ON SOME NEW GENERALIZATIONS OF SHANNON'S INEQUALITY

Pal Fischer

Let $A_{n}=\left\{P \in R^{n}: P=\left(p_{1}, p_{2}, \cdots, p_{n}\right)\right.$, where $\sum_{t=1}^{n} p_{1}=1$ and $p_{1}>0$ for $\left.i=1,2, \cdots, n\right\}$ and let $B_{n}=\left\{P \in A_{n}: p_{1} \geqq p_{2} \geqq\right.$ $\left.\cdots \geqq p_{n}\right\}$. We show that the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(p_{i}\right) \geqq \sum_{i=1}^{n} p_{i} f\left(q_{i}\right) \tag{1}
\end{equation*}
$$

for all $P, Q \in B_{n}$ and some integer $n \geqq 3$, implies that $f(p)=$ $c \log p+d$, where c is an arbitrary nonnegative number and d is an arbitrary real number. We show, furthermore, that if we restrict the domain of the inequality (1) to those $P, Q \in B_{n}$ for which $P>Q$ (Hardy-Littlewood-Pólya order), then any function that is convex and increasing satisfies (1).

1. Let $P, Q \in A_{n}$. Then the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \log p_{t} \geqq \sum_{t=1}^{n} p_{i} \log q_{t} \tag{2}
\end{equation*}
$$

holds with equality iff $P=Q$ [9]. The inequality (2) has numerous applications in information theory [1]. Conversely, it was proved in [3], that the so-called Shannon-inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \dot{f}\left(p_{t}\right) \geqq \sum_{i=1}^{n} p_{t} f\left(q_{t}\right) \tag{3}
\end{equation*}
$$

for all $P, Q \in A_{n}$ and some integer $n \geqq 3$, implies that

$$
f(p)=c \log p+d \quad \text { for } \quad p \in(0,1)
$$

where c is some nonnegative number and d is some real number.
The inequality (3) has other interpretations, too. Let us mention the following. Let $E_{1}, E_{2}, \cdots, E_{n}$ be a mutually exclusive and complete system of the events of an experiment with the probability distribution $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ with positive probabilities. Let $q_{1}, q_{2}, \cdots, q_{n}$ be the estimates of these probabilities $\left(q_{1}>0\right.$ for $\left.i=1, \cdots, n\right)$. If the i th event
occurs then the experiment results in the payment of $f\left(q_{1}\right)$. The pay-off function f must be chosen in such a way that the expected pay-off is maximized if the estimates coincide with the a priori distribution.

In some cases it is natural to modify this prescribed model. If the forecaster knows that $p_{1} \geqq p_{2} \geqq \cdots \geqq p_{n}$, then evidently the estimation will be made so that $q_{1} \geqq q_{2} \geqq \cdots \geqq q_{n}$. That way we restrict the domain of the inequality (1). A further restriction for the domain can be made by allowing P, Q pairs such that $P, Q \in B_{n}$ and $P>Q$, i.e.

$$
\begin{equation*}
\sum_{i=1}^{k} p_{t} \geqq \sum_{i=1}^{k} q_{i} \quad(k=1,2, \cdots, n) \tag{4}
\end{equation*}
$$

in addition to the conditions that define B_{n}.
The subject of this paper is to investigate the inequality (1) under these two types of restrictions. Similar types of inequalities are the topics of some recent papers, [4], [5], [6], [7].
2. In this section we consider the inequality (1) for all $P, Q \in B_{n}$ in the case when $n=2$. In that case (1) reduces to

$$
\begin{equation*}
p f(p)+(1-p) f(I-p) \geqq p f(q)+(1-p) f(1-q) \tag{5}
\end{equation*}
$$

for all $1>p \geqq \frac{1}{2}, 1>q \geqq \frac{1}{2}, f:(0,1) \rightarrow R$. It is easy to see that

$$
\begin{equation*}
f(1-q) \geqq f(1-p) \text { implies that } f(p) \geqq f(q) \text {. } \tag{6}
\end{equation*}
$$

By changing the roles of p and q in (5) and adding the thus obtained inequality to (5), we obtain

$$
\begin{equation*}
(p-q)[f(p)-f(q)] \geqq(q-p)[f(1-q)-f(1-p)] \tag{7}
\end{equation*}
$$

Assume that $1>p>q \geqq \frac{1}{2}$ and $f(p)<f(q)$, then by (6) we get a contradiction. Therefore f is increasing on $\left[\frac{1}{2}, 1\right.$), and by using (6) again we see that f is increasing on $(0,1)$. Since in the previous argument 1 can be replaced by any positive number, and 0 can be replaced by any positive number $b<a / 2$, we have shown the first part of the following theorem.

Theorem 1. The general solution of the inequality

$$
\begin{equation*}
p_{1} f\left(p_{1}\right)+p_{2} f\left(p_{2}\right) \geqq p_{1} f\left(q_{1}\right)+p_{2} f\left(q_{2}\right) \tag{8}
\end{equation*}
$$

for all $p_{1} \geqq p_{2} \geqq b, q_{1} \geqq q_{2} \geqq b, p_{1}+p_{2}=a, q_{1}+q_{2}=a, f:(b, a-b) \rightarrow R$, is
increasing in the interval $(b, a-b)$, where a and b are fixed nonnegative numbers, $b<a / 2$. Furthermore, if f is differentiable at a point $p \in$ $(b, a-b)$, then it is differentiable at $a-p$, too, and

$$
\begin{equation*}
p f^{\prime}(p)=(a-p) f^{\prime}(a-p) \tag{9}
\end{equation*}
$$

Proof. According to our previous remark, we have to show only the second part of this theorem.

Without loss of generality we can assume that $p>a / 2$. Setting first $p_{1}=p+h, q_{1}=p$ and setting secondly $p_{1}=p$ and $q_{1}=p+h$ in the inequality (8), where $|h|$ is sufficiently small, we obtain

$$
\begin{equation*}
\frac{p+h}{a-p-h}[f(p+h)-f(p)] \geqq f(a-p)-f(a-p-h) \tag{10}
\end{equation*}
$$

$$
\geqq \frac{p}{a-p}[f(p+h)-f(p)] .
$$

Dividing (10) by $h \neq 0$, and tending with h to 0 , we obtain the proof of this theorem.
3. In this section we consider the inequality (1) for all $P, Q \in B_{n}$ in the case where $n \geqq 3$. We prove the following theorem.

Theorem 2. Let $f:(0,1) \rightarrow R$. Then f satisfies the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(p_{i}\right) \geqq \sum_{i=1}^{n} p_{i} f\left(q_{i}\right) \tag{11}
\end{equation*}
$$

for all $P, Q \in B_{n}$, where n is a fixed positive integer, $n \geqq 3$ only if f has the form $f(p)=c \log p+d$, where c is an arbitrary nonnegative number and d is an arbitrary real number.

Proof. First we show that f is increasing in $(0,1)$. Let $p_{3}=\cdots=$ $p_{n}=q_{3}=\cdots=q_{n}<1 / n$. Then (11) reduces to

$$
\begin{equation*}
p_{1} f\left(p_{1}\right)+p_{2} f\left(p_{2}\right) \geqq p_{1} f\left(q_{1}\right)+p_{2} f\left(q_{2}\right) \tag{12}
\end{equation*}
$$

for all $p_{1} \geqq p_{2} \geqq p_{3}, \quad q_{1} \geqq q_{2} \geqq p_{3} \quad$ such that $p_{1}+p_{2}=q_{1}+q_{2}=$ $1-(n-2) p_{3}$. By Theorem 1 we can conclude that f is increasing in the interval $\left(p_{3}, 1-(n-1) p_{3}\right)$. Since we can choose p_{3} to be arbitrarily small positive number we see that f is increasing in the interval $(0,1)$.

Secondly we show that f is differentiable in $(0,1)$. Assume that
there exists a point p_{0} where f is not differentiable, then by choosing $a>p_{0}, p_{3}=q_{3}=\cdots=p_{n}=q_{n}<\min \left(p_{0}, a-p_{0}\right)$, we see by Theorem 1 that f is not differentiable at $a-p_{0}$. By changing a and $p_{3}=\cdots=q_{n}$ adequately the set of points $a-p_{0}$ forms a set of positive measure, but this is impossible because, according to a theorem of Lebesgue, an increasing function is differentiable almost everywhere.

Finally, by Theorem 1 we can conclude, that $p f^{\prime}(p)=\frac{1}{2} f^{\prime}\left(\frac{1}{2}\right)$ for all $p \in(0,1)$, that is

$$
\begin{equation*}
p f^{\prime}(p) \equiv c \text { for all } p \in(0,1) \tag{13}
\end{equation*}
$$

where c is nonnegative, since f is increasing. From (13) this theorem follows immediately.
4. In this section we make further restrictions to the domain of the inequality (1). We shall need the following lemma.

Lemma 1. Let $a_{1}, a_{2}, \cdots, a_{n}$ be a sequence of reals such that

$$
\begin{equation*}
s_{k}=\sum_{i=1}^{k} a_{t} \geqq 0 \quad \text { for } \quad 1 \leqq k \leqq n . \tag{14}
\end{equation*}
$$

Let $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n} \geqq 0$ be a sequence of reals. Then $\sum_{i=1}^{n} \lambda_{t} a_{t} \geqq 0$.
Proof. This lemma is implicitly contained in Lemmas 3 and 5 in [7].
Now we shall prove a theorem, which is analogous to a result of L . Fuchs [8].

THEOREM 3. Let $x_{1} \geqq \cdots \geqq x_{n}, y_{1} \geqq \cdots \geqq y_{n}$ be arbitrary real numbers, and let p_{1}, \cdots, p_{n} be arbitrary nonnegative numbers. Then the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geqq \sum_{i=1}^{n} p_{i} f\left(y_{i}\right) \tag{15}
\end{equation*}
$$

holds for every continuous convex and increasing function $f:\left[\left(\min \left(x_{n}, y_{n}\right), \max \left(x_{1}, y_{1}\right)\right] \rightarrow R\right.$ if

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i} x_{i} \geqq \sum_{i=1}^{k} p_{i} y_{i} \quad \text { for } \quad k=1, \cdots, n \tag{16}
\end{equation*}
$$

Proof. Since f is a continuous convex and increasing function on the interval $\left[\left(\min \left(x_{n}, y_{n}\right), \max \left(x_{1}, y_{1}\right)\right]\right.$, there is on the interval
$\left[\min \left(x_{n}, y_{n}\right), \max \left(x_{1}, y_{1}\right)\right)$ an increasing and nonnegative function h such that

$$
\begin{equation*}
f(p)=c+\int_{\alpha}^{p} h(q) d q \tag{17}
\end{equation*}
$$

where $\alpha \in\left(\min \left(x_{n}, y_{n}\right), \max \left(x_{1}, y_{1}\right)\right)$. It may be necessary to interpret (17) as an improper integral when p is an endpoint.

In order to show the inequality (15), we have to establish that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right)=\sum_{i=1}^{n} p_{i} \int_{y_{i}}^{x_{i}} h(q) d q \geqq 0, \tag{18}
\end{equation*}
$$

or equivalently, we have to show that

$$
\begin{equation*}
\sum_{x_{i} \leqslant y_{i}} p_{1} \int_{y_{i}}^{x_{i}} h(q) d q \geqq \sum_{x_{i}<y_{i}} p_{i} \int_{x_{i}}^{y_{i}} h(q) d q . \tag{19}
\end{equation*}
$$

Using the fact that h is increasing, we see that

$$
\begin{equation*}
\sum_{x_{i}<y_{i}} p_{i} \int_{x_{i}}^{y_{i}} h(q) d q \leqq \sum_{x_{i}<y_{i}} p_{i}\left(y_{t}-x_{t}\right) h\left(y_{t}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{x_{i}=y_{i}} p_{i} \int_{y_{i}}^{x_{i}} h(q) d q \geqq \sum_{x_{i}=y_{i}} p_{i}\left(x_{t}-y_{i}\right) h\left(y_{i}\right) . \tag{21}
\end{equation*}
$$

In order to prove (18) it is sufficient to show that

$$
\begin{equation*}
\sum_{x_{x} \geq y_{i}} p_{i}\left(x_{i}-y_{i}\right) h\left(y_{i}\right) \geqq \sum_{x_{i}: y_{i}} p_{i}\left(y_{i}-x_{i}\right) h\left(y_{i}\right), \tag{22}
\end{equation*}
$$

that is to show that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{t}-y_{t}\right) p_{i} h\left(y_{t}\right) \geqq 0 . \tag{23}
\end{equation*}
$$

Lemma 1 yields (23) by letting $p_{i}\left(x_{t}-y_{t}\right)=a_{i}$ and $h\left(y_{t}\right)=\lambda_{t}$ for $1 \leqq i \leqq n$.

The following lemma can be found implicitly in Mitrinović [10, pp. 337-338].

Lemma 2. Let $b_{1}, b_{2}, \cdots, b_{n}$ be real numbers, let $a_{1} \geqq \cdots \geqq a_{n} \geqq 0$, and let

$$
\begin{equation*}
\sum_{i=1}^{k} a_{l} \leqq \sum_{i=1}^{k} b_{l} \quad \text { for } \quad k=1, \cdots, n \tag{24}
\end{equation*}
$$

Then $\sum_{t=1}^{n} a_{t}^{2} \leqq \sum_{t=1}^{n} a_{t} b_{i} \leqq \sum_{t=1}^{n} b_{t}^{2}$.
Now, we can prove the main result of this section.
Theorem 4. Any increasing and convex function $f:(0,1) \rightarrow R$ satisfies the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{t} f\left(p_{t}\right) \geqq \sum_{i=1}^{n} p_{t} f\left(q_{t}\right) \tag{25}
\end{equation*}
$$

for all $P, Q \in B_{n}, P>Q$.
Proof. Let $P, Q \in B_{n}, P>Q$, then by Lemma 2

$$
\sum_{i=1}^{n} p_{i} q_{i} \leqq \sum_{i=1}^{n} p_{i}^{2}
$$

Therefore, according to Theorem 3, by setting $x_{1}=p_{1}, y_{t}=q_{i}$ into (16) ($i=1, \cdots, n$) we see that any increasing and convex function f satisfies (25), since f is continuous on $\left[\min \left(p_{n}, q_{n}\right), p_{l}\right]$.
5. In the previous section we have shown that any convex and increasing function satisfies (1) for all $P, Q \in B_{n}$ such that $P>Q$. In this section we establish the same result by an alternative proof without the use of any additional lemmas.

Alternative proof. Since f is increasing and convex, f has an integral representation of the form

$$
\begin{equation*}
f(p)=\alpha_{0}+\int_{\alpha}^{p} h(t) d t, \quad \alpha \in(0,1) \tag{26}
\end{equation*}
$$

where h is nonnegative and increasing function on $(0,1)$. In order to prove (25), we have to show that

$$
\Sigma p_{i}\left[f\left(p_{t}\right)-f\left(q_{t}\right)\right]=\Sigma p_{i} \int_{q_{t}}^{p_{t}} h(t) d t \geqq 0
$$

equivalently, we have to show that

$$
\sum_{p_{i} \geqq q_{i}} p_{i} \int_{q_{i}}^{p_{i}} h(t) d t \geqq \sum_{p_{i}<q_{t}} p_{i} \int_{p_{i}}^{q_{i}} h(t) d t .
$$

We see that

$$
\sum_{p_{t} \leq q_{t}}\left(p_{i}-q_{t}\right)=\sum_{q_{t}>p_{t}}\left(q_{t}-p_{t}\right)
$$

and

$$
\sum_{\substack{p_{1} \geq q_{k} \\ 1 \leqq i \leq k}}\left(p_{i}-q_{t}\right) \geqq \sum_{\substack{q_{t}>p_{t} \\ 1 \leqq l}}\left(q_{t}-p_{t}\right)
$$

for $1 \leqq k \leqq n$. Let i_{1} be the smallest index i for which $q_{t}>p_{i}$, let i_{2} be the smallest index i such that $i_{2}>i_{1}$ and $p_{1}>q_{v}$, let i_{3} be the smallest index i such that $i_{3}>i_{2}$ and $q_{t}>p_{t}$, and so on. We shall show that

$$
\begin{equation*}
\sum_{i=1}^{t_{1}-1} p_{l} \int_{q_{1}}^{p_{1}} h(t) d t \geqq \sum_{i_{1}=l_{1}}^{i_{2}-1} p_{l} \int_{p_{1}}^{q_{1}} h(t) d t . \tag{27}
\end{equation*}
$$

i
Furthermore if $\sum_{\substack{1=1 \\ i_{1}-1}}\left(p_{t}-q_{1}\right)>\sum_{\substack{t_{i} \\ t_{i}-1}}\left(q_{1}-p_{1}\right)$, we shall show that

$$
\begin{equation*}
\sum_{i=1}^{i_{i}-1} p_{i} \int_{q_{i}}^{p_{t}} h(t) d t \geqq \sum_{i=i_{1}}^{i_{i}-1} p_{t} \int_{p_{t}}^{q_{i}} h(t) d t \tag{28}
\end{equation*}
$$

where $q_{i}^{*}=q_{1}$ for all $i \leqq i_{1}^{*}-1$, except possibly for $i=i_{1}^{*}-1$, and $i_{1}^{*}-1$ and $q_{1,-1}^{*}$ are determined by the relation

$$
\sum_{i=1}^{i_{t}^{t-1}}\left(p_{t}-q_{t}^{*}\right)=\sum_{t=l_{1}}^{t_{2}-1}\left(q_{t}-p_{t}\right) .
$$

(This last relation determines i_{1}^{*} uniquely, unless $p_{i}=q_{1}$ for some i, but in this latter case we can choose any of these indices.)

To prove (28), we remark that any interval of the type $\left(q_{1}^{*}, p_{1}\right)$ is to the right of the interval $\left(p_{i}, q_{i}\right)$ for $i_{1} \leqq i \leqq i_{2}-1$ and that $\left\{p_{i}\right\}$ is a nonnegative and decreasing sequence. These things, together with the fact that h is a nonnegative and increasing function, prove (28). The next step of the proof consists in showing that

$$
p_{i_{1}-1} \int_{q_{i,-1}}^{q_{i t-1}^{*}} h(t) d t+\sum_{i=i \uparrow}^{i_{i}-1} p_{i} \int_{q_{t}}^{p_{i}} h(t) d t+\sum_{i=t_{2}}^{t_{1}-1} p_{1} \int_{q_{1}}^{p_{t}} h(t) d t
$$

$$
\begin{equation*}
\geqq \sum_{i=1,3}^{t_{4}-1} p_{i} \int_{p_{i}}^{a_{i}} h(t) d t \tag{29}
\end{equation*}
$$

and in proving the analogue of inequality (28) if

$$
\sum_{i=1}^{t_{i}-1}\left(p_{i}-q_{i}\right)+\sum_{i=i_{2}}^{t_{3}-1}\left(p_{t}-q_{t}\right)>\sum_{i=i_{1}}^{t_{2}-1}\left(q_{t}-p_{i}\right)+\sum_{i=i_{3}}^{t_{4}-1}\left(q_{t}-p_{i}\right) .
$$

By repeating the argument we obtain the proof of this theorem.
6. With the aid of simple examples one can see that (1) may fail for some $P, Q \in B_{n}$ with $P>Q$ if we assume that f is merely increasing, or that f is merely convex, or merely concave.

We shall next present, some related inequalities which may be of independent interest.

We need the following lemma.
Lemma 3. Let $u_{1}, u_{2}, \cdots, u_{n}$ be a sequence of real numbers such that

$$
\begin{equation*}
S_{k}=\sum_{i=1}^{k} u_{t} \geqq 0 \quad \text { for } \quad 1 \leqq k \leqq n-1 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{n} u_{t}=0 \tag{31}
\end{equation*}
$$

Let $0 \leqq \lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{n}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} u_{i} \leqq 0 \tag{32}
\end{equation*}
$$

Proof. The relation (31) implies that $\lambda_{1} u_{1}+\lambda_{1} \sum_{i=2}^{n} u_{i}=0$. Clearly $\sum_{i=k}^{n} u_{i} \leqq 0$ for $1 \leqq k \leqq n$. Therefore

$$
\begin{aligned}
& \lambda_{1} \sum_{i=2}^{n} u_{t} \geqq \lambda_{2} \sum_{i=2}^{n} u_{t}, \quad \text { i.e. } \\
& 0 \geqq \lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{2} \sum_{i=3}^{n} u_{t} .
\end{aligned}
$$

By repeating the argument we obtain the proof of this lemma.
Our next result will show, among other things, that the function $f(p)=1 / p^{\alpha}(\alpha \geqq 1)$ satisfies the inequality (1) for all $P, Q \in B_{n}, P>Q$.

Theorem 5. Let $P, Q \in B_{n}, P>Q$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{p_{i}}{q_{i}^{\alpha}} \leqq \sum_{i=1}^{n} \frac{1}{q_{i}^{\alpha-1}} \leqq \sum_{i=1}^{n} \frac{1}{p_{i}^{\alpha-1}} \quad \text { where } \quad \alpha \geqq 1 \tag{33}
\end{equation*}
$$

Proof. The right-hand side of (33) is, of course, well-known; we mention it only because it shows that $1 / p^{\alpha}$ for $\alpha \geqq 1$ satisfies (1) for all $P, Q \in B_{n}, \quad P>Q$. It is a special case of a theorem of Hardy-Littlewood-Pólya, which says that if $P>Q, p_{1} \geqq p_{2} \geqq \cdots \geqq p_{n}$, $q_{1} \geqq \cdots \geqq q_{n}$, and $f:\left[p_{n}, p_{1}\right] \rightarrow R$ is a continuous and convex function, then

$$
\begin{equation*}
\sum_{t=1}^{n} f\left(p_{t}\right) \geqq \sum_{t=1}^{n} f\left(q_{t}\right) \tag{34}
\end{equation*}
$$

Let $u_{i}=p_{i}-q_{i}$ for $i=1,2, \cdots, n . \quad$ It is easy to see that $\sum_{i=1}^{k} u_{t} \geqq 0$ for $1 \leqq k \leqq n-1$ and $\sum_{i=1}^{n} u_{i}=0$. Thus

$$
\sum_{i=1}^{n} \frac{p_{i}}{q_{i}^{\alpha}}=\sum_{i=1}^{n} \frac{u_{i}}{q_{t}^{\alpha}}+\sum_{i=1}^{n} \frac{1}{q_{t}^{\alpha-1}} \leqq \sum_{i=1}^{n} \frac{1}{q_{i}^{\alpha-1}}
$$

since by Lemma $3 \sum_{i=1}^{n} u_{i} / q_{i}^{\alpha} \leqq 0$.
Finally we note two special cases of the previous theorem. If $P, Q \in B_{n}$ and $P>Q$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{p_{i}}{q_{i}} \leqq n \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{p_{i}}{q_{i}^{2}} \leqq \sum_{i=1}^{n} \frac{1}{q_{i}} \tag{36}
\end{equation*}
$$

References

1. R. Ash, Informaton Theory, Interscience Publishers, 1965.
2. P. Fischer, On the inequality $\Sigma p_{1} f\left(p_{i}\right) \geqq \Sigma p_{1} f\left(q_{i}\right)$, Metrika, 18 (1972), 199-208.
3. - On the inequality $\Sigma g\left(p_{i}\right) f\left(p_{t}\right) \geqq \Sigma g\left(p_{1}\right) f\left(q_{1}\right)$, Aequationes Math., 10 (1974), 23-33.
4. - On the inequality $\Sigma p_{1} f\left(p_{1}\right) / f\left(q_{1}\right) \leqq 1$, Canad. Math. Bull. 17 (1974), 193-199.
5. - Sur l'inégalité $\Sigma\left[p_{t} f\left(p_{t}\right)+q_{t} f\left(q_{t}\right)\right] \geqq\left[p_{t} f\left(q_{i}\right)+q_{t} f\left(p_{i}\right)\right]$, Period. Hungar., 5 (1974), 87-92.
6. - On the inequality $\Sigma p_{1} f\left(p_{1}\right) / f\left(q_{1}\right) \geqq 1$, Pacific J. Math., 60 (1975), 65-74.
7. P. Fisher and J. A. R. Holbrook, Matrices doubly stochastic by blocks, Canad. J. Math., 29 No. 3 (1977), 559-571.
8. L. Fuchs, A new proof of an inequality of Hardy-Littlewood-Pólya, Mat. Tidsskr. B (1947), 53-54.
9. P. G. Kirmser, Problem E 1274, Amer. Math. Monthly, 64 (1957).
10. D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, 1970.

Received Aprıl 20, 1977.

University of Guelph
Guelph, Ontario, Canada

