ON PRESERVATION OF E-COMPACTNESS

S. MRÓWKA AND J. H. TSAI

In this paper we study preservation of E-compactness under taking finite unions (the finite additivity theorems of E-compactness) and under taking quotient images.

Throughout this paper spaces are assumed to be Hausdorff, and maps are continuous onto functions. Given a space E, we shall call a space X *E-completely regular* (*E-compact*) provided that X is homeomorphic to a subspace (respectively, closed subspace) of a product E^m for some cardinal m.

As far as additivity theorems are concerned, the first author has shown in [1] that if a space X is normal and if it can be expressed as the union of a countable collection of closed R-compact spaces (R denotes the space of all real numbers), then X is R-compact. The assumption that X is normal in the above theorem is essential. In fact, in [2], [4] the first author has constructed an example of a completely regular, non-Rcompact space X which can be expressed as the union of two closed *R*-compact subspaces. This example shows that finite additivity relative to closed subspaces fails for R-compactness. It can be shown that the same example satisfies the above statement with "*R*-compact" replaced "N-compact". (N denotes the space of all nonnegative bv integers.) Using the same example it was shown that the image of an R-compact (N-compact) space under a perfect map need not be Rcompact (respectively, N-compact). In [4], some positive results in this direction have been obtained. The purpose of this paper is to generalize some of the results in [4] to a certain class of *E*-compact spaces which contains both the class of R-compact spaces and the class of N-compact spaces. Many theorems concerning the preservation of *E*-compactness can be stated in a more comprehensive form as rules concerning "*E*-defect" of spaces (for definition of E-defect. see next In \$2 we shall state the additivity theorems of Eparagraph). compactness both in words and as rules concerning E-defects of spaces.

The reader is referred to [3] for basic results of *E*-completely regular spaces and *E*-compact spaces. For convenience we review the notations and terminology. Given two spaces X and E, C(X, E) denotes the set of all continuous functions from X into E. A class $\mathcal{F} \subseteq C(X, E)$ is called an *E*-non-extendable class for X provided that there is no proper extension ϵX of X such that every $f \in \mathcal{F}$ admits a continuous extension $f^*: \epsilon X \rightarrow E$. The *E*-defect of a space X (in symbols, def_EX) is the smallest (finite or infinite) cardinal p such that there exists an *E*-nonextendable class for X of cardinal p. A subspace X_0 of a space X is said to be *complementatively* E-compact in X provided that every closed subspace of X disjoint from X_0 is E-compact. X_0 is said to be E-embedded in X provided that every continuous function $f: X_0 \rightarrow E$ admits a continuous extension $f^*: X \rightarrow E$. For two subsets A, B of a space X, B is said to be E-functionally contained in A (in symbols, $B \subset_f A$) provided that there exists a map $g: X \rightarrow E$ such that

$$\operatorname{cl}(g(X-A))\cap\operatorname{cl}(g(B))=\emptyset.$$

It should be noted that in \$2 and 3, E is assumed to satisfy a set of rather complex conditions; a way of avoiding these conditions is indicated in \$4.

2. Additivity theorems of *E*-compactness. In §§2 and 3 we assume that *E* is a space with a continuous binary operation θ and two fixed distinct points e_0 and e_1 satisfying the following properties:

(a) $e\theta e_0 = e_0$, $e\theta e_1 = e$ for every $e \in E$.

(β) for every closed subset A of E^n ($n \in N$) and for every $p \in E^n - A$, there exists an $f \in C(E^n, E)$ such that $f(A) = e_0$ and $f(p) = e_1$.

(γ) for every two disjoint closed subsets A, B of E, there exists a $g \in C(E, E)$ such that $g(A) = e_0$ and $g(B) = e_1$.

We first observe the following results.

2.1. If E satisfies (β), then it is regular and if it satisfies (γ), then it is normal.

2.2. Let E be a space satisfying (β). Then X is E-completely regular iff for every closed subset F of X and every point $x \in X - F$, there exists an $f \in C(X, E)$ such that $f(X) = e_1$, $f(F) = e_0$.

2.3. Let E be a space satisfying (β) and (γ) . Then X is Ecompletely regular iff for every closed subset F of X and every point $x \in X - F$, there exist two disjoint neighborhoods U and V of x and F, respectively, and a map $g \in C(X, E)$ such that $g(U) = e_1$, $g(V) = e_0$.

2.4. Let E be a space satisfying (γ) . Then for two subsets A and B of X, $B \subset_f A$ iff there exists a map $g \in C(X, E)$ such that $g(X - A) = e_0$ and $g(B) = e_1$.

2.5. Let E be a space satisfying (α) , (β) and (γ) . If A, B are two closed subsets of X with $B \subset_f A$, then for each $f \in C(A, E)$, there is an $f' \in C(A, E)$ such that f' admits a continuous extension $f^* \in C(X, E)$ such that $f^* | B = f | B$.

Proof. 2.1-2.4 are straightforward. We now prove 2.5. By 2.4, there exists a map $g \in C(X, E)$ such that $g(X - A) = e_0$ and $g(B) = e_1$. Let $f \in C(A, E)$ be given. We define $f': A \to E$ as follows $f'(x) = f(x)\theta g(x)$ for every $x \in A$. Clearly $f' \in C(A, E)$. Then f^* can be defined by letting $f^*(x) = f'(x)$ for $x \in A$ and $f^*(x) = e_0$ for $x \in X - A$.

From now on all spaces will be assumed to be E-completely regular. We first prove two lemmas which are needed for the proof of our main theorems.

2.6. LEMMA. An E-compact, E-embedded subspace X_0 of an E-completely regular space X is closed in $\beta_E X$.

Proof. Since X_0 is *E*-compact, $\beta_E X_0 = X_0$. Hence it suffices to show that $cl_{\beta_E X} X_0 = \beta_E X_0$. First, $cl_{\beta_E X} X_0$ is obviously *E*-compact. Also, since X_0 is *E*-embedded in *X*, it is also *E*-embedded in $\beta_E X$, so it is *E*-embedded in $cl_{\beta_E X} X_0$. Thus by 4.14 (a), (b) of [3], $cl_{\beta_E X} X_0 = \beta_E X_0$.

2.7. LEMMA. If a space X contains a complementatively Ecompact subspace X_0 which is closed in $\beta_E X$, then X is E-compact.

Proof. Assume that X is not E-compact. Choose a point p_0 in $\beta_E X - X$ and let $\epsilon X = X \cup \{p_0\}$. Then ϵX is a proper extension of X and X is E-embedded in ϵX . Clearly, $p_0 \notin X_0$ and X_0 is closed in ϵX . By 2.3, there exist a map $g \in C(\epsilon X, E)$ and two disjoint neighborhoods U and V in ϵX of p_0 and X_0 , respectively, such that $g(U) = e_1$ and $g(V) = e_0$. We claim that X - V is not E-compact. First note that $p_0 \in cl_{\epsilon X}(X - V)$. Now given $f \in C(X - V, E)$, we define a map $h: X \to E$ as follows: $h(x) = f(x)\theta g(x)$ for $x \in X - V$ and $h(x) = e_0$ for $x \in V$. One easily verifies that $h \in C(X, E)$ and consequently h admits a continuous extension $h^* \in C(\epsilon X, E)$. Now for any $x \in U \cap X$, we have $h^*(x) = h(x) = f(x)\theta g(x) = f(x)\theta e_1 = f(x)$, i.e., f agrees with h^* on a deleted neighborhood of p_0 , hence f can be extended likewise. Therefore, X - V is not E-compact and this contradicts the fact that X_0 is complementatively E-compact.

We are now ready to prove the main theorems. In the following for a space X and a subspace X_0 of X we shall use $D(X_0)$ and $FC(X_0)$ to denote the class of all closed subsets of X which are disjoint from X_0 and which are E-functionally contained in X_0 , respectively.

2.8. THEOREM. If X contains a compact and complementatively E-compact subspace X_0 , then X is E-compact.

More precisely, we have the following formula for E-defect of X:

(a) $\operatorname{def}_E X \leq \Sigma \{\operatorname{card}(FC(A)) \cdot \operatorname{def}_E A : A \in D_0(X_0)\}$ where $D_0(X_0)$ is a cofinal subset of $D(X_0)$.

Proof. The first part follows immediately from 2.7. We now prove formula (a). For each $A \in D(X_0)$, let \mathscr{F}_A be an *E*-nonextendable class for *A* with card $\mathscr{F}_A = \det_E A$. Let *B* be an arbitrary set of FC(A). Then by 2.5, for each $f \in \mathscr{F}_A$, there are two maps $f'_B \in C(A, E)$, $f^*_B \in C(X, E)$ such that $f^*_B | B = f | B$. Let $\mathscr{F}_{(A,B)}$ be the class of such f^*_B . Then card $\mathscr{F}_{(A,B)} \leq \det_E A$ for each $B \in FC(A)$. Let $\mathscr{F}^*_A = \cup \{\mathscr{F}_{(A,B)}: B \in FC(A)\}$. Then card $\mathscr{F}^*_A \leq \Sigma \{\text{card } \mathscr{F}_{(A,B)}: B \in FC(A)\} \leq$ card $FC(A) \cdot \det_E A$. Finally, let $\mathscr{F} = \cup \{\mathscr{F}^*_A: A \in D_0(X_0)\}$. Then

card
$$\mathscr{F} \leq \sum \{ \text{card } \mathscr{F}_A^* : A \in D_0(X_0) \}$$

$$\leq \sum \{ \text{card } FC(A) \cdot \text{def}_E A : A \in D_0(X_0) \}$$

It is easy to show that \mathcal{F} is an *E*-nonextendable class for *X*.

2.9. THEOREM. If X_1, \dots, X_n are E-compact, E-embedded subspaces of X such that $\bigcup_{i=1}^n X_i$ is complementatively E-compact, then X is E-compact.

More precisely, we have the following formula for the *E*-defect of *X*: (b) def_E $X \leq \sum_{i=1}^{n} def_E X_i + \sum \{ card FC(A) \cdot def_E A : \}$

where $D_0(\bigcup_{i=1}^n X_i)$ is a cofinal subset of $D(\bigcup_{i=1}^n X_i)$.

Proof. The first part follows from 2.6 and 2.7. We now prove formula (b). For each $i = 1, \dots, n$, let \mathscr{F}_i be an *E*-nonextendable class for X_i with card $\mathscr{F}_i = \det_E X_i$. Since X_i is *E*-embedded in *X*, for each $f \in \mathscr{F}_i$, we choose an extension $f^* \in C(X, E)$ of f and denote by \mathscr{F}_i^* the class of all such extensions. Clearly, card $\mathscr{F}_i^* \leq \det_E X_i$ for $i = 1, \dots, n$. Let $\mathscr{F}_1 = \bigcup_{i=1}^n \mathscr{F}_i^*$. Then card $\mathscr{F}_1 \leq \sum_{i=1}^n \det_E X_i$. For each $A \in D(\bigcup_{i=1}^n X_i)$, let \mathscr{F}_A be an *E*-nonextendable class for *A* with card $\mathscr{F}_A = \det_E A$. Let *B* be an arbitrary set of FC(A). Then for each $f \in \mathscr{F}_A$, by 2.5, there exist two maps $f'_B \in C(A, E)$, $f^*_B \in C(X, E)$ with $f^*_B | B = f | B$. Let $\mathscr{F}_{(A,B)}$ be the class of all such f^*_B . Then card $\mathscr{F}_{(A,B)} = \det_E A$ for each $B \in FC(A)$. Let $\mathscr{F}^*_A = \bigcup \{\mathscr{F}_{(A,B)} : B \in FC(A)\}$. Then card $\mathscr{F}_A \cong \Sigma \{\text{card } \mathscr{F}_{(A,B)} : B \in FC(A)\} \le \text{card } FC(A) \cdot \det_E A$. Finally, let $\mathscr{F}_H = \bigcup \{\mathscr{F}^*_A : A \in D_0(\bigcup_{i=1}^n X_i)\}$. Then

card
$$\mathscr{F}_{ll} \leq \sum \{ \text{card } \mathscr{F}_A^* : A \in D_0(\bigcup_{i=1}^n X_i) \}$$

$$\leq \sum \{ \operatorname{card} FC(A) \cdot \operatorname{def}_{E} A : A \in D_{0}(\bigcup_{i=1}^{n} X_{i}) \}.$$

It is easy to see that the class $\mathscr{F} = \mathscr{F}_{l} \cup \mathscr{F}_{ll}$ is an *E*-nonextendable class for *X*.

The following corollaries follow from 2.7, 2.8 and 2.9.

2.10. COROLLARY. If $X = X_1 \cup X_2$ where X_1 is *E*-compact and X_2 is closed in $\beta_E X$, then X is *E*-compact.

2.11. COROLLARY. If $X = X_1 \cup X_2$ where X_1 is *E*-compact and X_2 is compact, then X is *E*-compact.

2.12. COROLLARY. If X is the union of finitely many E-compact subspaces, each of which is E-embedded in X, except at most one, then X is E-compact.

2.13. REMARK. Unlike 2.9, considering more than one subspace in 2.7 and 2.8 will not generalize the theorems. In fact, if X_1, \dots, X_n are subspaces of X which are closed in $\beta_E X$ (compact) such that $\bigcup_{i=1}^n X_i$ is complementatively E-compact, then we could simply let $X_0 = \bigcup_{i=1}^n X_i$ which is closed in $\beta_E X$ (respectively, compact) and is complementatively E-compact.

2.14. REMARK. We shall now show that formulas (a) and (b) of 2.8 and 2.9 are the best estimations for the *E*-defects of *X*.

For each ordinal α , let $S(\alpha) = \{\lambda : \lambda < \alpha\}$ and let Ω be the uncountable ordinal. Let $X = (R \times S(\Omega)) \cup \{p_0\}$ where first $p_0 \notin R \times S(\Omega)$. Topologize X as follows: every open set in $R \times S(\Omega)$ is open in X: a base of neighborhoods of p_0 consists of sets of the form $(R \times B) \cup \{p_0\}$ where $B \subseteq S(\Omega)$ and $S(\Omega) - B$ is countable. It follows from 2.8 that X is R-compact and def_R $X \leq \aleph_1$. Also, it is easy to show that def_R $X \ge \aleph_0$. In order to show that formula (a) in 2.8 is the best estimation for def_R X, we must show that def_R $X \neq \aleph_0$. Assume the contrary, i.e., assume that $def_R X = \aleph_0$. Let \mathscr{F} be an *R*-nonextendable class for X with card $\mathcal{F} = \aleph_0$. For an arbitrary rational number r and for each $f \in \mathcal{F}$, there is an ordinal $\alpha_f \in S(\Omega)$ such that f is constant on $\{r\} \times (S(\Omega) - S(\alpha_f))$. Obviously, the set $\{\alpha_f : f \in \mathcal{F}\}$ has an upper bound, say α_r in $S(\Omega)$ and every $f \in \mathcal{F}$ is constant on $\{r\} \times (S(\Omega) - S(\alpha_r))$. It is also clear that the set $\{\alpha_r : r \in P\}$, where P denotes the set of all rational numbers, has an upper bound, say α , in $S(\Omega)$ and every $f \in \mathcal{F}$ is constant on $P \times (S(\Omega) - S(\alpha))$. Since P is dense in R, every $f \in \mathcal{F}$ is then constant on $R \times (S(\Omega) - S(\alpha))$. Now choose a point $p_1 \in \beta X - X$ such that $p_1 \in cl_{\beta X}(R \times \{\alpha\})$. Then $X \cup \{p_1\}$ is a proper extension of X with the property that every $f \in \mathcal{F}$ admits a continuous extension $f^*: X \cup$ $\{p_1\} \rightarrow R$. This contradicts the fact that \mathcal{F} is an R-nonextendable class for X.

2.15. REMARK. Recall that for E = R and E = N we have the following countable theorem for *E*-compactness: If $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is *E*-compact, *E*-embedded in X for each i, then X is *E*-compact. We shall now show that, however, for the infinite additivity theorems of *E*-compactness, it is impossible to find formulas for the *E*-defects analogous for formulas (a) and (b) of 2.8 and 2.9.

Let $X = \bigcup_{n=1}^{\infty} [0, n]^m$ where *m* is an infinite cardinal. Then *X*, being σ -comapct, is *R*-compact. We shall prove our claim by showing that def_{*R*} $X \ge m$.

CASE 1. $m = \aleph_0$. If def_R X < m, then by Theorem 5.9 of [3] X is Lindelöf and locally compact which is a contradiction (since X is not locally compact).

CASE 2. $m > \aleph_0$. If $def_R X = p < m$. Let \mathscr{F} be an Rnonextendable class for X with $card \mathscr{F} = p$. It is well known that for
each $f \in \mathscr{F}$, there exists a countable subset $\Xi_f \subset \Xi$ such that if $x_1, x_2 \in X$ and $x_1 | \Xi_f = x_2 | \Xi_f$, then $f(x_1) = f(x_2)$. Let $\Xi_{\mathscr{F}} = \bigcup \{\Xi_f : f \in \mathscr{F}\}$. Then $card \Xi_{\mathscr{F}} < m$. Hence there exists $\xi_0 \in \Xi - \Xi_{\mathscr{F}}$. Let $X_0 = \{x \in X : \pi_{\xi}(x) = 0$ for every $\xi \neq \xi_0\}$. Then every $f \in \mathscr{F}$ is constant on X_0 . Now choose a
point p_1 in $\beta X - X$ such that $p_1 \in cl_{\beta X}X_0$. Then every $f \in \mathscr{F}$ admits a
continuous extension $f^* : X \cup \{p_1\} \to R$. Hence \mathscr{F} is not an Rnonextendable class for X which is a contradiction.

3. Quotient images of *E*-compact spaces. We now turn to the preservation of *E*-compactness under quotient maps. Given a map $\varphi: X \to Y$ and a point y in Y, we shall call card $\varphi^{-1}(y)$ the multiplicity of y (with respect to φ). A point of Y is called a multiple point of φ provided that its multiplicity is greater than one.

3.1. THEOREM. Given a quotient map $\varphi: S \to X$. If S is an E-compact space and if the set M of all multiple points of φ satisfies one of the following conditions, then X is E-compact.

(i) *M* is closed in $\beta_E X$.

(ii) *M* is compact.

(iii) M can be expressed as the union of finitely many E-compact E-embedded subspaces of X.

Proof. It is obvious that if M satisfies any of the three conditions then it is closed in X. Hence $S - \varphi^{-1}(M)$ is open in S and φ restricted to $S - \varphi^{-1}(M)$ is a homeomorphism. If F is a closed subset of X disjoint from M, then F is homeomorphic to $\varphi^{-1}(F)$; consequently, F is Ecompact, i.e., M is complementatively E-compact in X. By 2.7, 2.8 and 2.9, X is E-compact. 4. Applicability of the theorems. In §§2 and 3, E was assumed to satisfy rather complex conditions (α) , (β) and (γ) . However, sometimes the results can be applied to an E which does not satisfy these conditions. The procedure is to find another representative E' of $\Re(E)$ which satisfies the assumptions of the theorems. As an example of this procedure we shall show that all theorems of §§2 and 3 are true when E is an arbitrary 0-dimensional linearly ordered space. (Obviously, these theorems are true for E = R and for E = N.) The statements which lead to this result are as follows:

4.1. Every linearly ordered space which has first and last elements satisfies (α) .

4.2. Every 0-dimensional space satisfies (β) .

4.3. Every strongly 0-dimensional normal space satisfies (γ) .

4.4. Every 0-dimensional linearly ordered space is strongly 0-dimensional.

4.5. Every 0-dimensional linearly ordered space with first and last element satisfies (α) , (β) and (γ) .

4.6. Let X_0 be an *E*-embedded subspace of X, $E' \subset_{top} E^m$ for some cardinal m. If E' is a retract of E^m , then X_0 is also E'-embedded in X.

Proof. Let $f \in C(X_0, E')$. Then f can be considered as a continuous map from X_0 into E^m . Hence f admits a continuous extension $f^*: X \to E^m$. Thus, $r \circ f^*$, where r is the retraction of E^m onto E', is a continuous extension of f over X.

4.7. For every 0-dimensional linearly ordered space E, there exists a 0-dimensional linearly ordered space E' which has first and last elements and satisfies the following conditions.

(1) $E \subset_{\mathrm{cl}} E'^2$, $E' \subset E^2$, (hence $\Re(E) = \Re(E')$).

(2) E' is a retract of E^2 (hence any E-embedded subspace X_0 of X is also E'-embedded).

Proof. If E itself has both first and last element, then by letting E' = E, we are done. Otherwise we consider two cases.

CASE 1. E has exactly one of the first and the last elements. Without loss of generality, we assume that E has first element (say a) but has no last element. Let E^* be the linearly ordered

set formed by all elements of E with the reverse order of E. Let $E' = E \oplus E^*$, i.e., $E' = E \cup E^*$ with the order be defined by letting $x < x^*$ for every $x \in E$ and $x^* \in E^*$. Then E' has first and last elements. Let $b \in E$ with $b \neq a$. Clearly, $E \subset_{cl} E'$ and $E' \subset_{top} \{(x, a): x \in E\} \cup \{(x, b): x \in E\} \subset_{cl} E^2$. To show that E' is a retract of E^2 , we let c be a cut between a and b, and define a map $p: E^2 \rightarrow E^2$ as follows: p(x, y) = (x, b) for each $x \in E$ and c < y; p(x, y) = (x, a) for each $x \in E$ and y < c. Then the map $h^{-1} \circ p$ is a retraction from E^2 onto E' where h is the homeomorphism from E' into E^2 .

CASE 2. *E* has neither first nor last element. Choose an arbitrary point $a \in E$. Let $E_1 = \{x \in E : x \ge a\}$, $E_2 = \{x \in E : x \le a\}$ and $E' = E_1 \oplus E_2$. Then *E'* is a linearly ordered set with first and last elements (say a_1 and a_2 , respectively). Let *b* be an element of *E* with $b \ne a$. Without loss of generality, we assume that a < b. Clearly, $E \subset_{cl} E'^2$ and $E' \subset_{top} \{(x, a) : x \in E, x \ge a\} \cup \{(x, b) : x \in E, a \le x\} \subset_{cl} E^2$. To show that *E'* is a retract of E^2 , we let *c* be a cut between *a* and *b*, and define two maps *s* and $t : E^2 \rightarrow E^2$ as follows s(x, y) = (x, b) for each $x \in E, c < y; s(x, y) = (x, a)$ for each $x \in E, y < c$ and t(x, y) = (x, y) for x < a, y = b or $a < x, y = a; t(x, y) = a_2$ for $a \le x, y = b; t(x, y) = a_1$ for $x \le a, y = b$. Then $k^{-1} \circ s \circ t$ is a retraction from E^2 into *E'* where *k* is the homeomorphism from *E'* into *E'*.

References

4. _____, Some comment on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci. XVIII, 8 (1970), 443–448.

Received March 26, 1974 and in revised form January 23, 1976. The second author wishes to express his appreciation to State University of New York College at Geneseo for providing a Faculty Released-time Research Grant during Spring of 1973 for the preparation of this paper.

SUNY — BUFFALO AND STATE UNIVERSITY OF NEW YORK COLLEGE AT GENESEO GENESEO, NY 14454

^{1.} S. Mrówka, Some properties of Q-spaces, Bull. Acad. Polon. Sci. CIIII, 5, no. 10 (1957), 947-950.

^{2.} ____, On the union of Q-spaces, Bull. Acad. Polon. Sci., 6 (1958), 365-368.

^{3. -----,} Further results on E-compact spaces I, Acta Math., 120 (1968), 161-185.