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ON SOME NEW GENERALIZATIONS OF
SHANNON'S INEQUALITY

PAL FISCHER

Let An = {P£Rn: P = (pι,p2,-',Pn), where ΣΓ=,p, = 1
and pt > 0 for i = 1,2, , n) and let Bn = {P G Λn: p2 ^ p2 ^
• ^ pn}. We show that the inequality

(i)

for all P, Q G Bn and some integer n ^ 3, implies that f(p) =
c log p + d, where c is an arbitrary nonnegative number and d is
an arbitrary real number. We show, furthermore, that if we
restrict the domain of the inequality (1) to those P,QGBn for
which P > O (Hardy-Littlewood-Pόlya order), then any
function that is convex and increasing satisfies (1).

1. Let P, Q G An. Then the inequality

n n

(2) ΣpΊogP = Σ P.-log
l

holds with equality iff P = Q [9], The inequality (2) has numerous
applications in information theory [1]. Conversely, it was proved in [3],
that the so-called Shannon-inequality

(3) Σ pJ(p.)Z± p,f(q,)
i = 1 j = 1

for all P,QEAn and some integer n ^ 3, implies that

/ ( p ) = c l o g p + d for p G (0,1)

where c is some nonnegative number and d is some real number.
The inequality (3) has other interpretations, too. Let us mention

the following. Let Eu E2, — -,En be a mutually exclusive and complete
system of the events of an experiment with the probability distribution
(PUP2J ' * ,Pn) with positive probabilities. Let quq2, * * -,qn be the esti-
mates of these probabilities (qt > 0 for i = 1, , n). If the ith event
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occurs then the experiment results in the payment of f(qt). The pay-off
function / must be chosen in such a way that the expected pay-off is
maximized if the estimates coincide with the a priori distribution.

In some cases it is natural to modify this prescribed model. If the
forecaster knows that px^p2= = /?„, then evidently the estimation
will be made so that q^ q2^ * = qn- That way we restrict the domain
of the inequality (1). A further restriction for the domain can be made
by allowing P, Q pairs such that P, Q E £?„ and P > Q, i.e.

(4) Σ f l ^ Σ * (fc = 1,2, ••-,*),
j = 1 1 = 1

in addition to the conditions that define Bn.
The subject of this paper is to investigate the inequality (1) under

these two types of restrictions. Similar types of inequalities are the
topics of some recent papers, [4], [5], [6], [7].

2 . In this section we consider the inequality (1) for all P,QEBn in
the case when n = 2. In that case (1) reduces to

(5)

for all 1 > p g i 1 > q g i /: (0, l)-» R. It is easy to see that

(6) /(I - q) i? /(I - p) implies that f{p) ̂  f{q).

By changing the roles of p and q in (5) and adding the thus obtained
inequality to (5), we obtain

(7) (p-q)[f(p)-f{q)]^{q-p)[m-q)-m-p)l

Assume that \> p > q^{ and f(p)<f(q), then by (6) we get a
contradiction. Therefore / is increasing on [|, 1), and by using (6) again
we see that / is increasing on (0,1). Since in the previous argument 1
can be replaced by any positive number, and 0 can be replaced by any
positive number b < a/2, we have shown the first part of the following
theorem.

THEOREM 1. The general solution of the inequality

(8) Pτfipύ + Pifipi) § pιf(qi) + p2/(<?2)

for all p i S p2^ b, q, g q2^ b, p , + p2= a, qi + q2

= a, f:(b,a-b)-> R, is
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increasing in the interval (b, a - b), where a and b are fixed nonnegatiυe
numbers, b < a/2. Furthermore, if f is differentiable at a point p E.
(b, a~b), then it is differentiable at a~p, too, and

(9) Pf'(p) = (a-p)f'(a-p).

Proof. According to our previous remark, we have to show only the
second part of this theorem.

Without loss of generality we can assume that p > a/2. Setting first
Pι = p + h, qx- p and setting secondly Pi = p and qi = p + ft in the
inequality (8), where | ft | is sufficiently small, we obtain

(10)

Dividing (10) by ft T^O, and tending with ft to 0, we obtain the proof of
this theorem.

3 . In this section we consider the inequality (1) for all P,QEBn in
the case where n ^ 3. We prove the following theorem.

THEOREM 2. Let f: (0, l)-» JR. Then f satisfies the inequality

(11) Σ Pif(Pi)^Σ

for all P,Q E Bn, where n is a fixed positive integer, n ̂  3 only if f has the
form f(p) = c logp + d, where c is an arbitrary nonnegative number and d
is an arbitrary real number.

Proof. First we show that / is increasing in (0,1). Let p3 = =
Pn = <?3 - # * * = qn < 1/n. Then (11) reduces to

(12) pιf{pι) + pjfa) ^ Pi/fai) + Pifiqi)

for all pι^p2^p3, qί^q2^p3 such that px + p 2= qλ +q2 =
1 - (n - 2)p3. By Theorem 1 we can conclude that / is increasing in the
interval (p3,1 - (n - l)p3). Since we can choose p 3 to be arbitrarily small
positive number we see that / is increasing in the interval (0,1).

Secondly we show that / is differentiable in (0,1). Assume that
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there exists a point p0 where / is not differentiable, then by choosing
a > po, P3 = q$= ''' = pn = qn < min(p0, a ~ Po), we see by Theorem 1
that / is not differentiable at a — pQ. By changing a and p3 = = qn

adequately the set of points a — p0 forms a set of positive measure, but
this is impossible because, according to a theorem of Lebesgue, an
increasing function is differentiable almost everywhere.

Finally, by Theorem 1 we can conclude, that pf'ip) - i/'β) for all
p G (0,1), that is

(13) Pf'(p) = c for all p G (0,1),

where c is nonnegative, since / is increasing. From (13) this theorem
follows immediately.

4 . In this section we make further restrictions to the domain of the
inequality (1). We shall need the following lemma.

LEMMA 1. Let aua2,- , αn be a sequence of reals such that

k

(14) 5, = X a, ^ 0 for l^k^n.

Let λι ^ λ2 ^ * * = λn ^ 0 be a sequence of reals. Then ΣΓ=i λ,α, § 0.

Proof This lemma is implicitly contained in Lemmas 3 and 5 in [7].
Now we shall prove a theorem, which is analogous to a result of L.

Fuchs [8].

T H E O R E M 3. Let x{ ^ ^ jcn, yγ^ - - -^ yn be arbitrary real num -

bers, and let pi, — ,pn be arbitrary nonnegative numbers. Then the

inequality

(15)

holds for every continuous convex and increasing function
f: [(min(xn, yn), max(x uy λ)]-+R if

k k

(16) 2) piXi g 2 Piϊi for k = 1, , n.
ι=l ι=l

Proof. Since / is a continuous convex and increasing function on
the interval [(min(xn, yn), max(jc1? yi)], there is on the interval
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[min(xn, yn),max(jcby1)) an increasing and nonnegative function h such
that

(17) f(p) = c + Γ h(q)dq
J

where a E (min(jtn, yn), max(xb yi)). It may be necessary to interpret
(17) as an improper integral when p is an endpoint.

In order to show the inequality (15), we have to establish that

(18) Σ p . ( f ( X i ) \
i = 1 i = 1 J y,

or equivalently, we have to show that

(19) Σp,Γh(q)dq^Σ P>Γ h(q)dq.
x,^y, J y, Xι<y, Jx,

Using the fact that h is increasing, we see that

(20) Σ P, Γ h(q)dq ̂  Σ # ( * " x.
Xι < yi J Xi x, < y,

and

(21) Σ P, Γ h{q)dq g Σ P.(̂ . - *

In order to prove (18) it is sufficient to show that

(22) Σ pAxi-ydhiyt)* Σ A(y.-*

that is to show that

(23) Σ(*.-

Lemma 1 yields (23) by letting p , ( x J - y ι ) = α ί and h(yι) = λι for

The following lemma can be found implicitly in Mitrinovic [10, pp.
337-338].
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LEMMA 2. Let bu b2i , bn be real numbers, let aλ ^ ^ an ^ 0,
and let

(24)

Now, we can prove the main result of this section.

THEOREM 4. Any increasing and convex function /: (0,1)—> JR
satisfies the inequality

(25)
J = 1 ι = l

for all P , O G B n ) P > Q.

Proof Let P,Q <ΞBn, P> Q, then by Lemma 2

n n

Σ p.<?. = Σ p'
i = l ί = l

Therefore, according to Theorem 3, by setting xt = pn y, = g, into (16)
(i = 1, , n) we see that any increasing and convex function / satisfies
(25), since / is continuous on [min(pn, qn),Pι]>

5 . In the previous section we have shown that any convex and
increasing function satisfies (1) for all P, Q E Bn such that P > Q. In
this section we establish the same result by an alternative proof without
the use of any additional lemmas.

Alternative proof Since / is increasing and convex, / has an
integral representation of the form

(26) /(p) = αo + J ' Λ ( O Λ , «€Ξ(0,l)

where h is nonnegative and increasing function on (0,1). In order to
prove (25), we have to show that

equivalently, we have to show that
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Σ p , Γ h(t)dt^Σ P Γ h(t)dt.
Pi^q> Jqi p,<q, J p<

We see that

q,>p,

and

Σ iPi-q,)^ Σ (q,~P.)
q,>p,

k

for 1 g k S n. Let /Ί be the smallest index i for which qt > pn let i2 be the
smallest index i such that i2 > U and /?, > qn let i3 be the smallest index i
such that ϊ'3> i2 and g, >p,, and so on. We shall show that

(27) ΣP^' hiOdt^ΣpV' h(t)dt.
J J

Furthermore if Σ 'L",1^, -^,)>Σ;2

=Γl

1,(ί. "P.), w ^ shall show that

(28) Σ PX hiOdt^Σpf h(t)dt,

where qi = qt for all / ̂  / * - 1, except possibly for / = / * - 1, and / * - 1
and gVi a r e determined by the relation

«*— 1 ι 2 - l

Σ (p. -<??) = Σ (<?.-p.)

(This last relation determines i * uniquely, unless p, = qι for some /, but in
this latter case we can choose any of these indices.)

To prove (28), we remark that any interval of the type (q^Pt) is to
the right of the interval (p«,g,) for iλ^kit=ίi2—\ and that {p,} is a
nonnegative and decreasing sequence. These things, together with the
fact that h is a nonnegative and increasing function, prove (28). The
next step of the proof consists in showing that

Pif-i Γ]1h(t)dt +ΣP« Γ h(t)dt + Σ P. [' h(t)dt

(29)
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and in proving the analogue of inequality (28) if

ί , - l ι 3 - l 1 2 -1 ι4~l

Σ (p. - % ) + Σ (P, -<?.)> Σ (q, -p>)+Σ (* -p,)
1 = 1 i = i2 i = iι 1 = 13

By repeating the argument we obtain the proof of this theorem.

6. With the aid of simple examples one can see that (1) may fail for
some P,Q£iBn with P > Q if we assume that / is merely increasing, or
that / is merely convex, or merely concave.

We shall next present, some related inequalities which may be of
independent interest.

We need the following lemma.

LEMMA 3. Let uu u2, - - -,unbea sequence of real numbers such that

(30) Sk = Σ Mi = 0 for l ^ k ^ n - 1

and

(31) 5n = Σ ut = 0.
i = l

Let 0 g λ , g λ 2 ^ ^λ n, then

(32) ΣU^O.
i = l

Proo/. The relation (31) implies that λiWi + λ^Γ^w, = 0. Clearly
ΣΓ=fe w, g 0 for 1 g k S n. Therefore

i=2

0 ^ V2 JLJ
I = 3

By repeating the argument we obtain the proof of this lemma.
Our next result will show, among other things, that the function

fip) = !/Pα ( α = !) satisfies the inequality (1) for all P,Q £Bn,P> Q.

THEOREM 5. Let P, Q E J5n, P > Q. Then
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VA<y JL <: y _!_
Zj n a = Zu na-\ = Z^ n α-l
i l ^ 1 ί i i l P

/. The right-hand side of (33) is, of course, well-known; we
mention it only because it shows that l/pa for a g 1 satisfies (1) for all
P,QEΐBn, P > Q. It is a special case of a theorem of
Hardy-Littlewood-Pόlya, which says that if P > Q, pi g p 2 = * = pn,
qx^ - - -^ qn, and /: [pn, pj—»J? is a continuous and convex function,
then

(34)

Let u, = pt- q, for / = 1,2, , n. It is easy to see that Σf=1 w, g 0
for 1 g fc g n - 1 and Σ L, M, = 0. Thus

since by Lemma 3 ΣΓ=i M,/g? = 0 .

Finally we note two special cases of the previous theorem. If
P,Q GBn and P > <?, then

(35)

and

(36)
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