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COUNTABLE SPACES WITHOUT POINTS OF
FIRST COUNTABILITY

RONNIE LEVY

In this paper we show that there are 2C non-homeomorphic
countable regular spaces, each of which has no point of first
countability. Several specific countable regular spaces are
shown not to be homeomorphic.

1. Preliminaries. A countable space need not be first
countable. One example of such a space is N U {p} where p E βN — N
and the topology is the relative topology of βN. This space, however,
has many points of first countability—indeed all of the points of N are
isolated. Several examples of countable spaces without points of first
countability are known to exist.

N denotes the space of natural numbers including 0, Q denotes the
space of rational numbers, and R denotes the space of reals. The
cardinal of R is denoted c. If X is a completely regular Hausdorff space,
βX is the Stone-Cech compactification of X. If X and Y are spaces and
/: X—• Y is a continuous surjection, / is irreducible if there is no proper
closed subset K of X such that f(K) - Y. It is well-known (see for
example [11], 10.48) that if X and Y are compact Hausdorff spaces and
/: X —» Y is a continuous surjection, there is a closed subset K of X such
that f(K) - Y and the restriction of / to K is irreducible. A space X is
resolvable if X contains disjoint dense subsets. A space X is homogene -
ous if for any pair of points /?, q E X, there is a homeomorphism
/:X—»X such that f(p) = q. A rigid space is a space whose only
auto-homeomorphism is the identity.

For nEN, let Rn be N{1 'n}. Since for n = 0, {ί, ,rc} = 0,
Ro = {0}. The empty set, when viewed as the element of Ro, is denoted
p0. Let 5 = U n e N Rn and define an order S on S by p ^ q if and only
if p E i?m, q ERn with m ^ n and q | {1, , m} = p. (S, ^ ) is a tree
(see [6]) and is clearly countably infinite. For x E 5, Ax is the set
{p E S: x ^ p,x/ p, and x ^ y ^ p implies x = y or y = /?}; thus, Λx is
the set of immediate successors of x. For xGS, UCN, let K^ =
{*} U {/? E 5: There is a q E Λx such that the last entry of q is an element
of U and q ^p}.

If p E j8N - N, that is, p is a free ultrafilter on N, then Σp denotes
the subspace N U{p} of βN. Two points p and g of βN - N are the
same βN-type, or simply the same type, if Σp is homeomorphic to Σq, or,

391



392 RONNIE LEVY

equivalently, if there is a permutation φ of N such that the elements of q
are precisely the images under φ of the elements of p.

All given spaces are assumed to be completely regular and
Hausdorff.

For general background see [3] or [11].

2. Construction of 2C countable spaces. Suppose °ίί E
βN - N. A topology on S is defined by taking as a subbase the
collection { K ^ J C G S , 17E%}. (It is not hard to show that in fact
{Ku

x: J C E S , [/ E %} is a base for a topology, although we do not need
this fact.) The topological space which arises in this way is denoted
5^. For each %, S^ is Hausdorff. To see this, notice first that if n. E N,
N~{n}E. °U. Suppose p = (pu , pm) and q = (qι, , qn) are distinct
elements of 5, with m g n. If p and q are not comparable under g , the
sets KN

P and KN

q are disjoint neighborhoods of p and q. If p S q,
Kp~

{Pm+ι}and KN

q are disjoint neighborhoods of p and q. Each S% is also
zero-dimensional. To check this, we show that each set of the form Kυ

p

is closed, whether or not U E °U. Suppose q&LKυ

p. If q and p are not
comparable, K" is a neighborhood of q which does not intersect Kυ

p. If
q S p, let r = (r2, , rk) be the element of Aq such that r S p. Then
jf£-<rfc> is a neighborhood of g which does not intersect Ku

p. If p ^ g ,
then since q£Kυ

p, it follows that jcgi K , for any x such that q ^ JC, that
is, K ^ n K p ^ 0 . This proves that S* is zero-dimensional. Further-
more, since a zero-dimensional Hausdorff space is regular, and since a
regular Lindelof space is normal, Sm is normal for each °U.

We now claim that for each % S*u is homogeneous. It suffices to
show that if q E 5, there is a homeomorphism fq: Sm —> 5Φ such that
fq(q) = po, because then f~p

ι°fq is a homeomorphism of S<n mapping q to
p. We first show that there is an order-preserving homeomorphism
g:Sca ^KN

q. Suppose q = ( n b , nk). Define g by g(po) = q, and
g(niι, , m/) = (tti, , nk, mλ, , m,). The function g is clearly one-
to-one and onto. g(K^mι,...>ιnι)) = £"£,, . ,^ m i , . . . , m / ) so g is an open
map. g'XK^..,nk,mi,...,mf)) = K^ - mo so g is continuous. Now define
f: Sou-* Sm by / IC^) is the identity map, / (S% - KJ') = g (S* - JKJ),
and/1 (K^ - K^^)) = g"1 (K^ - Kgiq)). Then /°/ is the identity map on
Si*, so / is one-to-one and onto. f(po)-q, so f(q)~ f(f(po))-
p 0. Furthermore, the restriction of / to each of the clopen sets
(Sqi — K"), (K* - K"(g)), and JK"^) is a homeomorphism, so / is a
homeomorphism.

Sou is not first countable. To see this, let the map h: Σ^ —>{po} U
APo be defined by

•j -P v •^^ Oil

if x = n.
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Then h is a homeomorphism, so p0 is not a point of first
countability. Furthermore, since S^ is homogeneous, S^ has no point of
first countability.

Finally, we observe that there are 2C nonhomeomorphic spaces
Sou. For there are 2C types of ultrafilters on N. In a given space SΦ, at
most c spaces Σp can appear as subspaces. Thus, if there were fewer
than 2C homeomorphism classes of S '̂s, there would be fewer than 2C

types of ultrafilters, a contradiction.
We summarize in the following proposition.

PROPOSITION 2.1. There are 2C nonhomeomorphic countable regular
homogeneous spaces each of which fails to have any point of first
countability.

REMARK. The construction of S^ can be modified to give rigid
countable regular spaces without point of first countability. To do this,
enumerate the elements of 5 as {pk: k G N} and let {°Uk: k E N} be a
collection of free ultrafilters on N such that if k / n, Σ ^ is not
homeomorphic to any subspace of Σ^. Now take as a neighborhood
base at pk the set {Kpk: UE%}. Then S with this topology can be
shown to have the required properties. An argument similar to the
counting argument used in proving 2.1 shows that there are 2C such
spaces no two of which are homeomorphic.

3. Other countable spaces. In this section we examine
some other countable spaces without points of first countability. We
will list for the sake of later reference some well-known and some easy
facts.

LEMMA 1. ([3], 9H). Every countable subset of an extremally dis-
connected space is C*-embedded.

LEMMA 2. ([8]). A space is extremally disconnected if and only if
every dense subset is C*-embedded.

LEMMA 3. A countable subspace of an extremally disconnected
space is extremally disconnected.

Proof. If A is a countable subspace of the extremally disconnected
space X, every subset A is C*-embedded in X (Lemma 1) and hence in
A. Therefore, by Lemma 2, A is extremally disconnected.

LEMMA 4. An extremally disconnected space without isolated points
has no convergent sequence of distinct points and hence no point of first
countability.
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Proof. If an-+b where an^ ak, if n^ k, the function /: {αn}-»R
defined by f(an) = (-1)" does not extend continuously to b, so the
countable set {an} is not C*-embedded. Hence by Lemma 1, no space
which contains a nontrivial convergent sequence is extremally discon-
nected.

The following example was described in a letter by Professor W.
Comfort. Let φ: βN - N ->[0,1] be a continuous surjection. Let K
be a closed subset of βN - N such that φ(K) = [0,1] and φ | K is
irreducible. Let Λ be a countable dense subset of [0,1] and for each
a & A choose ca E (φ\K)~ι(a). Then {ca: a E A} is a countable subset
of /3N - N whose closure maps onto [0,1] by an irreducible map. Let %
be the set of all countable subsets of βN - N whose closures map onto
[0,1] by a continuous irreducible map. We have seen that % ^ 0 . Now
suppose C E ^ and /: ClβNC->[0,1] is an irreducible map.

C is resolvable. To see this, let A} and A2 be disjoint dense subsets
of/(C). Then f'^A^ΠC and f~ι(A2)ΠC are disjoint subsets of
C. We claim that each is dense in C. f{ClβN(j~\Ax)C] C)) is a
compact subset of [0,1] containing the dense subset Ax of
[0, lj. Therefore, f{ClβN(f-\A{) Π C)) = [0,1]. Since / is irreducible,
ClβN{f-χ(Aί)DC)= CXβNC, so f~\Aλ)Γ\C is dense in C Similarly,
/:1(A2) Π C is dense in C

Since a resolvable space can have no isolated points, C is dense-in-
itself. By Lemma 3, the space C is extremally disconnected. Lemma 4
implies that C has no points of first countability, and, in fact, no
nontrivial convergent sequences.

Every dense subset of ClβNC is separable. The proof of this fact
consists of observing that in the above argument that f {Ax) Π C is dense
in C, the crucial facts are that C is dense in CίβNC and that f^Ai) Π C
maps via / onto a dense subset of [0,1]. Thus if X is any dense subset of
ClβNC and Y is any countable subset of X such that f(Y) is dense in
/(X), then Y is dense in X. This shows that every dense subset of
ClβNC contains a dense subset which is in %.

We summarize the above properties of elements of % in the
following proposition.

PROPOSITION 3.1. If <€ is the set of all countable subsets of βN - N
whose closures in βN map onto [0,1] by an irreducible map, then if C E <#,
C is extremally disconnected, resolvable, and has no point of first
countability. Furthermore, every dense subset of CίβNC contains a dense
subset which is itself an element of (S.

E. van Dowen, in [1], using a technique of Hewitt [5], shows that
there are nonresolvable countable regular spaces without isolated points
and with the property that any subset which has no isolated point and
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whose complement has no isolated point is open. Let 2) denote the
collection of all such spaces. Then if D E 2) and U is an open subset of
D, neither C1DU nor D - C1DU has isolated points. Hence, the
closure of any open subset of D is open, that is, D is extremally
disconnected. Therefore, by Lemma 4, the space D has no point of first
countability.

PROPOSITION 3.2. There are 2C nonhomeomorphic extremally dis-
connected resolvable countable spaces without points of first countability
and 2C nonhomeomorphic extremally disconnected nonresolυable countable
spaces without points of first countability.

Proof. Let X be a countable extremally disconnected space without
points of first countability (for example, X E ^ o r X G ® ) . X is not
countably compact — a countably compact countable space is compact
and a compact extremally disconnected space has cardinal at least
2C. Therefore X contains a closed copy of N, that is, N may be viewed
as a closed subspace of X. By Lemma 1, the subspace N is C*~
embedded in X, so βN = ClβXN and βN-NQβX-X. Let Xo = X
and suppose a countable space Xα is defined for each a < γ where 7 is an
ordinal less than 2C. Since a countable set has only c subsets, at most
c I γ I = max {c, | y |} spaces Σp are homeomorphic to a subset of some Xm

a <γ. Let py E βN - N be an ultrafilter such that Σp> is not
homeomorphic to any subset of any Xm a < γ. Let Xγ =
X U {py}. Then {XΎ: 1 S γ < 2C} has cardinal 2C. If a < γ, Xy contains
the space ΣPy whereas Xa contains no subset homeomorphic to
ΣPy. Therefore, no two elements of { X γ : l ^ γ < 2 c } are
homeomorphic. For each γ, X C Xγ C βX, so each Xα is extremally
disconnected and hence by Lemma 4 has no point of first
countability. Since Xa - X consists of exactly one point for a ^ 1, each
Xα is countable. Furthermore, since for a given α, X is dense and open
in Xα, every space Xa is resolvable if and only if X is. Thus, if X E <#,
each Xα is resolvable and if X E ®, each Xa is nonresolvable.

In [7] it is shown that every dense subset of βθ - Q is
separable. This fact is established by showing that there is a continuous
surjection F: βQ —» [0,1] such that A is dense in βQ if and only if F(Λ)
is dense in [0,1]. Let 35 be the set of countable dense subsets of
βQ -Q. If B E 35, then since βQ - Q is dense in βQ ([3], 7E), £ is
dense in βQ and therefore dense-in-itself. If Ax and A2 are disjoint
dense subsets of F(B), then by the above property of F, F'XΛj) Π B and
F " 1 ( Λ 2 ) Π J B are disjoint dense subsets of B. Therefore, B is
resolvable. Finally, since B is dense in βQ, any point of first countabil-
ity of B would be a Gδ of /3Q ([3], 9.7), and no point of βQ - Q is a Gδ

of jSO ([3], 9.6). Thus, B has no point of first countability.
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Mrowka proves in [9] that any countable dense subset of RR with the
product topology fails to have any point of first countability. Let M be
the set of countable dense subsets of RR. Suppose MEM. Then M is
resolvable, since if Ax and A2 are disjoint dense subsets of {/(0): / E M},
then {fEM: /(0) E AJ and {f EM: /(0) E A2} are disjoint dense subsets
of M. It is proved in [7] that M has no compactification each of whose
dense subsets is separable.

Let °U be a free ultrafilter on N. For each pk E Aμ) choose
xkEAPk. Let W- Όl=xK"k. The subset W is open in S^ and
CίsouW = W U{/?o} which is not open in S^. Thus S^ is not extremally
disconnected. S^ can be written as the union of disjoint dense subsets
by Sou - UΓ=0̂ 2fc U Ufc=0^2Hi. Therefore, Sm is resolvable.

We now combine the above comments.

PROPOSITION 3.3. Let % denote the set of all countable subsets of
βN — N whose closures map irreducibly onto [0,1]. Let 2 denote the class
of countable, nonresolυable spaces without isolated points such that each
set without isolated points and whose complement has no isolated points is
open. Let &} be the set of countable dense subsets of βθ — Q. Let M
denote the set of countable dense subsets of RR. Suppose C E %, D E 3),
B Em, MEM, and %LEβN-N.

(i) M is not homeomorphic to B, C, or D.
(ii) D is not homeomorphic to B, C, or S^.
(iii) C is not homeomorphic to S^.

Proof, (i) C and D are extremally disconnected whereas M is
not. B has a compactification every dense subset of which is separable
whereas M has no such compactification.

(ii) D is not resolvable whereas each of the spaces, B, C, and 5* is
resolvable.

(iii) C is extremally disconnected whereas 5^ is not.
We can summarize Proposition 3.3 in the following graph, the edges

of which represent nonhomeomorphism:

(*)
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4. Completing the graph. The graph (*) is not complete
because no edge joins B and C, or B and S%, or M and 5 .̂ In this
section we show that if °U, B, and M are chosen in particular ways, the
graph can be completed. We also show that there are elements of ^
and Sδ which are homeomorphic. We need several facts.

THEOREM (Efimov, [2]). Any extremally disconnected space of
weight at most c (in particular, any countable extremally disconnected
space) can be embedded in βN.

A point p E βQ — Q is called a remote point of βQ if p is not in the
closure of any discrete subset of Q. Eric van Dowen has recently
proved the following.

THEOREM (van Dowen). βQ has a dense set of remote points.

THEOREM (Woods, [12]). Suppose X is a dense subspace of
βQ. Then X is extremally disconnected if and only if every point of X is a
remote point of βQ.

PROPOSITION 4.1. There are homeomorphic spaces B and C such
that B E S3 and C E.Ή. In fact, every extremally disconnected element of
% is homeomorphic to an element of <£.

Proof. We first note that there are extremally disconnected ele-
ments of S3. For by van Dowen's theorem, the set of remote points of
βQ is dense in βQ - Q, and so by Wood's theorem, any countable dense
subset of the set of remote points is extremally disconnected. By
Efimov's theorem, B is homeomorphic to a subspace C of βN - N. We
show C E <£. The countable space C is C*-embedded in βN and hence
in ClβNC, that is, CίβNC = βC. Let f: C-*B be a homeomorphism
and /*: βC-+ βQ be its Stone extension. Let g: Q -» Q Π [0,1] be a
homeomorphism and let g *: βQ —> [0,1] be its Stone extension. /* and
g* are each irreducible ([3], 6.12). It follows that
g*°/* : CVC->[0, l ] is irreducible. Therefore, C G «.

REMARKS. 1. By Efimov's theorem, every countable extremally
disconnected space without points of first countability is embeddable in
βN—N. However, not every such space is homeomorphic to an
element of %. For example, by 3.3 no element of 3) is homeomorphic to
an element of c€.

2. We do not know if every element of ^ is homeomorphic to an
element of S3.

Proposition 4.1 says that some elements of Sδ are homeomorphic to
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elements of <€. However, if B is any countable dense subset of βQ - Q
which contains a nonremote point of βQ, then by Wood's theorem, B is
not extremally disconnected and hence not homeomorphic to an element
of %.

PROPOSITION 4.2. There are elements of
homeomorphic to any elements of c€.

which are not

We do not know if there is an ultrafilter °U E βN - N and a space
MEM such that S* is homeomorphic to M. There are, however,
elements of M which are not homeomorphic to S<& for any °U E βN -
N. For example, if M is the set of polynomials with rational coefficients,
M has convergent sequences of distinct elements, such as the sequence of
constant functions {1/n: nGN}. It can be shown that none of the
spaces 5% has any nontrivial convergent sequence.

We also do not know if any of the spaces S<u is homeomorphic to any
element of Sδ. However, by 2.1, for a given B G S and a given MEM,
there is a °U E βN - N such that Sm is homeomorphic to neither B
nor M.

PROPOSITION 4.3. Suppose <#, 2), 39, and M are the collections of
spaces defined in Proposition 3.3. Then there is a B0ES8, MoξΞJί, and
% 0 6 / 3 N - Nsuch that ifCEΉ and D G%no two of the spaces Bo, C, D,
Mo, Sou0 are homeomorphic.

Proof Choose Bo as in 4.2, let Mo be any element of M, and choose
%0 E βN - N such that S%0 is homeomorphic to neither Bo nor Mo.

Proposition 4.3 can be summarized in the following complete graph,
where again the edges represent nonhomeomorphism.

5. A final observation. A famous theorem of of Sierpinski
characterizes the rationals among metric spaces. Since a countable first
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countable space is metrizable by the Urysohn metrization theorem,
Sierpinski's theorem can be stated as follows.

THEOREM (Sierpinski, [10]). Any countable first countable space
without isolated points is homeomorphic to Q.

By 2.1 (or 3.2 or 3.3 or 4.3), there is no such characterization for
countable spaces without points of first countability. However, we note
that all such spaces share the property that they have weaker topologies
homeomorphic to Q.

PROPOSITION 5.1. If X is countable and has no isolated point, then
there is a continuous, one-to-one function from X onto Q.

Proof. For each p,q EX, p/ q, let UM be a clopen subset of X
containing p but not q. The collection {UM: p, q E X,p/ q} U {X -
UM: p, q E X , p / q) is a countable subbase for a (regular) topology on
set X. Let X denote the set X with this new topology. X is second
countable and has no isolated point (since X has no isolated point) and
hence, by Sierpinski's theorem, is homeomorphic to Q. Thus, X has a
weaker topology homeomorphic to Q.
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