ON SOME NEW GENERALIZATIONS OF SHANNON'S INEQUALITY

PAL FISCHER

Let $A_n = \{P \in \mathbb{R}^n : P = (p_1, p_2, \dots, p_n), \text{ where } \sum_{i=1}^n p_i = 1$ and $p_i > 0$ for $i = 1, 2, \dots, n\}$ and let $B_n = \{P \in A_n : p_1 \ge p_2 \ge \dots \ge p_n\}$. We show that the inequality

(1)
$$\sum_{i=1}^{n} p_i f(p_i) \geq \sum_{i=1}^{n} p_i f(q_i)$$

for all $P, Q \in B_n$ and some integer $n \ge 3$, implies that $f(p) = c \log p + d$, where c is an arbitrary nonnegative number and d is an arbitrary real number. We show, furthermore, that if we restrict the domain of the inequality (1) to those $P, Q \in B_n$ for which P > Q (Hardy-Littlewood-Pólya order), then any function that is convex and increasing satisfies (1).

1. Let $P, Q \in A_n$. Then the inequality

(2)
$$\sum_{i=1}^{n} p_i \log p_i \ge \sum_{i=1}^{n} p_i \log q_i$$

holds with equality iff P = Q [9]. The inequality (2) has numerous applications in information theory [1]. Conversely, it was proved in [3], that the so-called Shannon-inequality

(3)
$$\sum_{i=1}^{n} p_i \dot{f}(p_i) \ge \sum_{i=1}^{n} p_i f(q_i)$$

for all $P, Q \in A_n$ and some integer $n \ge 3$, implies that

$$f(p) = c \log p + d \quad \text{for} \quad p \in (0, 1)$$

where c is some nonnegative number and d is some real number.

The inequality (3) has other interpretations, too. Let us mention the following. Let E_1, E_2, \dots, E_n be a mutually exclusive and complete system of the events of an experiment with the probability distribution (p_1, p_2, \dots, p_n) with positive probabilities. Let q_1, q_2, \dots, q_n be the estimates of these probabilities $(q_i > 0 \text{ for } i = 1, \dots, n)$. If the *i*th event

occurs then the experiment results in the payment of $f(q_i)$. The pay-off function f must be chosen in such a way that the expected pay-off is maximized if the estimates coincide with the a priori distribution.

In some cases it is natural to modify this prescribed model. If the forecaster knows that $p_1 \ge p_2 \ge \cdots \ge p_n$, then evidently the estimation will be made so that $q_1 \ge q_2 \ge \cdots \ge q_n$. That way we restrict the domain of the inequality (1). A further restriction for the domain can be made by allowing P, Q pairs such that $P, Q \in B_n$ and P > Q, i.e.

(4)
$$\sum_{i=1}^{k} p_i \ge \sum_{i=1}^{k} q_i$$
 $(k = 1, 2, \dots, n),$

in addition to the conditions that define B_n .

The subject of this paper is to investigate the inequality (1) under these two types of restrictions. Similar types of inequalities are the topics of some recent papers, [4], [5], [6], [7].

2. In this section we consider the inequality (1) for all $P, Q \in B_n$ in the case when n = 2. In that case (1) reduces to

(5)
$$pf(p) + (1-p)f(I-p) \ge pf(q) + (1-p)f(1-q)$$

for all $1 > p \ge \frac{1}{2}$, $1 > q \ge \frac{1}{2}$, $f: (0, 1) \rightarrow R$. It is easy to see that

(6)
$$f(1-q) \ge f(1-p)$$
 implies that $f(p) \ge f(q)$.

By changing the roles of p and q in (5) and adding the thus obtained inequality to (5), we obtain

(7)
$$(p-q)[f(p)-f(q)] \ge (q-p)[f(1-q)-f(1-p)].$$

Assume that $1 > p > q \ge \frac{1}{2}$ and f(p) < f(q), then by (6) we get a contradiction. Therefore f is increasing on $[\frac{1}{2}, 1)$, and by using (6) again we see that f is increasing on (0, 1). Since in the previous argument 1 can be replaced by any positive number, and 0 can be replaced by any positive number b < a/2, we have shown the first part of the following theorem.

THEOREM 1. The general solution of the inequality

(8)
$$p_1f(p_1) + p_2f(p_2) \ge p_1f(q_1) + p_2f(q_2)$$

for all $p_1 \ge p_2 \ge b$, $q_1 \ge q_2 \ge b$, $p_1 + p_2 = a$, $q_1 + q_2 = a$, $f: (b, a - b) \rightarrow R$, is

increasing in the interval (b, a - b), where a and b are fixed nonnegative numbers, b < a/2. Furthermore, if f is differentiable at a point $p \in (b, a - b)$, then it is differentiable at a - p, too, and

(9)
$$pf'(p) = (a - p)f'(a - p).$$

Proof. According to our previous remark, we have to show only the second part of this theorem.

Without loss of generality we can assume that p > a/2. Setting first $p_1 = p + h$, $q_1 = p$ and setting secondly $p_1 = p$ and $q_1 = p + h$ in the inequality (8), where |h| is sufficiently small, we obtain

(10)
$$\frac{p+h}{a-p-h} \left[f(p+h) - f(p) \right] \ge f(a-p) - f(a-p-h)$$

$$\geq \frac{p}{a-p} [f(p+h) - f(p)].$$

Dividing (10) by $h \neq 0$, and tending with h to 0, we obtain the proof of this theorem.

3. In this section we consider the inequality (1) for all $P, Q \in B_n$ in the case where $n \ge 3$. We prove the following theorem.

THEOREM 2. Let $f: (0,1) \rightarrow R$. Then f satisfies the inequality

(11)
$$\sum_{i=1}^{n} p_i f(p_i) \geq \sum_{i=1}^{n} p_i f(q_i)$$

for all $P, Q \in B_n$, where n is a fixed positive integer, $n \ge 3$ only if f has the form $f(p) = c \log p + d$, where c is an arbitrary nonnegative number and d is an arbitrary real number.

Proof. First we show that f is increasing in (0, 1). Let $p_3 = \cdots = p_n = q_3 = \cdots = q_n < 1/n$. Then (11) reduces to

(12)
$$p_1f(p_1) + p_2f(p_2) \ge p_1f(q_1) + p_2f(q_2)$$

for all $p_1 \ge p_2 \ge p_3$, $q_1 \ge q_2 \ge p_3$ such that $p_1 + p_2 = q_1 + q_2 = 1 - (n-2)p_3$. By Theorem 1 we can conclude that f is increasing in the interval $(p_3, 1 - (n-1)p_3)$. Since we can choose p_3 to be arbitrarily small positive number we see that f is increasing in the interval (0, 1).

Secondly we show that f is differentiable in (0, 1). Assume that

there exists a point p_0 where f is not differentiable, then by choosing $a > p_0$, $p_3 = q_3 = \cdots = p_n = q_n < \min(p_0, a - p_0)$, we see by Theorem 1 that f is not differentiable at $a - p_0$. By changing a and $p_3 = \cdots = q_n$ adequately the set of points $a - p_0$ forms a set of positive measure, but this is impossible because, according to a theorem of Lebesgue, an increasing function is differentiable almost everywhere.

Finally, by Theorem 1 we can conclude, that $pf'(p) = \frac{1}{2}f'(\frac{1}{2})$ for all $p \in (0, 1)$, that is

(13)
$$pf'(p) \equiv c \text{ for all } p \in (0,1),$$

where c is nonnegative, since f is increasing. From (13) this theorem follows immediately.

4. In this section we make further restrictions to the domain of the inequality (1). We shall need the following lemma.

LEMMA 1. Let a_1, a_2, \dots, a_n be a sequence of reals such that

(14)
$$s_k = \sum_{i=1}^k a_i \ge 0 \quad \text{for} \quad 1 \le k \le n.$$

Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ be a sequence of reals. Then $\sum_{i=1}^n \lambda_i a_i \ge 0$.

Proof. This lemma is implicitly contained in Lemmas 3 and 5 in [7]. Now we shall prove a theorem, which is analogous to a result of L.Fuchs [8].

THEOREM 3. Let $x_1 \ge \cdots \ge x_n$, $y_1 \ge \cdots \ge y_n$ be arbitrary real numbers, and let p_1, \dots, p_n be arbitrary nonnegative numbers. Then the inequality

(15)
$$\sum_{i=1}^{n} p_i f(x_i) \geq \sum_{i=1}^{n} p_i f(y_i)$$

holds for every continuous convex and increasing function $f: [(\min(x_n, y_n), \max(x_1, y_1)] \rightarrow R \ if$

(16)
$$\sum_{i=1}^{k} p_i x_i \geq \sum_{i=1}^{k} p_i y_i \quad for \quad k = 1, \cdots, n.$$

Proof. Since f is a continuous convex and increasing function on the interval $[(\min(x_n, y_n), \max(x_1, y_1)],$ there is on the interval

354

 $[\min(x_n, y_n), \max(x_1, y_1))$ an increasing and nonnegative function h such that

(17)
$$f(p) = c + \int_{\alpha}^{p} h(q) dq$$

where $\alpha \in (\min(x_n, y_n), \max(x_1, y_1))$. It may be necessary to interpret (17) as an improper integral when p is an endpoint.

In order to show the inequality (15), we have to establish that

(18)
$$\sum_{i=1}^{n} p_i(f(x_i) - f(y_i)) = \sum_{i=1}^{n} p_i \int_{y_i}^{x_i} h(q) dq \ge 0,$$

or equivalently, we have to show that

(19)
$$\sum_{x_i \geq y_i} p_i \int_{y_i}^{x_i} h(q) dq \geq \sum_{x_i < y_i} p_i \int_{x_i}^{y_i} h(q) dq$$

Using the fact that h is increasing, we see that

(20)
$$\sum_{x_{i} < y_{i}} p_{i} \int_{x_{i}}^{y_{i}} h(q) dq \leq \sum_{x_{i} < y_{i}} p_{i}(y_{i} - x_{i}) h(y_{i})$$

and

(21)
$$\sum_{x_i \geq y_i} p_i \int_{y_i}^{x_i} h(q) dq \geq \sum_{x_i \geq y_i} p_i (x_i - y_i) h(y_i).$$

In order to prove (18) it is sufficient to show that

(22)
$$\sum_{x_i \geq y_i} p_i(x_i - y_i)h(y_i) \geq \sum_{x_i \geq y_i} p_i(y_i - x_i)h(y_i),$$

that is to show that

(23)
$$\sum_{i=1}^{n} (x_i - y_i) p_i h(y_i) \ge 0.$$

Lemma 1 yields (23) by letting $p_i(x_i - y_i) = a_i$ and $h(y_i) = \lambda_i$ for $1 \le i \le n$.

The following lemma can be found implicitly in Mitrinović [10, pp. 337–338].

LEMMA 2. Let b_1, b_2, \dots, b_n be real numbers, let $a_1 \ge \dots \ge a_n \ge 0$, and let

(24)
$$\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i \quad \text{for} \quad k = 1, \cdots, n.$$

Then $\sum_{i=1}^{n} a_i^2 \leq \sum_{i=1}^{n} a_i b_i \leq \sum_{i=1}^{n} b_i^2$.

Now, we can prove the main result of this section.

THEOREM 4. Any increasing and convex function $f: (0, 1) \rightarrow R$ satisfies the inequality

(25)
$$\sum_{i=1}^{n} p_i f(p_i) \ge \sum_{i=1}^{n} p_i f(q_i)$$

for all $P, Q \in B_n$, P > Q.

Proof. Let $P, Q \in B_n$, P > Q, then by Lemma 2

$$\sum_{i=1}^n p_i q_i \leq \sum_{i=1}^n p_i^2.$$

Therefore, according to Theorem 3, by setting $x_i = p_i$, $y_i = q_i$ into (16) $(i = 1, \dots, n)$ we see that any increasing and convex function f satisfies (25), since f is continuous on $[\min(p_n, q_n), p_1]$.

5. In the previous section we have shown that any convex and increasing function satisfies (1) for all $P, Q \in B_n$ such that P > Q. In this section we establish the same result by an alternative proof without the use of any additional lemmas.

Alternative proof. Since f is increasing and convex, f has an integral representation of the form

(26)
$$f(p) = \alpha_0 + \int_{\alpha}^{p} h(t) dt, \qquad \alpha \in (0,1)$$

where h is nonnegative and increasing function on (0, 1). In order to prove (25), we have to show that

$$\Sigma p_i[f(p_i) - f(q_i)] = \Sigma p_i \int_{q_i}^{p_i} h(t) dt \ge 0;$$

equivalently, we have to show that

356

$$\sum_{p_i \geq q_i} p_i \int_{q_i}^{p_i} h(t) dt \geq \sum_{p_i < q_i} p_i \int_{p_i}^{q_i} h(t) dt.$$

We see that

$$\sum_{p_i \geq q_i} (p_i - q_i) = \sum_{q_i > p_i} (q_i - p_i)$$

and

$$\sum_{\substack{p_i \ge q_i \\ 1 \le i \le k}} (p_i - q_i) \ge \sum_{\substack{q_i > p_i \\ 1 \le i \le k}} (q_i - p_i)$$

for $1 \le k \le n$. Let i_1 be the smallest index *i* for which $q_i > p_i$, let i_2 be the smallest index *i* such that $i_2 > i_1$ and $p_i > q_i$, let i_3 be the smallest index *i* such that $i_3 > i_2$ and $q_i > p_i$, and so on. We shall show that

(27)
$$\sum_{i=1}^{r_{i}-1} p_{i} \int_{q_{i}}^{p_{i}} h(t) dt \geq \sum_{i=r_{i}}^{r_{i}-1} p_{i} \int_{p_{i}}^{q_{i}} h(t) dt.$$

Furthermore if $\sum_{i=1}^{i_1-1} (p_i - q_i) > \sum_{i=i_1}^{i_2-1} (q_i - p_i)$, we shall show that

(28)
$$\sum_{i=1}^{i_1^*-1} p_i \int_{q_1^*}^{p_i} h(t) dt \ge \sum_{i=i_1}^{i_2^*-1} p_i \int_{p_i}^{q_i} h(t) dt,$$

where $q_i^* = q_i$ for all $i \le i_1^* - 1$, except possibly for $i = i_1^* - 1$, and $i_1^* - 1$ and $q_{i_1-1}^*$ are determined by the relation

$$\sum_{i=1}^{r_{i}^{*}-1} (p_{i} - q_{i}^{*}) = \sum_{i=1}^{r_{2}-1} (q_{i} - p_{i}).$$

(This last relation determines i_1^* uniquely, unless $p_i = q_i$ for some *i*, but in this latter case we can choose any of these indices.)

To prove (28), we remark that any interval of the type (q_i^*, p_i) is to the right of the interval (p_i, q_i) for $i_1 \le i \le i_2 - 1$ and that $\{p_i\}$ is a nonnegative and decreasing sequence. These things, together with the fact that h is a nonnegative and increasing function, prove (28). The next step of the proof consists in showing that

(29)
$$p_{i\uparrow-1} \int_{q_{i\uparrow-1}}^{q_{i\uparrow-1}} h(t) dt + \sum_{i=i\uparrow}^{i_{i\uparrow-1}} p_i \int_{q_i}^{p_i} h(t) dt + \sum_{i=i\downarrow}^{i_{i\uparrow-1}} p_i \int_{q_i}^{p_i} h(t) dt$$
$$\geq \sum_{i=i\downarrow}^{i_{i\uparrow-1}} p_i \int_{p_i}^{q_i} h(t) dt$$

and in proving the analogue of inequality (28) if

$$\sum_{i=1}^{t_i-1} (p_i - q_i) + \sum_{i=t_2}^{t_3-1} (p_i - q_i) > \sum_{i=t_1}^{t_2-1} (q_i - p_i) + \sum_{i=i_3}^{t_3-1} (q_i - p_i).$$

By repeating the argument we obtain the proof of this theorem.

6. With the aid of simple examples one can see that (1) may fail for some $P, Q \in B_n$ with P > Q if we assume that f is merely increasing, or that f is merely convex, or merely concave.

We shall next present, some related inequalities which may be of independent interest.

We need the following lemma.

LEMMA 3. Let u_1, u_2, \dots, u_n be a sequence of real numbers such that

(30)
$$S_k = \sum_{i=1}^k u_i \ge 0 \quad \text{for} \quad 1 \le k \le n-1$$

and

(31)
$$S_n = \sum_{i=1}^n u_i = 0.$$

Let $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, then

(32)
$$\sum_{i=1}^{n} \lambda_{i} u_{i} \leq 0.$$

Proof. The relation (31) implies that $\lambda_1 u_1 + \lambda_1 \sum_{i=2}^n u_i = 0$. Clearly $\sum_{i=k}^n u_i \leq 0$ for $1 \leq k \leq n$. Therefore

$$\lambda_1 \sum_{i=2}^n u_i \ge \lambda_2 \sum_{i=2}^n u_i, \quad \text{i.e.}$$
$$0 \ge \lambda_1 u_1 + \lambda_2 u_2 + \lambda_2 \sum_{i=3}^n u_i.$$

By repeating the argument we obtain the proof of this lemma.

Our next result will show, among other things, that the function $f(p) = 1/p^{\alpha}$ ($\alpha \ge 1$) satisfies the inequality (1) for all $P, Q \in B_n, P > Q$.

THEOREM 5. Let $P, Q \in B_n, P > Q$. Then

(33)
$$\sum_{i=1}^{n} \frac{p_i}{q_i^{\alpha}} \leq \sum_{i=1}^{n} \frac{1}{q_i^{\alpha-1}} \leq \sum_{i=1}^{n} \frac{1}{p_i^{\alpha-1}} \quad \text{where} \quad \alpha \geq 1.$$

Proof. The right-hand side of (33) is, of course, well-known; we mention it only because it shows that $1/p^{\alpha}$ for $\alpha \ge 1$ satisfies (1) for all $P, Q \in B_n$, P > Q. It is a special case of a theorem of Hardy-Littlewood-Pólya, which says that if P > Q, $p_1 \ge p_2 \ge \cdots \ge p_n$, $q_1 \ge \cdots \ge q_n$, and $f: [p_n, p_1] \to R$ is a continuous and convex function, then

(34)
$$\sum_{i=1}^{n} f(p_i) \geq \sum_{i=1}^{n} f(q_i).$$

Let $u_i = p_i - q_i$ for $i = 1, 2, \dots, n$. It is easy to see that $\sum_{i=1}^k u_i \ge 0$ for $1 \le k \le n - 1$ and $\sum_{i=1}^n u_i = 0$. Thus

$$\sum_{i=1}^{n} \frac{p_i}{q_i^{\alpha}} = \sum_{i=1}^{n} \frac{u_i}{q_i^{\alpha}} + \sum_{i=1}^{n} \frac{1}{q_i^{\alpha-1}} \leq \sum_{i=1}^{n} \frac{1}{q_i^{\alpha-1}}$$

since by Lemma 3 $\sum_{i=1}^{n} u_i / q_i^{\alpha} \leq 0$.

Finally we note two special cases of the previous theorem. If $P, Q \in B_n$ and P > Q, then

(35)
$$\sum_{i=1}^{n} \frac{p_i}{q_i} \leq n,$$

and

(36)
$$\sum_{i=1}^{n} \frac{p_{i}}{q_{i}^{2}} \leq \sum_{i=1}^{n} \frac{1}{q_{i}}.$$

References

1. R. Ash, Information Theory, Interscience Publishers, 1965.

2. P. Fischer, On the inequality $\sum p_i f(p_i) \ge \sum p_i f(q_i)$, Metrika, 18 (1972), 199–208.

3. ——, On the inequality $\Sigma g(p_i)f(p_i) \ge \Sigma g(p_i)f(q_i)$, Aequationes Math., 10 (1974), 23-33.

4. ——, On the inequality $\sum p_i f(p_i)/f(q_i) \leq 1$, Canad. Math. Bull. 17 (1974), 193–199.

5. -----, Sur l'inégalité $\Sigma[p_i f(p_i) + q_i f(q_i)] \ge [p_i f(q_i) + q_i f(p_i)]$, Period. Hungar., 5 (1974), 87–92.

6. ——, On the inequality $\sum p_i f(p_i)/f(q_i) \ge 1$, Pacific J. Math., 60 (1975), 65–74.

7. P. Fisher and J. A. R. Holbrook, *Matrices doubly stochastic by blocks*, Canad. J. Math., **29** No. 3 (1977), 559–571.

8. L. Fuchs, A new proof of an inequality of Hardy-Littlewood-Pólya, Mat. Tidsskr. B (1947), 53-54.

P. G. Kirmser, *Problem E* 1274, Amer. Math. Monthly, **64** (1957).
D. S. Mitrinović, *Analytic Inequalities*, Springer-Verlag, 1970.

Received April 20, 1977.

University of Guelph Guelph, Ontario, Canada

360