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UNBOUNDED REPRESENTATIONS OF *-ALGEBRAS

S. G U D D E R A N D W . SCRUGGS

Basic results on unbounded operator algebras are given, a
general class of representations, called adjointable representat-
ions is introduced and irreducibility of representations is
considered. A characterization of self-adjointness for closed,
strongly cyclic ^-representations is presented.

1. Introduction. Algebras of unbounded operators and un-
bounded representations of *-algebras have been important in quantum
field theory [1, 3, 9, 10] and certain studies of Lie algebras [5, 7]. The
present paper proceeds along the lines initiated and developed by Robert
Powers [6, 7] and much of the notation and definitions follow [6]. In §2,
we present some basic results concerning unbounded operator algebras,
introduce a class of representations called adjointable representations,
and consider irreducibility of representations. Section 3 characterizes
the self-adjointness of closed, strongly cyclic ^-representations.

2. Adjointable representations. Let M and N be sub-
spaces (linear manifolds) in a Hubert space H. Let L(M,N) and
LC(M,N) denote the collection of linear operators and closable linear
operators, respectively with domain M and range in N. For simplicity
we use the notation L(M) = L(M, M) and LC(M) = LC(M, M). Notice
that Lc (H) is the set of bounded linear operators on H. We denote the
domain of an operator A by D(A) and if A is closable we denote the
closure of A by A. A collection of operators 38 is an op-algebra if there
exists a subspace M such that ^ C L ( M ) and A, J3 G 38 implies
AB, (aA + B) G 38 for all a G C. A set 33 C L(M) is symmetric if M is
dense and A G 33 implies D(A*)D M and A * | M G 33. A symmetric
op-algebra 38 CL(M) that contains I | M is called an op*-algebra. It is
easy to see that if 38CL(M) is an op*-algebra, then the map
A —> A * I M is an involution so 38 is a *-algebra. Also, if π is a
representation of a *-algebra si, then τ r ( i ) = { π ( Λ ) : Λ E i } is an
op-algebra and if π is a ^-representation of s&, then π(sί) is an
op*-algebra (we always assume that a *-algebra contains an identity /).

A set 38 CL(M,N) is directed if for any BUB2E 38 there exists a
B3 G 38 such that || Bx x ||, || B2x || ̂  || B3x \\ for all J C E M For example, if
38 CLC(H) and {A/: λ ^0}C38, then 38 is directed. Indeed, just let
B3 = (|| Bx || +1| B21|) /. For an example of an unbounded directed set, let
38CL(M,ίf) and suppose B1 ?B2G38 implies B3 =
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I\M + B*ιBι + BtB2e2ft. Then for any x e M we have

In particular, any op *-algebra is directed.

An extension 2ftx of S C L ( M , N ) is a set of operators 39iC
L(M b JV̂ ) where M C Mi, NCJVj and for which there exists a bijection
φ: 35 -*9bx such that φ(B)\M = B for every B G 39. If $ CL(M,N),
the Sft-topology on M is the topology generated by the set of seminorms
{||x||, | |BJC| | : B ε38}. The completion of M in the 35-toρology is
denoted by Mm or simply M if no confusion can arise. We say that
35 CL (M, N) is collectively closed if for any net c* E M satisfying
xα -> x E //, Bxα -* y (JB) E H for every B E S3, then JC E M and fix =
y(jB). Clearly if all B E 35 are closed then 55 is collectively closed; the
converse need not hold.

THEOREM 1.

(1) 3δ CL(M, N) is collectively closed if and only if M = M®.
(2) If m C LC(M, N), ίΛen Λβ set ®x = {B | Mx: B E 38} w^ere Mi =

Π {D(B): B E 33} is collectively closed^
(3) //38 CLC(M,N), then the set ® = {B\Mm: B <Ξ®} is the mini-

mal collectively closed extension of 38. Moreover, if 2ft CLC(M) and
A,B(Ξ® implies AB<Ξ®, then 38 C LC(M®).

(4) // 38 C LC(M, N) is directed, then M® =_Π {D(B): B E 38}.
(5) // £$ CLC(M) /5 an op-algebra, then £β is an op-algebra. If

38 QLC(M) is an op *- algebra, then $ is an op *-algebra and M® =
{

Proof
(1) Suppose 38 CL(M,N) is collectively closed and xa E M is a

Cauchy net in the 38-topology. Then xa and JBJC« are Cauchy in H so
there exist x, y(B)GH such that xα-»x, Bxa-*y(B) in H for every
B GS8. Since 35 is collectively closed, x EM and £jcα -» JBX, SO JC« -» x
in the^ 35-topology and M is complete in the 38-topology. Hence
M = M®. Conversely, suppose M = M», and jcα is a net in M such that
xα -> x and J5xtt -> y (J5) in H for every B E 35. Then xα is Cauchy in
the 38-topology. Since M is complete in the 38-topology there exists an
x'E. M such that xa -* x' and J3xα -> Bx' in H for every B E 38. Hence
x = J C ' E M and Bx =
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(2) This is straightforward.
(3) It is clear that

B 6 ^ } : M 9 x a - > x , Bxa-^Bx for all
B E 33}. We now show that Mm is complete in the Sδ|M^-
topology. Suppose xα E M® is Cauchy in the 33 M® -topology. Then xa

and B xa are Cauchy in H Jor every B E 33. Hence there exists an
x Eί H such that xα -» x and Bxα -» B x for every B E £$. Smce xα E M&
there exists a net xaβ E M such that xaβ -> xα and βχ α β —> Bxβ in // for
every B E 38. Now xα/3 is a net in M and xαβ —>x,Bxaβ—>Bx in H for
every B E 38. Hence x E Ma. It follows from (1) that 38 is collectively
closed. Clearly 38 is an extension of 38. Moreover, 38 is a minimal
collectively closed extension since any collectively closed extension of 3i
must contain Mm in its domain. Now suppose S C L C ( M ) and
A, B E 38. If JC E Ma, then there exists a net xα E M such that xa —> x
and Bx f t ^Bjc for every B E 33. For fixed A E 38 we have Ax^JΞ M
and Λ J C ^ A J C and for every B 6 S , since B A E 38, J?A xα —»J3A x =
BAx. Hence A x E M ^ and J QLc{Mm).

(4) Suppose that 38 CL£(M, N) is directed. We have seen that
M^ C Π{D(B):βE33}. If x E Π {D(J5): β E 38}, then for each B E
38 there exists a sequence x(B,i)E.M such that JC (JB, i) —> JC and
Bx(B, i)—> Bx. For each B E 38 and for each integer n > 0 there exists
an integer nB>0 such that | |x(β, n β ) - x || < n"1 and
||Bx (B, nB)-Bx\\<n"\ For A, B E 33, define the order (A, nA)<
(B,mB) if || Az | | ^ | | B z || for every zGM and n < m. Since 38 is
directed, {(B, nβ)} is a directed partially ordered set and x(B, nB) js a
net. Notice that if || A z || g || B z || for every z £M then || A y |j g || B y ||
for every y E Π {D(B): B E 38}. Indeed let z, E M be a sequence such
that zi->y and Bz,--^By._ Since || Az, - Azy H^HBz, - Bzy ||, Az, is
Cauchy and hence Az{-> A y. Therefore,

Clearly, x(B,mB)—>x and to show that Ax(BymB)->Ax let 6 > 0 and
let n > 0 be an integer such that n"1 < e. Then for (B, mB)> (A, nΛ) we
have

|| Ax(B,m β )-Ax || = || Ax(B,m β )-Ax ||

n~ι<e .

It follows that x E Ma.
(5) This is a straightforward consequence of (2) and (3).
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In the work of R. Powers [6] only hermitian representations are
considered. But there are important representations that are not
hermitian. For example, even if TΓ is hermitian, TΓ* need not be. We
therefore treat a larger class of representations, which we call adjointa-
ble, that includes TΓ* whenever π is hermitian.

Let si be a *-algebra and let TΓ, τrλ be two representations of si with
domains D(π), D(τr{) C H. We say that TΓ and ττx are adjoint and write
ττaττλ, if (τr(Λ)x, y) = (x, TΓ^A *)y) for every A G i and JcGD(π),
y E D(τrx). Notice that a is a symmetric relation; that is π α π i if and
only if ττλ aπ. Also, πaπ if and only if π is hermitian. Furthermore,
if π α π i and ^ α π 2 then ττ(A)=ττ2(A) on D(π)ΠD(π2) for every
A E.M and if £>(τr) = D(π2) then TΓ = ττ2. We say that a representation
TΓ is adjointable if there exists a representation T^ such that τraτrx.

If π is a representation of a *-algebra si, we define D(τr*) =
Π{D(π(A)*):A <Ξ sέ) and τr*(A)= τr(A *)*|D(τr*) for all

A £ i (To save parentheses we use the notation π(A)* =
[τr(A)]*.) In general, π * need not be a representation since, for one
thing, -D(τr*) need not be dense. If TΓ is hermitian, then π * is a
representation [6]. Hence, if π is hermitian, then

for every A 6 i and JCED(TΓ), yED(7r*) so π α π * and each is
adjointable.

THEOREM 2.

(1) TΓ is adjointable if and only if D(π*) is dense.
(2) // π is adjointable, then TΓ* is a closed representation and is the

largest representation adjoint to TΓ.
(3) Suppose π CTTV // πx aπ2, then πaπ2. If rrλ is adjointable,

then so is π and ττt* CTΓ*.

(4) If π is adjointable, then there exists a smallest closed representa-
tion TΓ which extends TΓ. If ττaτrx, then τraτrλ.

(5) // TΓ is adjointable, then TΓ*, TΓ are adjointable, π * * is a closed
representation and π CTΓ CTΓ**, TΓ*** = TΓ*, TΓ* = TΓ*.

(6) If TΓ is hermitian and τrλ is an hermitian extension of TΓ, then
TΓ CTΓI C T Γ * .

(7) If TΓ is hermitian, then TΓ** and TΓ are hermitian and
τrCτfCτr**Cτr*.

Proof
(1) If TΓ is adjointable and τrατri then τri(A*)Cτr(A)* for every

Λ G i so D(τri)CD(τr*) and D{τr*) is dense. Conversely, suppose
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D(τr*) is dense. For x E D (77), y E D ( π * ) we have

= <7r(B*)τr(A*)jc,y>

= 0t,π(B*A*)*y> .

Hence π*(£)y ED(π(A*)*) and π(A *)* τr*(£)y - 77(£*A*)*y for
every A, JB G ̂ ?. If follows that ττ*(J3): D(τr*)->D(τr*) and
π*(A)τr*(J3)= τr((Aβ)*)* = τr*(AB). Moreover, 77* is linear since
for x E D(π), y E D(τr*) we have

(τr*(α A + J3)y, JC) = <π(ά A * + B *)* y, JC)

= <[ατ7*(A)+77*(B)]y,x>.

It follows that 77* is a representation and πaπ*.
(2) It was shown in (1) that π * is a representation if 77 is

adjointable. It follows from Theorem 1 (2) that π* is closed. If πaπι

then (π(A)x,y) = (x,πι(A*)y) for all x E D ( π ) , y GD(π,). Hence,
D(πx)CD(π*) and τr,(A *) Cτr(A)* = π*(A *) for every A E ^ so
7Γ,C7Γ*.

(3) Suppose π Cπ, and ττλaττ1. Then for every x ED(ττ), y E
D(π2) we have (ττ(A)x, y) = (ττi(A)x, y) = (x, ττ2(A *)y). Hence
77ατr2. For all xED(τr), yED(τr!*) we have (π(A)x, y) =
(x, 7Γ!*(A *)y). Hence Ttair* and by (2) we have TΓI* CTΓ*.

(4) If π is adjointable, then by (1), D(τr*) is dense. Then
D(τr(A)*) is dense so π(A) is closable for every A E «s#. Define
D(7r)-D(τr)^ where 38 ={π(A): A E ^} and π(A) = π ( A ) | D(π). It
follows from Theorem 1 (3) that {τr(A): A E ^} is the minimal collec-
tively closed extension of 53. It is straightforward to show that 77 is a
representation and that τraπλ implies πaττλ.

(5) If π is adjointable then so is π* and from (2) 77** is a closed
representation. If xED(ττ), yED(ττ*) then for all A E si
we have (π*(A *)y, x) = (τr(A)* y, x) = <y, ττ(A)x). Hence
x E Π{D[π*(A*)*]: A E ^ } = D(ττ**) and π**(A)x = ττ*(A*)*x -
ττ(A)x so 77 CTΓ**. Since π C π we have by (3) that 77* Cπ*. Since
7rατ7* from (4) we have 77 a 77*. Hence by (2) τ7*Cτ7* so 77* =
77*. By (3) 77***Cτ7*. Since 77* aπ** , by (2) we have τ7*Cτ7*** so
77***=77*.

(6) For all x E D(ττ), y E D(τ7,), A G i w e have
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Hence πλaπ and by (2) T
(7) It is shown in [6] that π is hermitian if TΓ is hermitian. Since π

is hermitian we have π Cπ*. Applying (3) twice gives π * * C π * * * so
TΓ** is hermitian. Since TΓ** is closed we have from (2) that π C π C
TΓ** and from (6) τr**Cτr*.

We now show that the extensions in (7) can be distinct. Let si be
the free commutative *-algebra on one hermitian generator A. Define
the representation π of si on the Hubert space H = L2[0,1] as follows:

It is straightforward to show that π is hermitian and that π = π =
Now let τri be the representation of d on H defined by:

D(πO = {/ E C°°[0,1]: /(0) = /(l),/(ll)(0) = f>(l), n = 1,2,... }

= -id/dt .

It is straightforward to show that Hi is hermitian and that TΓJ = TΓ^TTI** =
7Γ,* [8].

We now consider commutants and irreducibility. If πaπu define
C(τr, 77i) to be the set of operators C E LC(H) satisfying (Cπ(A)x,y) =
<CJC, π!(A*)y) for every JC E D(τr), y E D ^ ) , A 6 i . The proof of
the following lemma is straightforward.

LEMMA 3.

(1) C(π, 77i) is a weakly closed subspace of LC(H) containing I.
(2) C(π,π.)

= {CG LC(H): C: D(τr)-> D^r,*), Cτr(A) = ^ * ( A ) C | D ( T T ) } .

(3) C E C(ττ, TΓO ί/ and only if C* E C(ττ1? TΓ).

The commutant of a ^-representation TΓ is defined as π(sέ)' =
C(ττ, TΓ). It follows from Lemma 3 that ττ(^)' is a weakly closed,
symmetric subspace of LC(H) containing I. However, π(s$y need not
be a von Neumann algebra [6]. If TΓ is self-adjoint then π{sέ)' is a von
Neumann algebra [6]. If π is a ^-representation, the strong commutant
is defined by

)f: C:D(ττ)->D(π)}.

Hence
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π ( i ) ; = { C £ L e ( H ) : C: D(τr)^D(τr) , Cτr(A)

= τr(A)C|D(τr),VA G ^ } .

It is easy to see that π(sέ)'s is an op-algebra in LC(H) containing / and if π
is closed, then ττ(sέ)'s is weakly closed [1]. Again π(sέ)r

s need not be a
von Neumann algebra but if π is self-adjoint, then π(sέ)'s is a von
Neumann algebra and π(sέ)'s=

LEMMA 4. A *-representation π is self-adjoint if and only if
π(sA)' = π(^X and D(ττ*) = U {Cx: x G D(ττ), C e ττ(sέ)'}.

Proof. Necessity follows from our previous observations. For
sufficiency, if π(d)'= π(st)'s then C: D(π)->D{τr) for all C G

Hence D(ττ*)= U{Cx: JC G D(ττ), C G π

For a bounded ^-representation π of a *-algebra i o n a Hubert
space H the following conditions are equivalent [2,4].

(i) τ r W = { λ / : λ ε C } .
(ii) The only invariant closed subspaces of H are {0} and H.
(iii) Every nonzero vector in H - D(π) is cyclic.

A bounded ^representation π is said to be irreducible if π satisfies any
one (and hence all) of these three conditions.

For unbounded self-adjoint representations one can give examples
[6,8] which show that no two of the above conditions are
equivalent. Also, there is more than one natural way to extend some of
the above conditions for unbounded self-adjoint representations. Let π
be a self-adjoint representation. We say that a subspace M is a
self-adjoint invariant subspace for π if M is invariant and π \ M is
self-adjoint. The following are natural conditions that one might use to
define irreducibility for a self-adjoint representation π of a *-algebra sέ
with domain D{τr)QH.

(1) π(jd)' = {λl: λEC}.
(2) The only invariant subspaces for π which are complete in the

π(^)-topology are {0} and D(π).
(2') The only self-adjoint invariant subspaces for TΓ are {0} and

D(π).
(3) Every nonzero vector in D(π) is strongly cyclic.
(3r) Every nonzero vector in D(π) is cyclic.

THEOREM 5. If π is self-adjoint representation of the *-algebra si on
the Hilbert space H, then
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(2')«*(l)«-(2)

t I
(3')< (3)

Proof. (2)->(3). Suppose (2) holds, O^φED(π) and M =
{π(A)φ: A E si}. Clearly, MV {0} and M is an invariant subspace of
H for π. Let M be the completion of M in the ττ(^)-topology. Since
τr is closed, M C D(TΓ) and clearly M is a subspace of H. We now show
that M is invariant under π. If x E M, then there exists a net xα E M
such that xa -> x in the π(^)-topology. Fix an A £ i . Then for every
J5 E si we have

Hence ττ(A)jcα —» TΓ(A)JC in the τr(^)-topology so π(A)x E M and
π(A)M C M. Since (2) holds, M = D(τr). Hence M is dense in D(τr)
in the τr(^)-topology so φ is a strongly cyclic vector for π.

(3)->(2). Suppose (2) does not hold. Then there exists a π(sέ)-
complete invariant subspace M of H with M ^ {0}, D(π). IfO^φEM,
then clearly φ is not a strongly cyclic vector for π

(l)-» (2'). Suppose (2') does not hold. Then there exists a nontri-
vial self-adjoint invariant subspace M for π. Now M is not dense in H
since otherwise π | M is a ̂ -representation of J^ on M = H with domain
MCD(ττ-). Then TΓ | M CTΓ = π * C(ττ |M)*. Since π\M is self-
adjoint, 7rjM=τr and D(τr) = M which is a contradiction. By
Theorem 4.7 [6] the projection E on M satisfies EEπ(M)'. Since
£V0, /, (1) does not hold.

(2;)—>(1). Suppose (1) does not hold. Since π is self-adjoint,
π(si)' is a von Neumann algebra so there exists a nontrivial projection
E E π(sί)'. By Theorem 4.7 [6], ED(π) is a nontrivial self-adjoint
invariant subspace for π. Thus (2') does not hold.

(3')->(l). Suppose (3') holds. Let 0 ^ £ E τ r ( ^ ) ' be a
projection. By Theorem 4.7 [6], ED(π) = M is a self-adjoint invariant
subspace for π. Let O ^ ψ G M . Since φ is cyclic and {π(A)φ: A E
i } C M , M is dense in H. As in (1)—>(2') above, M = D(τr) and hence
E = I. Since 0 and / are the only projections in π(sέ)\ we have
π(sέ)' = {λl: A EC}.

(3)-> (3'). This is trivial. (2)-> (1). Since (2)-> (2') trivially, this
follows from (2')-*(l) above.

3. Closed strongly cyclic ^-representations. In this
section we shall mainly be concerned with characterizing self-
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adjointedness for closed strongly cyclic ^-representations. Let π be a
^-representation of a *-algebra sέ with domain D(π)CH. The un-
bounded commutant π(sέ)c of π is defined as the set of operators
CEL(D(ττ),/ί) such that (Cτr(A)x, y) = (Cx, ττ(A *)y> for all
x, y E £>(τr) and A E sέ. The strong unbounded commutant is defined
by π(st)e

s = { C G τ τ ( i ) c : CD(π)->D(ττ)}. Notice that
and π(^) ' , | D(τr)C ττ(^)c

s. In fact,

y = {C: CE π(^)c, C bounded}

π ( i ) ; = { C : C E τ τ ( ^ , C bounded}.

We say that a net Bα EL(M,N) converges weakly to £? GL(M,N) if
(βαjc, y) -> (Bx, y) for every x, y E M. Moreover, 53 C L (M, N) is
weakly closed if for any net Ba E 39 which converges weakly to some
B EL(M,N) we have £ E S3. The proof of the next lemma is
straightforward.

LEMMA 6.

(1) If π is self-adjoint, then π(sέ)c = π(st)c

s.
(2) 7r(^) c={CEL(D(7r),D(τr*)): Cτr(A) = τr*(A)C, VΛ E ^} .
(3) ττ{sέ)c

s = CEL(D(π)): Cπ(A) = π(A)QVΛ E ^}.
(4) τr(^) c is a weakly closed subspace of L(D(ττ), D(ττ*)) contain-

ing I | D ( π ) .
(5) τr(^)s /s an op-algebra in L{D(π)).
(6) τr(^) c = ττ{sέ)c

s if and only if π(sί)c is an op-algebra.

Let rf be a *-a!gebra and let π, πί be *-representation of ^ on
Hubert spaces H, // b respectively. We say that TΓ and πx are equivalent,
and write π = 7rb if there exists a unitary transformation V from H onto
H, such that VD(π) = D(τr,) and τr(Λ) = V*π1(A)V for every A E j£

Let ω be a state on ^ . Then by the GNS construction for
^-algebras [6], there exists a closed, strongly cyclic ^-representation πω of
sέ with strongly cyclic vector x0 such that ω(A) = (τrω(A )x0, x0) for every
A E sέ. Moreover, if π is any closed, strongly cyclic ^-representation of
sέ with strongly cyclic vector y0 such that (π(A)y0, y0) = ω(A) for every
A 6 i then π = πω [6].

We now characterize states ω such that ττω is self-adjoint. A linear
functional F: sέ-> C is ω-bounded if for every B E M there exists an
Mβ ^ 0 such that | F(BA) | ^ Mβω(A *A )1/2 for every A e i For ex-
ample, if Aα E si is a net such that ω(A *A *AAα) is Cauchy for every
AEsd, then the functional F(A) = limω(A *A) is ω-
bounded. Indeed, for every B E si we have
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F(BA)I = limI ω(A *aBA)\ = lim| ω(A *J5*Aβ)|

^ ω(A *A ) m lim ω(A ĴSB *Aα)1/2.

If every ω-bounded linear functional has the above form, then we call ω
a Riesz state.

THEOREM 7. Let ω be a state on the *-algebra sέ. Then πω is
self-adjoint if and only if ω is a Riesz state.

Proof. Recall that πω is constructed as follows. Let 3 be the left
ideal 3 = {A E sέ: ω(A *A) = 0} and let Ho be the inner product space
consisting of equivalence classes [A] in sέ/J> with inner product
([A],[B]} = ω(B*A). Let H be the Hubert space completion of
Ho. Define a ^-representation ττ0 of sέ with domain D(πo) = Ho by
τro(A)[B] = [AB]. If πω = TΓO, then ττω is a closed, strongly cyclic
^-representation with domain D(πω) = HQMsi) and strongly cyclic vector
[/]. Now suppose πω is self-adjoint and F: sl-+ C is ω-bounded. If
ω (A * A) = 0, then F(A ) = 0 s o F : ^ - ^ 0 . Hence F can be considered
as a linear functional on Ho. Since | F([A ]) | ^ M/1| [A ] ||, F is a continu-
ous linear functional on Ho and by the Riesz theorem there exists a z E / /
such that F([A ]) = ([A ], z) for every [A ] E Ho. Now for every B G i
we have

= \F(BA)\^MB\\[A]\\.

Hence z E D(π0*) = D(ττω*) = D(ττω), so there exists a net [A α ]EH 0

which converges to z in the π0(^)-topology. Thus [AAα] is Cauchy for
every A E si. Finally, for every A E i w e have

F(A ) = lim ([A ], [Aa ]> = lim ω (A* A).

Conversely, suppose ω is a Riesz state and JCED(TΓ*). Define the
linear functional F.sέ-^C by F(A) = ([A],x). Then for every
A,B Ed we have

\l/2

so F is ω-bounded. Hence there exists a net Aα E ^ such that
ω (A * A *AAa) is Cauchy for every A E sέ and F(A ) = lim ω (A * A) for
every A E sέ. It follows that [Aα] is Cauchy in the 7r0(^)-topology and
hence there exists a y ED(πω) such that [Aα]-»y. Furthermore, for
every A E sέ we have F(A) = limω(A ;A) = lim([A],[Aα]) =
([A],y). Hence x = y ED(πω) and πω is self-adjoint.
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COROLLARY. A closed, strongly cyclic ^-representation τr with
strongly cyclic vector x0 is self-adjoint if and only if the state
A —»(τr(A)jto, Xo) is a Riesz state.

A state ω is faithful if ω(A*A) = 0 implies A = 0. A vector
x0 Ξ D (TΓ) is separating if π (A )x0 = 0 implies π (A) = 0. If ω is faithful
then the strongly cyclic vector x0 for πω is separating. Conversely, if x0

is separating, then ω(A *A) = 0 implies πω(A) = 0. A representation TΓ
of ^ is ultra-cyclic if there exists an xQ^D{τr) such that D(τr) =
{π(A)x0: A E ^} . We then call x0 an ultra-cyclic vector. Ultra-cyclic
representations are important because of the following result.

LEMMA 8. π is a closed, strongly cyclic ^-representation if and only
if ΊT is the closure of an ultra-cyclic ^-representation π°.

Proof Suppose π is a closed, strongly cyclic ^-representation of sέ
with strongly cyclic vector x0. Define D(π°) = {π(A)x0: A E sέ} and
π°(B)π(A)xo= π(BA)x0. Then π° is an ultra-cyclic ^-representation
and TΓ0 = TΓ. Conversely, if π is the closure of an ultra-cyclic *-
representation π° with ultra-cyclic vector x0, then TΓ is a closed *-
representation. Moreover, since D (TΓ) is the completion of D(TΓ°) in
the τr(^)-topology, x0 is a strongly cyclic vector for π.

We call π° in the proof of Lemma 8 the underlying ultra-cyclic
^-representation for π. We can obtain information about π by studying
the simpler representation τr°. For example, a condition characterizing
the essential self-adjointness of τr0 characterizes the self-adjointness of
TΓ. Moreover, π°* = TΓ* and π\sέ)' = π(sΛ)'.

Let TΓ be an arbitrary ultra-cyclic ^-representation of sέ with a
separating ultra-cyclic vector x0. For JCED(TΓ*) define τrc(x)E
L(D(τr),D(τr*)) by τrc(x)π(A)JC0 = ττ*(A)JC. This is a well-defined
operator since TΓ(A)JC0

 = π(B)xQ implies τr(A) = τr(B). Then for every
y, z E D(τr) we have

Hence π(A*) = ττ(B*), so π(A*)* = π(B*)* and finally

It is straightforward to see that D(τr) is a *-algebra with identity x0 under
the product (TΓ(A)JC0)

O(7Γ(JB)X0) = τr(AB)x0 and involution (TΓ(A)JC0)* =
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π(A*)x0. Moreover, for every x , y , z E D ( π ) we have (x°y,z) =
(y,χ*°z).

THEOREM 9. Let π be an ultra-cyclic ^-representation of sέ with a
separating, ultra-cyclic vector x0.

(1) ττc is a weakly continuous linear bijection from D(π*) into

(2) The following statements are equivalent.
(a) Cx0 G D{π) for every C G π(M)c.
(b) π{sέ)c is an op-algebra.
(c) π is self-adjoint.

(3) π(sί)c is an op *-algebra if and only if π is self-adjoint and there
exists an involution b on the *-algebra D(π) satisfying

(3.1) (x*,y) = (y\x)

for every x, y G D(τr).
(4) If π(sέ)c is an op*-algebra, then πc is a weakly continuous

b -anti-isomorphism of D{π) onto ττ(sί)c.

Proof
(1) Clearly, τrc is linear. To show that πc maps Γ>(π*) into

ττ{sέ)% for x<ΞD(π*l A G d, z GD(τr) and y = π(B)xQED(π) we
have

, π(A*)z)

To show that πc is surjective, let C G π{s£)c. Then Cx0E. D(π*) and
for any y = π(A) x 0 ^ O ( ^ ) we have

7rc(CjCo)y = πc(Cjc0)π(A)jc0= τr*(A)Cx0

= Cπ(A)jco=Cy.

To show that πc is injective, suppose that x,x{ED(π*) and TΓC(JC) =

). Then

X = 7Γ*(1)JC = 7ΓC(X)XO = 7Γ c(Xi)x 0 = 7Γ*(l)jCi = Xλ.

To show that τrc is weakly continuous, suppose that xhx GD(τr*) and
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x, —»x in norm. Then for any y = π(B)xaG D(π) and z GD(ττ) we
have

lim(ττc(xi)y, z> = Hm(π*(B)xhz)

= (π*(B)x,z) = (πc(x)τr(B)x0,z)

= (πc(x)y,z).

(2) (a)->(b). Suppose that (a) holds and C e τ r ( ^ ) c , y =
τr(A)xoeD(π). We then have Cy = Cτr(A)xo = ir*(A)Cxo =
π(A)CxotΞ D(π). Hence, by Lemma 6(6), ττ{sέ)c is an op-algebra.

(b)-»(c). If x G D(π*), then by (1) πc(x)E ττ(M)c. If ττ(M)c is
an op-algebra, then x = τr*(l)jc = iτc{x)x0E. D(π). Hence D(ττ*) =
D(π) and TΓ is self-adjoint.

(c)-*(a). If TΓ is self-adjoint, then π{sέ)c CL(D(τr)).
(3) Suppose TT{M)C is an op*-algebra. Then, by (2), TΓ is self-

adjoint. IfCE.π{d)c, then D(τr)CD(C*) and C*\D(π)e π(s4)c so
C*:D(τr)-^D(7τ). For xE'D(τr), by (1) τrc (JC)E τr{sέ)c so x* =
τrc(Λ:)*JCoeD(7r). For x = ττ(A)xoe D(π) and y eD(π) we have

= (xo, π(A)y) = (τr(A *)xo,y) = (x*,y)

so (3.1) holds. That b is an involution now follows from (3.1). For
example,

= (zb,x°y)=(x*°zb,y) = (yb,zbΌχ)

= (zboy»,χ).

The other properties of an involution follow in a similar
way. Conversely, suppose π is self-adjoint and there exists an involu-
tion * on D(π) satisfying (3.1). Then by (2), ττ(^) c is an op-algebra. If
CGτr(^) c , then for any x = π(B)x0E D{π) and y =π(A)x0GD(π)
we have

o, τr(Λ *β)x0) = (Cxo, [π(B*A)x0]*)

= (π(B*A)xo,(Cxo)
b) = (τr(A)xo,π(B)[(Cxo)

b])

= (y,τr<[(Cxo)b]x).

Hence D(ττ)CD(C*), C*\D(ir)= 7rc[(Cx0)
b)<= π(d)c andsoτr(^) c is

an op*-algebra.
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(4) Suppose π(sέ)c is an op*-algebra. It follows from (1) that
τrc: D(ττ)—» π(stf)c is a weakly continuous linear bijection. For x =
τr(A)x 0 E D(π) and y = ττ(B)xQ E D(π) we have

ττc(x)y = πc(x)π(B)x0= π(B)x = π(B)xo°π(A)xo= y °x.

It is now clear that ττc is an anti-isomorphism. To show that πc is a b -
anti-isomorphism, for x ^D(rr) and y = 77-(A)x0E D(π) we have

= ττc{x)*y.

COROLLARY. Lei rr be a closed, strongly cyclic ^-representation of si
with separating, strongly cyclic vector x0 and let π° be the underlying
ultra-cyclic representation. Then π is self-adjoint if and only if Cxo£Ξ
D(ττ) for every C E ττ\sέ)c.

Proof. If π is self-adjoint and C E π\sέ)\ then Oc0E D(ττ0*) =
D(π*) = D(π). Conversely, suppose Cx0ED(ττ) for every CG
π V ) c . If x eD(τr*), then x ED(π 0 *) so by Theorem 9(1), τrc(x)E
7τ%sd)c. Hence x = π c(x)x 0E D(τr), so D(τr)-D(τr*) and π is self-
adjoint.
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