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SQUARE INTEGRABLE PRIMARY REPRESENTATIONS

CALVIN C. MOORE

If 77 is a unitary representation of a locally compact group
G, a weight φ on the von Neumann algebra R(π) generated by
77 is called semi-invariant if it is transformed into scalar
multiples of itself by the action of G. If π is primary we show
such objects are essentially unique if one specifies the scaling
factor (Schur's lemma). We then study square integrable
primary representations and show that a number of possible
different definitions are equivalent. We show that any such
representation π has a semi-invariant weight scaling by the
modular function, and this object is seen to be the proper
generalization of the formal degree of π. We formulate and
prove generalized Schur orthogonality relations for π. Finally
we specialize to the semi-finite case and identify the formal
degree as an operator affiliated to JR (π). For irreducible π the
results reduce to those of Duflo and the author, and Phillips.

(1) Let G be a separable (second countable) locally compact group
with center Z, and let π be an irreducible unitary representation of
G. One then says that π is square integrable (in the wide sense) if there
are non-zero vectors x, y in the Hubert space Hπ so that the absolute
value of the matrix coefficient |(JC, τr(g)y)| is a square integrable function
on the quotient group G/Z. That |(JC, π(g)y)| depends only on the Z
coset of g for an irreducible (or more generally, a primary) representa-
tion π is clear since π(gz) = λπ(z)τr(g) for some continuous
homomorphism λπ of Z into the circle group Γ. We say that TΓ is
associated to λπ. The representation π is square integrable (in the strict
sense) if (JC, ττ(g)y) is square integrable on G for some non-zero x and
y. If Z is compact the two notions coincide, and in general all questions
of substance concerning such representations can be reduced to the strict
sense case. To see this, note that λ̂  is a homomorphism of Z into T
and therefore corresponding to the group extension of the group G/Z by
Z, we can construct a corresponding group extension of G/Z by T, say
G*. There is a bijective correspondence between all primary represen-
tations TT of G associated to λπ and all primary representations of G*
associated to the homomorphism of T into itself, given by the identity
map, so that in addition square integrability in the wide sense is
preserved. But for G* wide sense square integrability is the same as
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strict sense square integrability. Therefore for simplicity of statement
we will talk about strict sense square integrability.

For unimodular groups G and irreducible representations π, the
phenomenon of square integrability has been well understood for many
years; the standard results are that if one matrix coefficient is square
integrable, all are, and this condition is equivalent to π being a summand
of the regular representation. A key fact is that the matrix coefficients
satisfy orthogonality relations which have the form

r

J 1
(x, ττ(g)u)(y, π(g)υ)dg = -j- (x, y )(κ, v)

where dπ is a positive number called the formal degree. It of course
depends on the normalization of Haar measure and if dg is multiplied by
λ > 0, dπ has to be multiplied by A'1. The reader is referred to [5] for a
more general formulation of these results in the context of Hubert
algebras. Recently M. Duflo and the author [2] found appropriate
generalizations of these results when G is no longer required to be
unimodular (cf. also [4]). The key observation was to realize that the
formal degree dπ had to be replaced by a positive self-adjoint operator
Dπ which is semi-invariant for the group in that π(g)Dππ(g)~ι = Δ(g)D7r

where Δ is the modular function of G. Then square integrability means
that some matrix coefficient is square integrable and this is equivalent to
being a summand of the regular representation; but it is no longer true
that all matrix coefficients are square integrable; more precisely,
(x, π(g)u) is square integrable with respect to left Haar measure on G iff
u is in the domain of D;1 / 2 and then we have orthogonality relations of
the form

where μ, is left Haar measure (Theorem 3 of [2]).
It is our object here to investigate the same kinds of questions for

factor representations π. These questions were inspired by work of
Rosenberg [6], and we profited from conversations with him. Of course
if π is type I, all questions are trivially reduced to the case π irreducible,
but if π is type II, the situation is not entirely transparent, and if π is type
III, in which case G is forced to be nonunimodular, a new phenomenon
occurs which bears further study. In particular there is no way to define
a formal degree operator and in fact we shall see that a formal degree
operator exists if and only if the von Neumann algebra R(π) generated
by π is semi-finite. Thus our first task is to find the appropriate notion
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of the formal degree of a representation π which will reduce to the
correct thing in case R (TΓ) is semi-finite. We shall find this extension by
employing the notion of semi-invariant weights on von Neumann
algebras.

(2) Let R be a von Neumann algebra; and φ a weight on JR. All
weights considered will be normal and semi-finite. Now suppose that
R = R (TΓ) is the von Neumann algebra generated by a primary represen-
tation TΓ of a locally compact separable group G and let λ be a
continuous homomorphism of G into the positive real numbers.

DEFINITION. Let ψ be a nonzero normal semi-finite weight on
R(τr); we say that φ is semi-invariant of degree λ if φ(π(g)xπ(g)~ί) =
λ(g)φ(x) for xeR(π)\

One's intuition suggests that if such an object exists at all for a given
λ, that it should be unique up to scalar multiples since R(π) is a
factor. This is in fact the case but we first need the following fact.

PROPOSITION 2.1. A semi-invariant nonzero weight φ is necessarily
faithful

Proof Let Nφ = {x: φ (x *x) = 0}. Then Nφ is a cr-weak closed left
ideal and if x E Nφ, φ((xπ(g))*xττ(g)) = \(g)-^(x*x) = 0 so
xτr(g)E Nφ. Since the τr(g) generate R(π), and Nφ is σ-weak closed, it
is then a two-sided ideal, hence 0 or R (TΓ). Since φ^ 0, it is zero, hence
φ is faithful.

THEOREM 1. If φ and ψ are two nonzero semi-finite normal weights
on R(π) semi-invariant of degree λ, then ψ = aφ for some a >0.

Proof. We employ the Radon-Nikodym derivative (Dψ: Dφ)t =
ufφ of ψ with respect to φ as defined in [1]. If u is a unitary operator
in R(π) it follows from the chain rule satisfied by Radon-Nikodym
derivatives that

(Dψu: Dφu)t = u*(Dψ: Dφ)tu

where ψu(x)= ψ(uxu*). Moreover, since the modular automorphism
group corresponding to λφ is the same as that corresponding to φ, it
follows again from the properties of Radon-Nikodym derivatives that for
A > 0, (Dλφ: Dφ)t = exp(iί(log λ))l. By using the chain rule again we
conclude that (Dλψ: Dλφ)t = (Dψ: Dφ)t. We now put u = τr(g) and
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conclude that

π(g)*(Dψ:

= (Dλ(g)φ: Dλ(g)φ)t = (Dφ: Dφ)t.

Consequently (Dφ: Dφ)t commutes with ττ(g) and since the operators
τr(g) generate the factor R(π), (Dφ: Dφ)t is central and hence a
multiple of the identity. By the cocycle property of these functions, it
follows now that (Dφ: Dφ)t is a one-parameter unitary group and so
(Dφ: Dφ)t = exp(+ /(logα)ί)l for some a >0 . But we have already
noted that (Daφ: Dφ)t = exρ(+ i\og(a)t)l and hence by the unicity
part of Theorem 1.2.4 of [1] it follows that φ = aφ.

We shall see that such an object will be the proper one to play the
role of the formal degree in the general setting. A more restricted (as it
turns out) notion is as follows.

DEFINITION. An (unbounded) positive operator affiliated to the
algebra R(π) is said to be semi-invariant of degree A if π(g)'1Dπ(g) -
λ(g)D where A is as usual a homomorphism of G into R+.

The relation between these two notions is made clear by the
following result which also makes precise our statement in the first
section that π can have an operator as its formal degree (if and) only if π
is semi-finite.

THEOREM 2. Let π be primary and φ a semi-invariant weight of
degree A for π. Then there exists a positive operator D affiliated to R (TΓ),
semi-invariant of degree A, if and only ifR(π) is semi-finite. In this case
φ(x) = Tτ(DmxDV2) (or φ =Ύr(D ) in the language of [3]) where Tr is
a trace on R(π).

Proof. If there exists such a D, then ut = D" is a unitary group in
R(ττ). Moreover, τr(g)ut7r(g)~ι = λ(g)~itut by semi-invariance; we then
have utπ(g)u* = π(g)λ(g)u. Now if σf is the modular automorphism
group associated to φ, σφ

t = σ"φ for any a > 0, and by the properties of
Radon-Nikodym derivatives, ττ(g)V?(τr(g)) = (Dφv{s): Dφ)t =
exp(+ ίίlog(λ(g)))l. After rearranging this, we see that cφ

t(τr(g)) =
τr(g)λ (g)", and hence that σf agrees on a set of generators of R (TΓ) with
the inner automorphism defined by ut. Thus σf is in fact inner and
consequently R(π) is semi-finite.

In this case Tr(D1/2 D1/2) = Tr(D ) in the language of [3] evidently
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defines a semi-finite weight which one sees at once is semi-invariant of
degree λ, and hence by Theorem 1 is a multiple of φ.

Conversely if R(π) is semi-finite, let Tr be a trace. Then the
Radon-Nikodym derivative (Dφ: D Tr), is a one-parameter group in
R (TΓ) and is therefore of the form D" with D affiliated to R (TΓ). By the
same kind of calculations one sees immediately that D is semi-invariant
of degree A and this completes the proof.

(3) If φ is a semi-invariant weight on R (TΓ) we introduce the space
nφ ={x: φ(jc*x)<°°}. This is a left ideal and is two-sided invariant
under multiplication by ττ(g). It is also σ-weak dense in R (TΓ) as this is
part of the definition of a semi-finite weight. We let mφ be the set of
linear combinations of elements of the form y *JC, X, y E nφ. Evidently
mφ is also closed under left and right multiplication by τr(g). It is also
well known that there is a unique linear functional on mφ denoted again
by φ which agrees with the original weight on elements of the form x *JC,
x E nφ.

Since φ is faithful, nφ is a pre-Hilbert space, and we let Hφ be its
completion and let Δ and / be the modular operator and the unitary
conjugation defined by the weight φ via Tomita-Takesaki theory. We
define the left representation of G by L(g)a = τr(g)α for
a E nφ. Clearly L(g) extends to a unitary operator on Hφ and L is a
unitary representation of G on Hφ which generates the von Neumann
algebra M (isomorphic to R(τr)) of left multiplications on Hφ. If we
define jR(g)(α) = λ(g)"1/2ατr(g)~1 for a E nφ it is easy to see that R(g)
extends to a unitary operator on Hφ.

Now if x E nφ Π n % it follows that xτr(g) E nφ Π n * since as we have
noted nφ is left and right invariant under τr(g). Now if S(x) = x* for
such elements, we see that (L(g)S)(x)= λ(g)1/2SR(g)(x) and hence
L(g)S = λ(g)υ2SR(g) where S is the closure of the map JC-»JC* on
nφfλn%. It also follows that R(g) and L(g) send the domain of 5 into
itself, and as S = JΔ1/2 is the polar decomposition of 5, we see that R(g)
and X(g) send the domain of Δ1/2, which is the domain of 5, into
itself. Moreover

and by the unicity of the polar decomposition we have L(g)J = JR (g) or
JL(g)J = R(g) and Δ1/2 = λ(g)1/2,R(g)*Δ1/2i?(g), or equivalently

( ) Δ 1 / 2 ( r 1/2

The formula JL(g)J = R(g) shows that R(g) is a unitary represen-
tation which generates the commutant M' = JMJ of the von Neumann
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algebra generated by L. It is also evidently the contragredient represen-
tation to R.

In the sequel we shall need the following fact about stability of nφ

and mφ. Let a be a continuous function of compact support on G and

let A = I α(s)π(s)ds be the corresponding operator in R(τr) where ds

is left Haar measure.

PROPOSITION 3.1. If x E nφ, Ax and xA E nφ\ if y E raφ, Λy and

yΛ E mφ and φ(Λy)= I a(s)φ(π(s)y)ds, and similarly for φ(yA).

Proof It is immediate that if x E nφ then Bx E nφ for any B E
i? (TΓ). NOW if A has the special form as in the statement, we may find a
sequence of operators Bn each of which is a finite linear combination of
the operators π(s)y s E G such that \Bn | is dominated by the Lλ norm of
α and so that Bn —> A *-strongly. We simply use "Riemann sums" to
approximate the integral defining A. Then (xBn)*(xBn) = B$x*xBn

evidently converges weakly, and hence σ-weakly since \Bn\^K, to
Ax*xA. Since φ is σ-weak lower semi-continuous, it follows that

φ ((xA )*xA) = φ(Ax *JCΛ ) ̂  lim φ ((xBn)*(*£„)) = lim | x£n |
2,

norms taken in Hφ. But now if a(s) = λ1/2(5)Δ(5~1)α(5~1) where Δ is the
usual modular function on G, it follows that when we integrate the right

representation R against the function α, R(ά)x = I ά(s)R(s)xds

verges as a Bochner integral in Hφ. On the other hand, it is evident that
xBn are Riemann sums approximating this integral so that
xBn->R(a)x. Thus lim\xBn\

2=\R(ά)x\2 and so φ((xA)*(xA))^
\R(ά)x \2 and xA E nφ as desired.

Moreover, by the same reasoning, for any m

con-

φ((x(A - Bm))*x(A - Bm))^Xιm\x{Bn- βm)| 2,
n

and since xBn is Cauchy in Hφ it follows that \x(A - B m ) | 2 -»0 in nφ and
hence that JCΛ =i?(α)x. Thus for any zEnφ, (xA, z) = (R (α )x, z),
which means using the Bochner integral for i?(α)x that

φ(z*xA)= ί

= ί
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Now since any element of mφ can be written as a linear combination of
elements of the form z *JC, we have established that yA E mφ if y E mφ

and that the desired integral formula holds. The result for Ay follows
by the same reasoning.

We now introduce the notion of square integrability and establish
equivalent criteria. There are several different notions of matrix coeffi-
cients and we first examine these possibilities. We first observe that a
"geometric" matrix coefficient (JC, ττ(g)y) = (π(g)"1jc, y) of a representa-
tion π can be written in the form f{π(g)~ι) where f(a) = (α(x), y) is an
element of the predual JR(TΓ)* of R(π). In fact, it is clear that any
/ E R(π)* is the limit in norm of finite linear combinations of /'s of the
above form. Hence the most general "matrix coefficient" of π is a
function of the form /(π(g)"1) for some / in the predual of R (TΓ). Now
suppose that φ is a semi-invariant weight on R(π) and that x E
mφ. Then π(g)~λx E mφ so that φ(τr(g)~1x) is well defined and could
also with much justification be called a matrix coefficient of π. We
denote these matrix coefficients as mx with φ to be understood. It
should be noted that the map z -> φ(zx) may not be everywhere defined
and hence not in the predual so that this matrix coefficient may not be of
the above form.

We fix once and for all a left Haar measure μ, on G and denote by Δ
the modular function. Then μr defined by dμr(x) = Δ(x)~ιdμι(x) is a
right Haar measure.

DEFINITION. A primary representation π is square integrable if
R (π) has a semi-invariant weight φ of degree Δ so that for some x E mφ,
mχ(g)= Φ(^(g) lχ) *s a square integrable function on G with respect
tO M/.

We first note the following fact.

PROPOSITION 3.2. // π is square integrable, then the set sφ of x E
R (TΓ) such that mx E L2(μ,) is σ-strong dense in R (TΓ), and sφ C mφ C nφ C
Hφ is dense in the Hubert space Hφ.

Proof. Note that 5̂  is closed under multiplication by ττ(g) on both
sides as φ(π(g)~ιπ(h)xπ(k)) = Δ(/c)~1φ(τr(/ι~1gfc"1)~1x) which is square
integrable in g if mx is. It follows that the σ-strong closure of sφ has the
same property and hence is a two-sided ideal, which is necessarily R(π)
as π is primary. The second statement follows in the same way.

We shall subsequently show that if some mx is square integrable,
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then mx is square integrable for all x E mφ. We note of course that this
notion of square integrability is invariant under quasi-equivalence as
quasi-equivalence of π{ and π2 simply means that R(πt) and i?(π2) are
isomorphic by an isomorphism carrying π^g) onto ^(g) . We shall now
show that the various other possible definitions of square integrability all
coincide.

THEOREM 3. For a primary representation π the following are equi-
valent:

(1) 77 is square integrable
(2) (x, π( )y) G L2(μ,) and is non-zero for some JC, y
(3) 3 / ε « (TΓ)*, f(π( • Γ ) E L\μι), fϊ 0;
(4) π is quasi-equivalent to a summand of the left regular represen-

tation.

Proof. We note that Rosenberg [6] has established the equivalence
of (2) and (4). We have already noted that (2) Φ (3) above. To see
that (3) Φ (4), let σ = °°π, and then using the standard form for elements
in the predual of R(π), it is clear that /(τr(g)"1) is an ordinary matrix
coefficient of σ. Hence by Rosenberg's result, σ and hence π, is
quasi-equivalent to a subrepresentation of the regular
representation. Thus (2), (3) and (4) are equivalent and we shall
complete the argument by establishing the equivalence of (1) and (4).

Suppose that (4) holds; then as (1) is invariant under quasi-
equivalence, we can assume that π is a summand of the left regular
representation which is invariant under left and right translations. If M
is the von Neumann algebra generated by the left regular representation,
we may then identify R(π) as the weakly closed two-sided ideal in M
determined by the projection onto the subspace H{π) of L2(μ{) defined
by π.

Now M possesses a distinguished weight </>, defined by evaluation at
the identity [8]. More precisely, if h is continuous with compact support
on G and if / = h */ι, then / is continuous and f(e) = | ft ||, the square of
the L2 norm of h. If Lf = ττ(/) is the corresponding operator of left
convolution by /, Lf E M and one defines φ(Lf) = f(e). Using Tomita
theory, this extends to a normal weight φ on M. An easy verification
shows that φ(π(g)Lfπ(g)~1) = Δ(g)φ(L;) and by extension the same is
true for the weight on M and so φ is semi-invariant of degree Δ and
faithful.

We restrict φ to R(π) and it is again semi-finite and semi-invariant
of degree Δ. It remains to find an x so that mx is square
integrable. Now if / = h *ft as above, one verifies by direct calculation
that Lf E mφ and φ(π(s)~ιLf) = f(s). Let P be the projection of L2(G)
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onto H(π); then P is in the center of M and R(π) = PM. Since
PLf ^ Lf and PLf = PL *hPLh, it follows that PLf is in mφ and we claim
that φ(π(s)~λPLf) = (P/)(s), where / is viewed on the right hand side as a
vector in L2(G). In fact, let a be a continuous function with compact

support on G and let A = I π(s)~]a(s)ds EM. Then evidently

a(s)φ(ττ(sΓπ(t)Lf)ds = φ(Aπ(t)Lf)

where in the last term a is viewed as an element of L2(G). Now by the
general theory of weights, AxLf E mφ for x E M and x —» φ(AxLf) is
in the predual. Evidently the same is true for x -»(x/, ά) where JC/ is the
result of applying the operator x E M to the vector / E L2{G). The
above identity asserts equality of these linear functionals for x of the
form π(ί), ί E G, and it follows that they are equal for all x E M and in
particular for x = P. Then we have φ(APLf) = (Pf,ά), but since
PLf E raφ, it follows from Proposition 3.1 that the left side above can be
written as an integral over G so that we have

ί a(s)φ(ir(s)ιPLf)ds = ί a(s)Pf(s)ds.

Since this holds for all a which are continuous and compactly supported,
it follows that φ(π(sYιPLf) = Pf(s) a.e. and therefore that φ(π(s)~ιPLf)
is a square integrable function as desired.

We now turn to the converse (1) Φ (4), so suppose that φ is a
semi-invariant weight of degree Δ for R(π) where π is a primary
representation, and let nφ,mφ,H = Hφ (the completion of nφ)
Δ,/,L(g),R(g) be as above and suppose that mx(g)= φ{π(g)~λx) is in
L2(μι) for some x E mφ. Let x = Σy *Zι with yh zx E nφ. Now let Hn be
the n-fold direct sum of H with itself and let Rn be the n-fold direct sum
of R acting on Hn. Then y = (y,, , yn) and z = (zu , zn) are'
elements of Hn and the matrix coefficient (z, jR"(g)y) is equal to
Δ(g)~1/2mx(g~'). But since rax( ) is assumed to be square integrable, it
follows now that (z, Rn( )y) is also square integrable. Then by Rosen-
berg's result, Rn is quasi-contained in the regular representation and
hence so is R. But since R and L are contragredients, and L is
quasi-equivalent to π, and as the regular representation is self-
contragredient, π is quasi-contained in the regular representation and
this is (4).
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Now that this result is established we can proceed to establish the
orthogonality relations for the "matrix coefficients" rax. Introduce as
above the space H(π), the sum of all left invariant subspaces of L2(μ,)
which are quasi-equivalent to π.

THEOREM 4. // π is square integrable, then mxE:L2(μι) for all
x E niφ and φ may (uniquely) be normalized so that x —> mx extends to
unitary operator from Hφ onto H(π). In particular, we have orthogonality
relations

J rnx{g)my(g)dμι{g)= φ(y*x)

for x,yG mφ.

Proof As before, let sφ = {JC : x E mφ, mx E L2(μ,/)}; then easy com-
putations show that mL(h)x(g)= mx{h~ιg) and mR(h)x(g) =
mx(gh)Δ(h)υ2. Thus m is a densely defined linear operator from
sφ Cmφ Cnφ CHΦ into L2(μι) which intertwines the two-sided represen-
tation L x JR of G x G on Hφ with the two-sided regular representation
U of G x G on L2(μι) given by (U(tu t2)f)(s) = f(t\\ st2)A(t2)

m. Now
by Theorem 3 we know that π is quasi-contained in the regular
representation and hence that the von Neumann algebra R(π) is
isomorphic to a direct summand of the von Neumann algebra generated
by the left regular representation. Therefore, by the unicity of semi-
invariant weights and the argument of the first part of the proof of
Theorem 3, we know that if Lf is left convolution by /, a continuous
function on G with compact support, and if e is the unit in R(π) viewed
as a central projection in the von Neumann algebra of the left regular
representation, that eLs = Lp = eLp is in nφ and that φ((eLf)*eLf)^
/*/(l) where 1 is the identity element in G. But under the quasi-
equivalence of π with a summand of L2(μι), the operator eLf is nothing

other than T(f)= \ f(s)π(s)dμt(s), and so Γ(/)E nφ. Also note that

T(f)* E nφ. Moreover, for any x E raφ,

φ(T(f)*x)= φ ((I Wjπ(s)-ιdg} x) = I mx(s)f(s)ds.

If we read this in terms of inner products this says that /—» T(f) is the
adjoint of the operator JC —» mx. Thus m defined on sφ has a densely
defined adjoint and so is closeable. But now m intertwines L x R on
Hφ with [/ on L2(μ/). Now L x JR is irreducible on Hφ, and it follows
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since m is closeable that m is a multiple of an isometry and hence after
proper normalization of φ extends to a unitary intertwining operator of
Hφ into L2(μ}). Evidently its range is contained in H(π) and since
H(π) is irreducible under £/, its range is all of H(π). This completes
the proof except for the statement that sφ is all of mφ.

To see this, let xEmφ and choose a sequence x(n)Esφ with
x(n)->x in Hφ. Then mx{n){ ) = φ{τr{')~xx{n)) converges to a limit q
in L\μι). But now as above, if / is continuous and compactly supported
on G, T(f)Enφ and therefore φ(T(f)*x(n)) converges to
φ(T(j)*x). As above, this means that

f(s)φ(n(srχ)dμι

and it follows that q(s)= ^(^(s)" 1*) a.e. so that φ(π(-)~ιx) is square
integrable and hence x E sφ.

REMARK. AS one can see from the above arguments in Theorems 3
and 4, the objects mx (x E mφ) that we have called matrix coefficients are
really matrix coefficients of the right representation R which is the
contragradient of L or, equivalently, π. The matrix coefficients of L or
π are simply the complex conjugates of those of R, specifically
(L(g)u, υ) = {R{g)Ju,Jυ) for w, v E Hφ. As an alternative to the m/s
one could consider instead functions of the form φ(a*π(g)b), a,b E nφ

which by a simple calculation becomes Δ(g)~1/2φ((/α)*(Λ)τr(g)"1) =
Δ(g)1/2mc(g) where c = (Ja)*Jb provided, of course, that Ja and Jb are in
nφ. We have chosen the mx as our basic objects since formulas come out
more elegantly this way.

DEFINITION. If π is a square integrable representation we shall call
the semi-invariant weight φ normalized as in Theorem 4 the formal
degree of π. Thus we see that the formal degree which classically was a
positive number becomes first a semi-invariant positive operator as in [2]
and now even more generally becomes a semi-invariant weight on R (TΓ).

(4) We now turn to the case when R(π) is semi-finite so that the
semi-invariant weight φ is of the form φ(x) = T r ( D m x D m ) where Tr is
a trace on R(τr) and Dm a uniquely determined semi-invariant positive
operator affiliated to R(rr). We let L^Tr) and L2(Tr) be the spaces of
integrable and square integrable operators relative to the trace [7]. The
natural action of R(τr) on L2(Tr) by left multiplication is of course the
GNS construction applied to the weight Tr, and we so realize
R(π). Then D and all its powers can be realized as self-adjoint
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operators on L2(Tr). Of especial importance to us will be the (dense)
domain of definition of the operator D~1/2, dom(D~1/2). Now let p =
{x,x E jR(π)Π L2(Tr), range (x*)Cdom(D1/2)}? where range (**) is the
range of x * as an operator on L2(Tr), and let q be the span of elements of
the form y *x, JC, y E p. Note that p and q are linear spaces invariant
under right and left multiplication by π(g), g E G. Now if x Ep, the
closed operator D~υ2x* is everywhere defined, hence bounded and so
xD~m is bounded on its domain and hence has a continuous extension to
a bounded operator f(x) which is necessarily in R(π). Evidently
φ(f(x)*f(x)) - TΓ(JC*JC) so f(x)E nφ and / is an isometry. In the same
way, the map / defined on q by /(y *JC) = (D~1/2y *xD~1/2)~ is well defined
and sends q into mφ. Finally, note that q - q* and that if u E q, then
D~υ2u is well defined and is bounded and is square integrable relative to
the trace, for if u =y*x, JC, y Ep, then D~mu = (D"1/2y *)(*). Since
Ό~my * is bounded and x is square integrable and bounded, the product
is bounded and square integrable as asserted.

In the context of a semi-finite primary representation, we are also
interested in functions nu(g) = Tτ^lg)'^) which also have a claim to be
called matrix coefficients of π. It is evident that nu is well defined and is
a continuous function on G for any u E L !(Tr). We begin the study of
such matrix coefficients by considering the case u E q CL^Tr). We
have the following result.

THEOREM 5. IfuEq=q*,nuis square integrable with respect to left
Haar measure and if w, u E q,

\ Mg)n

Proof. This is simply a matter of rephrasing Theorem 4 and we omit
the details.

The above result leaves unanswered the question of providing
necessary and sufficient conditions for nu to be square integrable and we
turn to this question now. Let

5 = {u: u E LJ(Tr) Π L2(Tr), nu E L2(μ/)}.

Then we have the following result.

THEOREM 6. Let u EL2(Tr); then u E S <=> u (equivalently
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M*)eL'(Γr), and w* E dom(D1 / 2). // u, υ E 5,

(D 1 / 2 ιΛD 1 / 2 w*)

Proo/. We define the operator N on S into L2(G) by N(u) =
nu. The set 5 is dense in L2(Tr) as q is and is two-sided invariant under
τr(g). Moreover, if ρ(tu t2)u = π{tλ)uπ(t2y

x for M G L2(Tr) and
(u(tut2)f)(g) = f(t^gt2)Δ(t2)

m is as before, it is clear that

Np(tu t2)u = A(t2)
υ2U(tu t2)N(u) for M G S .

Now N(u) is immediately seen to be a matrix coefficient of the
representation σ of G on L2(Tr) given by left multiplication by TΓ. But σ
is quasi-equivalent to TΓ, and it follows by Rosenberg's reasoning [6] that
N(u)EH(π)CL2(μι).

Now R (TΓ) can be realized as a von Neumann algebra operating on
//(TΓ) SO that τr(g)E#(τr) is left translation by g~\ Let b-*λ(b) be
this realization, b ξΞ R(π). Then the formulas in the previous para-
graph say that N(bu)= λ(b)N(u) for u E 5, and b a finite linear
combination of the operators ττ{g), g E.G. But now if bn is a sequence
of such linear combinations converging to a limit b E i?(τr), σ strongly,
and with |fen|^fe<oo, then N(bnu)(g) = Ίr(π(g)~ιbnu) converges to
Ύr{{g)λbu) for each g E G. But A (bn)N(u) converges to λ(b)N(u) as λ
is normal, and therefore Tr(τr(g)"1ί)M) = (λ(b)w)(g) is in L2(μ,) as a
function of g. But k E L '(Tr) and so few E 5 and N(6w) = λ (fe)N(w).

Now let un E 5 and «n -» w in L2(Tr), and suppose N(un) has a limit
ϋ in //(TΓ). Then for any b E L2(Tr)Π J?(τr), k G L ^ T r ) and
bun->bu in L*(Tr) and so N(bwn)(g)—•Tr(τr(g)~1frw) for each g E.
G. But N(bun) = λ(b)N(un) converges to λ(b)v in //(TΓ). But this
says that λ(b)v is determined by w alone for each b E L2(Tr)Π i?(τr),
and that w determines υ uniquely. This says of course that N is
closeable as a densely defined operator S —> //(TΓ); and if N is its closure,
we have by continuity Nρ{tut2) = Δ(t2)

mU{tj,t2)N.
We then write the polar decomposition N = WK where the domain

of K is the domain of N, and where W is a unitary equivalence between
the (irreducible) representations p and t/, and where Kp(tut2) =
A(t2y

mρ(th t2)K. Then K as an operator on L2(Tr) is affiliated to R(TΓ)'
since it commutes with τr(g) operating as left multiplications, and is
semi-invariant under right multiplications. It follows that JKJ is an
operator affiliated to JR(TΓ) and is semi-invariant of degree
Δ1/2. Therefore it is precisely D~m up to a multiple as this is the only
semi-invariant operator of this degree (Theorems 1 and 2). Thus up to
scalars K(u) = (D~υ2u *)* and the domain of K, which is the domain of N
as already noted, is precisely the set of u such that u * is in the domain of
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D 1 / 2 . We know now that 5* CLι(Tτ)Π dom(D1 / 2) and that the or-
thogonality relations hold up to a scalar as W is unitary; that the
normalization is correct so that K = D~m follows from Theorem 5.

It remains to show that S* = L!(Tr) Π dom(D1 / 2). If u is in the
right Jiand side, N(u) is well defined and it follows as above that
λ(b)N(u)(g) = Ύτ(ττ(gy1bu) for b G L2(Tr)Π R(π). Now let bn be a
bounded sequence with bn -»1 σ-strong with bn EL 2(Tr). Then
λ(bn)N(u)->N(u) and Tr(7r(g)-1M)-^Tr(τr(g)-1w) for each g as
w G LJ(Tr). Thus N(u)(g) = Tr^g) ' 1 **) a.e., and this says that u G S
as desired. This completes the proof.

We can reformulate Theorem 6 in terms of right Haar measure as
follows (proof omitted).

THEOREM 7. Let u G L2(Tr) Π L^Tr). Then nu G L2(μr) iff u G
dom(D~1/2) and then for such u and υ

In conclusion it is instructive to see that we recapture the necessary
and sufficient condition in [2] and [4] for square integrability of the
ordinary matrix coefficients of an irreducible square integrable
representation. Let π be such and let x, y be vectors in the Hubert
space H of π, and let cxy = (JC, π( )y). Then L2(Tr) is of course the
Hilbert-Schmidt operators and we let T(x, y)(w) = (w, y)x be the rank
one operator associated to x and y. A simple calculation shows that
cx,y = Wr(*,y) in the notation of Theorems 5 and 6. Now T(x, y )* = T(y, x)
and Γ(y, JC)G dom(D~1/2) (viewing D~m as an operator on L2(Tr)) iff
y G dom(D~1/2) with D~m viewed here as an operator on H\ if this is the
case, D"1/2T(y, JC)= T{Dmy,x). Thus Theorem 6 implies that cx,y is
square integrable with respect to left Haar measure iff y G dom(D~1/2)C
H and if y;,y Gdom(D 1 / 2), then

= Ίr(T(xyD'υ2y)T(Dυ2y\xf))

= (D~my',Dυ2y)Tτ(T(x,xf))

= (xyx
f)(Dυ2y\Dυ2y)

which is exactly as given in [2] and [4].
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