:

4.1. Every linearly ordered space which has first and last elements
satisfies (a).

4.2. Every ^-dimensional space satisfies (β).

4.3. Every strongly ^-dimensional normal space satisfies (γ).

4.4. Every 0-dimensional linearly ordered space is strongly 0-
dimensional.

4.5. Every ^-dimensional linearly ordered space with first and last
element satisfies (α), (β) and (γ).

4.6. Let Xo be an E-embedded subspace of X, E' CtopE
m for some

cardinal m. IfE' is a retract ofEm, then Xo is also Ef-embedded in X.

Proof. Let / E C(X0, E'). Then / can be considered as a continu-
ous map from XQ into Em. Hence / admits a continuous extension
/*: X->JBm. Thus, r°/*, where r is the retraction of Em onto E\ is a
continuous extension of / over X.

4.7. For every ^-dimensional linearly ordered space E, there exists a
^-dimensional linearly ordered space E' which has first and last elements
and satisfies the following conditions.

(1) E CclE'\ E'CE\ {hence ft(JE) = &(£'))•
(2) E' is a retract ofE2 (hence any E-embedded subspace Xo ofX is

also E'-embedded).

Proof. If E itself has both first and last element, then by letting
E' = JE, we are done. Otherwise we consider two cases.

CASE 1. E has exactly one of the first and the last
elements. Without loss of generality, we assume that E has first
element (say a) but has no last element. Let E* be the linearly ordered
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set formed by all elements of E with the reverse order of E. Let
£ ' = £ ( £ £ * , i.e., E' = EUE* with the order be defined by
letting x < x * for every x ELE and x * E f?*. Then E' has first
and last elements. Let bGE with b^ a. Clearly, EC^E' and
£'Ctop{(jc, α): x G JS}U{(jt, 6): x EE}C c lJB 2. TO show that E' is a re-
tract of £ 2 , we let c be a cut between a and 6, and define a map
p:E2->E2 as follows: /?(*, y) = (*, 6) for each xEE and c <
y p(JC, y) = (x, α) for each x E JB and y < c. Then the map h~ι°p is
a retraction from E2 onto 23' where /ι is the homeomorphism from Ef

into E\

CASE 2. JB has neither first nor last element. Choose an arbitrary
point a<EE. Let Eι = {x E JB: JC g α}, E2 = {x E JB: x g α} and E ; =
JBi φ J52. Then β ' is a linearly ordered set with first and last elements
(say ax and a2, respectively). Let b be an element of E with
b?^ a. Without loss of generality, we assume that a < b. Clearly,
ECclE'2 and E' Ctop{(x, a): x E E, x ^ a} U{(x, b)\ x E JB, a g xjCcJE2.
To show that £ ' is a retract of JB2, we let c be a cut between a and ft,
and define two maps s and t: E2—» JE2 as follows s(x, y) = (x, ft) for each
x E JB, c < y s(x, y ) = (x, α) for each x E.E,y <c and ί(x, y) = (x, y)for
x < α, y = ft or α < x, y = α; ί(x, y) = α2 for a ^ x, y = ft; ί(x, y ) = αj for
x ^ α, y = ft. Then k~ι°s °t is a retraction from JB2 into E ' where k is
the homeomorphism from E' into £ 2 .
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