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UNBOUNDED REPRESENTATIONS OF *-ALGEBRAS
S. GUDDER AND W. SCRUGGS

Basic results on unbounded operator algebras are given, a
general class of representations, called adjointable representat-
ions is introduced and irreducibility of representations is
considered. A characterization of self-adjointness for closed,
strongly cyclic *-representations is presented.

1. Introduction. Algebras of unbounded operators and un-
bounded representations of #-algebras have been important in quantum
field theory [1, 3, 9, 10] and certain studies of Lie algebras [5, 7). The
present paper proceeds along the lines initiated and developed by Robert
Powers [6, 7] and much of the notation and definitions follow [6]. In §2,
we present some basic results concerning unbounded operator algebras,
introduce a class of representations called adjointable representations,
and consider irreducibility of representations. Section 3 characterizes
the self-adjointness of closed, strongly cyclic *-representations.

2. Adjointable representations. Let M and N be sub-
spaces (linear manifolds) in a Hilbert space H. Let L(M,N) and
L.(M, N) denote the collection of linear operators and closable linear
operators, respectively with domain M and range in N. For simplicity
we use the notation L(M)=L(M, M) and L.(M)= L.(M,M). Notice
that L. (H) is the set of bounded linear operators on H. We denote the
domain of an operator A by D(A) and if A is closable we denote the
closure of A by A. A collection of operators % is an op-algebra if there
exists a subspace M such that B CL(M) and A,B € % implies
AB,(a¢A + B)E B foralla €C. A set B C L(M) is symmetric if M is
dense and A € B implies D(A*)DM and A*|M € %. A symmetric
op-algebra B C L (M) that contains I | M is called an op *-algebra. 1t is
easy to see that if B CL(M) is an op*-algebra, then the map
A — A*|M is an involution so % is a x-algebra. Also, if 7 is a
representation of a *-algebra &, then w(H)={w(A): A € A} is an
op-algebra and if 7 is a #*-representation of &/, then =w (&) is an
op*-algebra (we always assume that a *-algebra contains an identity ).

A set B CL(M,N) is directed if for any B,, B,E % there exists a
B;E€ B such that || B, x ||, | Box || = || Bsx || for all x € M. For example, if
B CL(H) and {AI: A =0} C B, then B is directed. Indeed, just let
B;= (| B)||+| B:[) I. For an example of an unbounded directed set, let
BCL(M, H) and suppose B,B,E R implies B;=

369



370 S. GUDDER AND W. SCRUGGS
I|M+B%B,+B%B,€®. Then for any x € M we have

IBsx [P=|[x|P+|[(B¥Bi+B%B.x || +2((B%B,+ B%B,)x,x)
z2(|Bix|F+[B.x |F)
z[[Bix [}, [ Bx [P

In particular, any op #*-algebra is directed.

An extension B, of B CL(M,N) is a set of operators %B,C
L(M,,N,) where M C M,, N C N, and for which there exists a bijection
¢: B—> B, such that ¢(B)|M = B forevery BE B. 1If B C L(M,N),
the 9B -topology on M is the topology generated by the set of seminorms
{lx[l, |Bx|l: BE®}. The completion of M in the %B-topology is
denoted by M, or simply M if no confusion can arise. We say that
B CL(M,N) is collectively closed if for any net x, € M satisfying
x,—>x € H, Bx, > y(B)&€ H for every BE€ 3, then x €M and Bx =
y(B). Clearly if all B € @ are closed then & is collectively closed; the
converse need not hold.

THEOREM 1.

(1) B CL(M,N) is collectively closed if and only if M = M.

(2) If B C L.(M,N), then the set B,={B |M,: B € B} where M, =
N{D(B): B € B} is collectively closed.

() If B C L.(M, N), then the set B ={B | Ma: B € B} is the mini-
mal collectively closed extension of B. Moreover, if B C L.(M) and
A,B € B implies AB € B, then B C L. (M@)

(4) If B CL.(M, N) is directed, then My = N{D(B): B € B}.

(6) If B CL(M) is an op-algebra, then B is an op- algebra. If
B CL.(M) is an op *-algebra, then B is an op =-algebra and M, =
N{D(B): B € B}

Proof.

(1) Suppose B C L(M,N) is collectively closed and x, EM is a
Cauchy net in the B-topology. Then x, and Bx, are Cauchy in H so
there exist x,y(B) € H such that x, - x, Bx, — y(B) in H for every
B € A. Since B is collectively closed, x € M and Bx, — Bx, s0 X, —> X
in the %-topology and M is complete in the %B-topology. Hence
M = M. Conversely, suppose M = M,, and x, is a net in M such that
x,—x and Bx,— y(B) in H for every B € B. Then x, is Cauchy in
the % -topology. Since M is complete in the %B-topology there exists an
x' € M such that x, — x" and Bx, — Bx'in H for every B € 8. Hence
x=x"EM and Bx = Bx'= y(B).
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(2) This is straightforward.
(3) It is clear that

M, ={x € N{D(B): BE B}: M>x,—x, Bx, —Bx for all
BE3B). We now show that M, is complete in the B | M-
topology. Suppose x, € My is Cauchy in the % M,-topology. Then x,
and Bx, are Cauchy in H for every B € B. Hence there exists an
x € H such that x, > x and Bx, »> Bx forevery B € 3. Since x, € M,
there exists a net x,; € M such that x,; — x, and Bx,; — Bx, in H for
every BE 3. Now x, is a net in M and x5 = X, BX,p = Bx in H for
every B € B. Hence x € M,. It follows from (1) that 3 is collectively
closed. Clearly @ is an extension of 8. Moreover, # is a minimal
collectively closeg extension since any collectively closed extension of %
must contain Mg in its domain. Now suppose B CL.(M) and
ABeE®RB. Ifxe M@, then there exists a net x, € M such that x, — x
and Bx, — Bx for every B € B. For fixed A € B we have Ax, €M
and Ax,—> Ax and for every B € 4, since BA € #, BAx, — BAx =
BAx. Hence Ax €M, and & CL, (Mg,)

(4) Suppose that B C L.(M, N) is directed. We have seen that
M, C N{D(B): BE B}. If x € N{D(B): B € B}, then for each B €
% there exists a sequence x(B,i)€M such that x(B,i)—x and
Bx(B,i)— Bx. Foreach B € # and for each integer n > 0 there exists
an  integer _ nz >0 such that [x(B,ng)—x|[<n™' and
[Bx (B,ns)—Bx||<n™'. For A, B€E€ R, define the order (A, n,)<
(B,ms) if |Az||=|Bz| for every zEM and n<m. Since B is
directed, {(B, ng)} is a directed partially ordered set and x (B, ng) is a
net. Notice thatif [Az ||=|Bz | forevery z €M then||Ay|=|By|
forevery y € N{D(B): B € #}. Indeed let z, € M be a sequence such
that z,—y and Bz,—> By. Since ||Az,~ Az ||=| Bz, —Bz|, Az is
Cauchy and hence Az, — Ay. Therefore,

[Ayl=lim|Az|=lm|Bz|=|By]|.

Clearly, x (B, ms)— x and to show that A x(B, mz)— Ax let € >0 and
let n >0 be an integer such that n™' <e. Then for (B, mp)> (A, n,) we
have

|Ax(B,ms)—Ax|=|Ax(B,ms)—Ax|
=||Bx(B,ms)— Bx|
<ml<nl<e.

It follows that x € M.
(5) This is a straightforward consequence of (2) and (3).
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In the work of R. Powers [6] only hermitian representations are
considered. But there are important representations that are not
hermitian. For example, even if 7 is hermitian, 7=* need not be. We
therefore treat a larger class of representations, which we call adjointa-
ble, that includes 7 * whenever 7 is hermitian.

Let o be a *-algebra and let o, 7, be two representations of & with
domains D (7), D(m,) C H. We say that 7 and 7, are adjoint and write
mam, if (m(A)x,y)=(x,m,(A*)y) for every A € o and x € D(m),
y € D(m,). Notice that a is a symmetric relation; that is 7 a, if and
only if myam. Also, maw if and only if 7 is hermitian. Furthermore,
if mam, and m,am, then w(A)= m(A) on D(xw)N D(m,) for every
A € A andif D(m)= D(m,) then m = m,. We say that a representation
7 is adjointable if there exists a representation 7, such that wam,.

If 7 is a representation of a *-algebra &/, we define D(7*)=
N{D(w(A)*): A€} and 7*(A)=7w(A*)*|D(#*) for all
A€ d. (To save parentheses we use the notation =(A)*=
[7(A)]*.) In general, m* need not be a representation since, for one
thing, D(7*) need not be dense. If 7 is hermitian, then #=* is a
representation [6]. Hence, if = is hermitian, then

(m(A)x,y)=(x,m(A)*y)=(x, 7*(A")y)

for every A€ and x ED(w), y ED(7*) so man* and each is
adjointable.

THEOREM 2.

(1) = is adjointable if and only if D(w*) is dense.

(2) If = is adjointable, then w* is a closed representation and is the
largest representation adjoint to .

(3) Suppose m Car,. If m am,, then mam, If m is adjointable,
then so is m and m* Cm*.

(4) If 7 is adjointable, then there exists a smallest closed representa -
tion i which extends m. If wam,, then Tam,.

(5) If m is adjointable, then w*, 7 are adjointable, m*
representation and w Ci Ca** a***=7* 7*=7*

(6) If m is hermitian and 1, is an hermitian extension of w, then
7 Cm Ca*.

(7) If m is hermitian, then w** and 7 are hermitian and
T CarCa**Cn*

* is a closed

Proof.
(1) If = is adjointable and mam, then 7 (A*)Cw(A)* for every
A€ so D(m)CD(m*) and D(7*) is dense. Conversely, suppose
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D(m*) is dense. For x € D(w), y € D(7*) we have

(m(A%)x, 75 (B)y)=(m(A*)x, m(B*)*y)
=(m(B*)m(A")x,y)
=(m(B*A¥)x,y)
=(x,m(B*A*)*y) .

Hence w*(B)y € D(w(A*)*) and m(A*)* 7w *(B)y = w(B*A*)*y for
every A, Bed If follows that #*(B): D(w*)— D(w*) and
7*(A)m*(B)= m((AB)*)* = #*(AB). Moreover, 7* is linear since
for x € D(m), y € D(7*) we have

(m*(¢A +B)y,x)=(m(@A*+B*)*y, x)
=(y,am(A*)x)+y, m(B*)x)
={lam*(A)+ 7*(B)]y,x).

It follows that 7 * is a representation and maw*.

(2) It was shown in (1) that =* is a representation if = is
adjointable. It follows from Theorem 1 (2) that 7* is closed. If 7rar,
then (wm(A)x,y)=(x,m(A*)y) for all x € D(7), y € D(7,). Hence,
D(m)CD(7*) and m,(A*)Cn(A)*=7*(A*) for every AE A so
o Cm*.

(3) Suppose 7w Cr, and 7, am, Then for every x ED(7), y €
D (m) we have (w(A)x,y)={(m{A)x,y)={(x,m(A*)y). Hence
mam, For all x&€D(wm), ye€D(m*) we have (w(A)x,y)=
(x,m*(A*)y). Hence mam* and by (2) we have 7,* C7*.

(4) If = is adjointable, then by (1), D(=*) is dense. Then
D(m(A)*) is dense so wm(A) is closable for every A € /. Define
D(7#)= D(m), where B ={m(A): A € d}and 7(A)= 7 (A)| D (7). It
follows from Theorem 1 (3) that {w(A): A € &} is the minimal collec-
tively closed extension of 9. It is straightforward to show that 7 is a
representation and that 7 am, implies 7am,.

(5) If = is adjointable then so is 7 * and from (2) 7 ** is a closed
representation. If x &€ D(w), y€D(w*) then for all A€«
we have (m*(AM)y,x)=(m(A)* y,x)=(y, 7(A)x). Hence
x € N{D[7r*(A")*]: A€ A}=D(w**) and 7**(A)x =7*(A*)*"x =
w(A)x so w Cw**. Since m C# we have by (3) that #*Cw*. Since
mam* from (4) we have mawm* Hence by 2) #*C#* so 7%=
7% By Q) #**Cax* Since m*anm** by (2) we have #* C#*** so
,n,.*** — 77*.

(6) Forall xe D(w), yE D(m), A€ A we have
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(m(A)x,y)=(m(A)x,y)=(x, m(A%)y).

Hence m am and by (2) m, Cm*.

(7) Itisshown in [6] that 7 is hermitian if 7 is hermitian. Since 7
is hermitian we have = Cw*. Applying (3) twice gives 7** C 7 *** so
** is hermitian. Since 7 ** is closed we have from (2) that # C# C
7** and from (6) #** C 7 *.

We now show that the extensions in (7) can be distinct. Let & be
the free commutative *-algebra on one hermitian generator A. Define
the representation 7 of & on the Hilbert space H = L?[0, 1] as follows:
D(m)={fe C*[0,1): f»(0)=f"1)=0,n=0,1,2,...} m(A)= —id/dt
It is straightforward to show that 7= is hermitian and that = =7 =
7**Cm*[8]. Now let 7, be the representation of & on H defined by:

D(m)={f € C*[0,1]: f(0)= f(1),f"(0) = f"(1),n=1,2,... }
m(A)= —id/dt .

It is straightforward to show that 1, is hermitian and that 7, = 7,7 ** =
7T1* [8].

We now consider commutants and irreducibility. If 7 am,, define
C(m, m) to be the set of operators C € L.(H) satisfying (Cm(A)x,y) =
(Cx,m(A*)y) for every x € D(w), y € D(m,), A € /. The proof of
the following lemma is straightforward.

LEMMmA 3.
(1) C(, ) is a weakly closed subspace of L.(H) containing 1.
@) C(mm)

={C€e€ L. (H): C: D(w)— D(m*),Cm(A)= m*(A)C|D(m)}.
3) Ce&C(mm) if and only if C* € C(m,, 7).

The commutant of a =-representation = is defined as 7 (&) =
C(m,m). It follows from Lemma 3 that w(s&f) is a weakly closed,
symmetric subspace of L.(H) containing I. However, (%) need not
be a von Neumann algebra [6]. If 7 is self-adjoint then 7 (s£)" is a von
Neumann algebra [6]. If 7 is a *-representation, the strong commutant
is defined by

m(d);={Ce€m(A): C: D(mw)—> D(w)}.

Hence
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m(A);={CE€L.(H): C: D(w)— D(w),Cm(A)
=7(A)C|D(m),YA € o}.

It is easy to see that 7 (s¢); is an op-algebra in L.(H) containing I and if
is closed, then 7 (sf); is weakly closed [1]. Again 7 (&), need not be a
von Neumann algebra but if 7 is self-adjoint, then (&), is a von
Neumann algebra and 7 ()= 7 ().

LEMMA 4. A *-representation w is self-adjoint if and only if
7 () = w(A); and D(7*)= U{Cx: x € D(m),C € w(H)'}.

Proof. Necessity follows from our previous observations. For
sufficiency, if m(d) = w(«f); then C: D(w)—D(w) for all C€
m(A4). Hence D(7w*)= U{Cx:x € D(w),C € w(«4)} CD ().

For a bounded *-representation 7 of a *-algebra & on a Hilbert
space H the following conditions are equivalent [2,4].

i) #w(A)={Al:2€C}.

(i) The only invariant closed subspaces of H are {0} and H.

(iii) Every nonzero vector in H = D(ar) is cyclic.

A bounded *-representation 7 is said to be irreducible if 7 satisfies any
one (and hence all) of these three conditions.

For unbounded self-adjoint representations one can give examples
[6,8] which show that no two of the above conditions are
equivalent. Also, there is more than one natural way to extend some of
the above conditions for unbounded self-adjoint representations. Let 7
be a self-adjoint representation. We say that a subspace M is a
self-adjoint invariant subspace for 7 if M is invariant and 7 |M is
self-adjoint. The following are natural conditions that one might use to
define irreducibility for a self-adjoint representation 7 of a *-algebra &
with domain D (7)C H.

1) awA)={rI:x€C}.

(2) The only invariant subspaces for = which are complete in the
(A )-topology are {0} and D(w).

(2') The only self-adjoint invariant subspaces for 7 are {0} and
D ().

(3) Every nonzero vector in D () is strongly cyclic.

(3") Every nonzero vector in D () is cyclic.

THEOREM 5. If 7 is self-adjoint representation of the *-algebra s on
the Hilbert space H, then
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2)e=1)<Q)
T I
()e——0)

Proof. (2)—(3). Suppose (2) holds, 0#¢d € D(xwr) and M =
{m(A)b: A €} Clearly, M# {0} and M is an invariant subspace of
H for m. Let M be the completion of M in the 7 (s)-topology. Since
 is closed, MC D () and clearly Mi is a subspace of H.  We now show
that M is invariant under . If x € M, then there exists a net x, € M
such that x, — x in the 7 (&f)-topology. Fixan A € &/. Then for every
B € o we have

m(B)m(A)x, = w(BA)x, > 7m(BA)x = w(B)w(A)x.

Hence 7w (A)x,— m(A)x in the 7(«)-topology so 7(A)x €M and
7r(A )M C M. Since (2) holds, M = D(m). Hence M isdense in D(7)
in the 7 (s )-topology so ¢ is a strongly cyclic vector for .

(3)—(2). Suppose (2) does not hold. Then there exists a 7 (sf)-
complete invariant subspace M of H with M# {0}, D(w). If0# ¢ EM,
then «clearly ¢ is not a strongly cyclic vector for =«

(1)=(2'). Suppose (2') does not hold. Then there exists a nontri-
vial self-adjoint invariant subspace M for 7. Now M is not dense in H
since otherwise 7 | M is a *-representation of &/ on M = H with domain
M CD(w). Then w|MCw=x*C(m|M)*. Since #|M is self-
adjoint, w|M =7 and D(w)=M which is a contradiction. By
Theorem 4.7 [6] the projection E on M satisfies E € r(sf). Since
E#0, I, (1) does not hold.

(2")—(1). Suppose (1) does not hold. Since = is self-adjoint,
m(s£) is a von Neumann algebra so there exists a nontrivial projection
E € w(A). By Theorem 4.7 [6], ED(w) is a nontrivial self-adjoint
invariant subspace for 7. Thus (2') does not hold.

(3)— (). Suppose (3') holds. Let O0#ZE€E€n(«4) be a
projection. By Theorem 4.7 [6], ED(7)= M is a self-adjoint invariant
subspace for m. Let 0# ¢ € M. Since ¢ is cyclic and {w(A)p: A €
A} C M, M isdense in H. Asin (1)—(2') above, M = D(7) and hence
E =1 Since 0 and I are the only projections in 7 (&), we have
m(A) ={Al: X € C}.

(3)—(3). Thisis trivial. (2)—(1). Since (2)— (2') trivially, this
follows from (2')— (1) above.

3. Closed strongly cyclic *-representations. In this
section we shall mainly be concerned with characterizing self-
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adjointedness for closed strongly cyclic *-representations. Let 7 be a
*-representation of a x-algebra &/ with domain D(7)C H. The un-
bounded commutant w(f) of w is defined as the set of operators
CeL(D(w),H) such that (Cmw(A)x,y)=(Cx,w(A*)y) for all
x,y €ED(w)and A € . The strong unbounded commutant is defined
by (L), ={CE€n(A): CD(w)— D(m)}. Notice that
() | D(m)Ca(A) and w(A),|D(7w)C w(A). In fact,

m(sd) = {C: C€ m(sdy, C bounded)
m(A),={C: C € w(sA), C bounded}.

We say that a net B, € L(M, N) converges weakly to B € L(M, N) if
(B.,x,y)—>(Bx,y) for every x,y €EM. Moreover, B CL(M,N) is
weakly closed if for any net B, € B which converges weakly to some
BeL(M,N) we have B&€ 3. The proof of the next lemma is
straightforward.

LeEmmMmA 6.

(1) If = is self-adjoint, then w(A) = w(A)S.

2) w(d)y={CeL(D(m),D(m*): Cr(A)=n*(A)C,VA € A}.

3) w(A):=CeL(D(m): Cr(A)=7(A)C,VA € A}.

4) w(A) is a weakly closed subspace of L (D (), D(m*)) contain-
ing I| D ().

(5) @ ()i is an op-algebra in L(D(7)).

6) w(L) =m(A); if and only if w(H)° is an op-algebra.

Let o/ be a *-algebra and let m, m, be *-representation of & on
Hilbert spaces H, H,, respectively. We say that 7 and 7, are equivalent,
and write 7 = 1, if there exists a unitary transformation V from H onto
H, such that VD(w)= D(m)and m(A)= V*m,(A)V forevery A € 4.

Let ® be a state on & Then by the GNS construction for
x-algebras [6], there exists a closed, strongly cyclic *-representation 7, of
& with strongly cyclic vector x, such that w (A ) = (., (A )x,, x,) for every
A € . Moreover, if 7 is any closed, strongly cyclic *-representation of
& with strongly cyclic vector y, such that (7 (A )y,, yo) = w(A) for every
A € o then m=m, [6].

We now characterize states w such that =, is self-adjoint. A linear
functional F: of — C is w-bounded if for every B € o there exists an

5 =0 such that | F(BA)|= Mzw(A*A)" for every A € of. For ex-
ample, if A, € & is a net such that w(AFA*AA,) is Cauchy for every
A€y, then the functional FA)=lmw(AtA) is ow-
bounded. Indeed, for every B € o we have
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F(BA)|=1lim|w(A*BA)|=lim| w(A*B*A,)]
= w(A*A)"” limw(A*BB*A,)"™

If every w-bounded linear functional has the above form, then we call w
a Riesz state.

THEOREM 7. Let w be a state on the *-algebra . Then m, is
self-adjoint if and only if w is a Riesz state.

Proof. Recall that 7, is constructed as follows. Let $ be the left
ideal ¥ ={A € &: w(A*A)=0} and let H, be the inner product space
consisting of equivalence classes [A] in «//$ with inner product
([A],[B])=w(B*A). Let H be the Hilbert space completion of
H,. Define a *-representation m, of & with domain D (m,)= H, by
m(A)[B]=|AB]. If =, =, then =, is a closed, strongly cyclic
x-representation with domain D () = Hyn) and strongly cyclic vector
[I]. Now suppose 7, is self-adjoint and F: &f — C is w-bounded. If
®w(A*A)=0, then F(A)=0so0o F: § —0. Hence F can be considered
as a linear functional on H,. Since |F([A])|= M,||[A]], F is a continu-
ous linear functional on Hj and by the Riesz theorem there existsa z € H
such that F([A])=([A], z) for every [A] € H,. Now for every B € &
we have

(m(B)[A],z)| = ([BA], z)| = | F([BA])|
=|F(BA)|=Ms|[A]ll

Hence z € D(w*)= D(w,*) = D(w.,), so there exists a net [A,] € H,
which converges to z in the 7 (sf)-topology. Thus[AA,]is Cauchy for
every A € of. Finally, for every A € o/ we have

F(A)=1lim([A],[A.]) = limw(AZA).

Conversely, suppose o is a Riesz state and x € D(w}). Define the
linear functional F: o/ - C by F(A)=([A],x). Then for every
A, B € o we have

|F(BA)|=[(m(B)[A],x)| = Ms||[A]] = Msw(A*A)"

so F is w-bounded. Hence there exists a net A, € & such that
w(ATA*AA,)is Cauchy forevery A € o and F(A)=Ilimw(A%A) for
every A € of. It follows that [A,] is Cauchy in the 7y (sf)-topology and
hence there exists a y € D(m,) such that [A,]—y. Furthermore, for
every A€W we have F(A)=limw(AZA)=lIm(A],[A.])=
([A],y). Hence x =y € D(m,) and =, is self-adjoint.
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COROLLARY. A closed, strongly cyclic *-representation m with
strongly cyclic vector x, is self-adjoint if and only if the state
A — (7 (A)x,, xo) is a Riesz state.

A state o is faithful if ®w(A*A)=0 implies A =0. A vector
xo € D () is separating if w(A)x, =0 implies m(A)=0. If w is faithful
then the strongly cyclic vector x, for =, is separating. Conversely, if x,
is separating, then w (A *A )= 0 implies 7,(A)=0. A representation 7
of of is ultra-cyclic if there exists an x,E€ D(s) such that D(m)=
{m(A)x,;: A € 4}. We then call x, an ultra-cyclic vector. Ultra-cyclic
representations are important because of the following result.

LEMMA 8. 1 is a closed, strongly cyclic *-representation if and only
if 7 is the closure of an ultra-cyclic *-representation °.

Proof. Suppose 7 is a closed, strongly cyclic *-representation of &
with strongly cyclic vector x,. Define D(7°)={m(A)x,;: A € &} and
7m°(B)m(A)x,= m(BA)x,. Then #°is an ultra-cyclic *-representation
and 7°=m. Conversely, if 7 is the closure of an ultra-cyclic *-
representation =7° with ultra-cyclic vector x,, then = is a closed *-
representation. Moreover, since D () is the completion of D(7°) in
the 7 (& )-topology, x, is a strongly cyclic vector for .

We call #° in the proof of Lemma 8 the underlying ultra-cyclic
*-representation for 7. We can obtain information about 7 by studying
the simpler representation 7°. For example, a condition characterizing
the essential self-adjointness of 7° characterizes the self-adjointness of
m. Moreover, 7°* = 7* and 7%() = 7 (A)".

Let w be an arbitrary ultra-cyclic *-representation of &/ with a
separating ultra-cyclic vector x,. For x € D(m*) define 7°(x)€
L(D(w),D(7*)) by 7m(x)m(A)x,=m*(A)x. This is a well-defined
operator since 7 (A )x, = 7 (B)x, implies 7(A) = 7 (B). Then for every
y,z € D(m) we have

(m(A")y, z)=(y, m(A)z) =y, m(B)z) = (m(B*)y, 2).
Hence w(A*)=m(B*), so m(A*)* = 7 (B*)* and finally
7*(A)=m(A*)*|D(7*)= 7 (B*)*|D(r*)=m*(B).

It is straightforward to see that D () is a *-algebra with identity x, under
the product (7 (A )x,)e (7 (B)x,) = m(AB)x, and involution (7 (A )x,)* =
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m(A*)x,. Moreover, for every x,y,z € D(w) we have (x°y,z)=
(y,x*oz).

THEOREM 9. Let 7 be an ultra-cyclic *-representation of s{ with a
separating, ultra-cyclic vector x,.
(1) =< is a weakly continuous linear bijection from D(m*) into
m(A).
(2) The following statements are equivalent.
(a) Cxo€ D(7) for every C € w(A) .
(b) (L) is an op-algebra.
(c) = is self-adjoint.
(3) w(A) is an op*-algebra if and only if 7 is self-adjoint and there
exists an involution b on the *-algebra D (m) satisfying

(3.1 (x* y)=(y%x)

for every x,y € D ().
4) If w(A) is an op*-algebra, then m° is a weakly continuous
* -anti-isomorphism of D () onto w(A)".

Proof.

(1) Clearly, 7 is linear. To show that #=° maps D(#*) into
(), for x ED(n*), A€, z€E€D(w) and y = w(B)x, € D(7) we
have

(me(x)m(A)y, z) = (7 (x)m(AB)x0o, 2)

=(m*(AB)x, z) = (7 *(B)x, m(A*)z)
={(m(x)m(B)x¢, m(A*)z) = (7w (x)y, m(A*)z).
To show that 7 is surjective, let C € w(&). Then Cx, € D (7*) and
for any y = w(A) x,€ D(7) we have
7 (Cxo)y = 7w (Cxo)m(A)xo = m*(A)Cx,
= C‘IT(A )xO = Cy.

To show that 7° is injective, suppose that x,x,€ D(7*) and 7°(x)=
7°(x,). Then

x=a*Dx =7 (x)xo= 7 (x1)x0 = w*(1)x, = x,.

To show that 7° is weakly continuous, suppose that x, x € D(7*) and
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x; — x in norm. Then for any y = w(B)x,€ D(7) and z € D(7) we
have
lim (7 (x;)y, z) = lim {7 *(B)x;, z)
= lim(x, w(B*)z)= (x, m(B*)z)
=(m*B)x,z)= (7w (x)m(B)x0, 2)
=(m(x)y, 2).

(2) (@)—(b). Suppose that (a) holds and C € w(H),y=
w(A)xo€ED(mw). We then have Cy=Cn(A)x,=7*(A)Cx,=
m(A)Cx, € D(m). Hence, by Lemma 6(6), () is an op-algebra.

(b)—(c). If x€D(7*), then by (1) w*(x)E w(HA)". If w(H) is
an op-algebra, then x = 7w*(1)x = 7°(x)x, € D(w). Hence D(wn*)=
D(m) and 7 is self-adjoint.

(c)—(a). If = is self-adjoint, then 7 () C L(D (m)).

(3) Suppose m(A)° is an opx-algebra. Then, by (2), 7 is self-
adjoint. If C € w ()", then D(w)C D(C*) and C*|D (7)€ w(A)" so
C*:D(w)—>D(w). For x€D(m), by (1) m*(x)En(A) so x"=
7 (x)*xo€ D(mw). For x =7(A)x,€ D(w) and y € D(w) we have

(y® x)=({m(y)*xo0, x) = (xo, w(y )7 (A)x0)

=(xo, m(A)y) =(m(A%)x0, y) = (x*,y)

so (3.1) holds. That ® is an involution now follows from (3.1). For
example,

(yez)x)={(x*,yez)=(y*ox* z)
=(z%xcoy)=(x*oz%y)=(y%z"°x)
=(z"ey’x).

The other properties of an involution follow in a similar
way. Conversely, suppose 7 is self-adjoint and there exists an involu-
tion * on D (7 ) satisfying (3.1). Then by (2), w(&f)° is an op-algebra. If
Ce n(A), then for any x = w(B)x,€ D(w) and y = w(A)x, € D(m)
we have

(Cy,x)=(Cm(A)xp,x) = (Cxo, (A *)x)
= (Cxo, m(A*B)xo) = (Cxy, [ (B*A)x,]*)
= (m(B*A)xo, (Cxo)") = (7 (A)xo, m(B)[(Cx0)"])
=y, 7 [(Cx) ] x).

Hence D(m)C D(C*), C*|D(w)= 7°[(Cx,)’] € w(A)° and so 7 (H)° is
an op*-algebra.
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(4) Suppose (&) is an op#*-algebra. It follows from (1) that
7 D(m)— w () is a weakly continuous linear bijection. For x =
m(A)x,€ D(m) and y = w(B)x, € D () we have

m(x)y = 7 (x)m(B)x, = w(B)x = w(B)xjem(A)x,=y °x.

It is now clear that 7 is an anti-isomorphism. To show that 7¢ isa’-
anti-isomorphism, for x € D(7) and y = 7w (A )x, € D(7) we have

7 (x")y =yex’ =ye[m(x)"x)]=m(A)7T(x*)x,
=7 (x)*m(A)x,= 7 (x)*y.

COROLLARY. Let 7 be a closed, strongly cyclic *-representation of o
with separating, strongly cyclic vector x, and let 7" be the underlying
ultra-cyclic representation. Then  is self-adjoint if and only if Cx, €
D{(m) for every C € () .

Proof. 1f m is self-adjoint and C € 7°(A)", then Cx,E D(7w"*) =
D(m*)=D(m). Conversely, suppose Cx,€ D(w) for every CE&
m'(A). If x € D(w*), then x € D(7"*) so by Theorem 9(1), 7“(x) €
w’(4). Hence x = 7°(x)x, € D(7), so D(w)= D(w*) and 7 is self-
adjoint.
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