RATIONAL APPROXIMATION AND THE GROWTH OF ANALYTIC CAPACITY

CLAES FERNSTRÖM

Let X be a compact set in the complex plane C. Denote by R(X) the closure in the supremum norm of the rational functions with poles off X and by A(X) the set of continuous functions, which are analytic on the interior of X. The analytic capacity of a set S is denoted by $\gamma(S)$. For the definition of γ see below. Let $B_z(\delta) = \{\zeta \in \mathbf{C}; |z - \zeta| < \delta\}$ and let ∂X denote the boundary of X. Vitushkin has proved that R(X) = A(X) if

$$\underbrace{\lim_{\delta \to 0} \frac{\gamma(B_z(\delta) \setminus X)}{\delta} > 0 \text{ for all } z \in \partial X.$$

Let ψ be a function from \mathbb{R}^+ to \mathbb{R}^+ , where $\mathbb{R}^+ = \{x \in \mathbb{R}; x \ge 0\}$. We now ask the following questions. If $\lim_{\delta \to 0} \psi(\delta) = 0$, is it possible to find a compact set X such that $R(X) \ne A(X)$ and such that $\gamma(B_z(\delta) \setminus X) \ge \delta \psi(\delta)$ for all $z \in \partial X$ and for all δ , $0 < \delta < \delta_z$? If the answer is yes, can the answer still be yes, if $\lim_{\delta \to 0} \psi(\delta) = 0$ is replaced by $\lim_{\delta \to 0} \psi(\delta) > 0$? The answers of these questions can be found in Theorem 1 and Theorem 2.

DEFINITION. Let K be a compact subset of C. Then $\gamma(K) = \sup |f'(\infty)|$, where the supremum is taken over all functions f such that f is analytic on the unbounded component of $\mathbb{C}\setminus K$, $|f(z)| \leq 1$ for all $z \in \mathbb{C}$ and $f(\infty) = 0$. Let S be an arbitrary subset of C. Then $\gamma(S) = \sup \gamma(K)$, where the supremum is taken over all compact subsets of S.

For further information about this capacity see for instance [2], [3], [4] and [5].

THEOREM 1. Let $\delta_n \searrow 0$ when $n \rightarrow \infty$. Suppose that

$$\underbrace{\lim_{n\to\infty}\frac{\gamma(B_z(\delta_n)\backslash X)}{\delta_n}} > 0 \text{ for all } z \in \partial X.$$

Then R(X) = A(X).

THEOREM 2. Let ψ be a function from \mathbf{R}^+ to \mathbf{R}^+ . Suppose that $\lim_{\delta \to 0} \psi(\delta) = 0$. Then there exists a compact set X such that

(a) $R(X) \neq A(X)$

and

(b) $\gamma(B_z(\delta) \setminus X) \ge \psi(\delta)\delta$ for all $z \in \partial X$ and for all $\delta, 0 < \delta < \delta_z$.

REMARK. Theorem 1 gives the following. Let ψ be a function from \mathbf{R}^+ to \mathbf{R}^+ . Suppose that $\lim_{\delta \to 0} \psi(\delta) > 0$ and suppose that $\gamma(B_z(\delta) \setminus X) \ge \psi(\delta)\delta$ for all $z \in \partial X$ and for all δ , $0 < \delta < \delta_z$. Then R(X) = A(X).

2. The proofs. Theorem 1 can be proved in the same way as the theorem of Vitushkin mentioned in the introduction. See [4], Ch. 2, §4. We omit the proof.

In [1] A. M. Davie constructed a compact set X such that every point of ∂X is a peak point for R(X), but $R(X) \neq A(X)$. Our proof of Theorem 2 is a refinement of Davie's construction. We start by formulating two lemmas. The first lemma is well-known (see for instance [2], p. 199). The second lemma is due to Carleson. For a proof see [1].

LEMMA 1. Let L be a compact set on a line. Then

 $\gamma(L) \geq \frac{1}{4} \{ \text{the length of } L \}.$

LEMMA 2. Let E be a a perfect subset of the real line and I the closed interval [0,1]. Then we can find a continuous function on C, analytic outside $I \times E$, such that $f(\infty) = 0$, $f'(\infty) = \frac{1}{4}$ and $|f(z)| \leq 1$ for all $z \in C$.

If $x \in \mathbf{R}$, let [x] denote the greatest integer less than or equal to x.

Proof of Theorem 2. We may assume that $\psi(\delta)$ is a strictly increasing function. Put $a_n = 16\psi(2^{-n+1})$, $n = 1, 2, 3, \cdots$. Then $a_n \ge 0$ when $n \to \infty$.

Let f be an increasing function such that $f(-2 - \log a_n) = n$. Put

$$b_0 = 1$$

and

$$b_n = \min(e^{-f(n)}, \frac{1}{4}b_{n-1}) \text{ for } n \ge 1.$$

Let *E* be the usual Cantor set on the real axis such that the set E_n obtained in *n*th step consists of 2^n intervals of length b_n . Let I = [0, 1].

Let *n* be fixed for a moment. There exists an integer k_n such that

$$(1) b_n \ge 2^{-k_n}.$$

348

Denote the intervals in E_n by $I_{n,n}$, $i = 1, 2, \dots, 2^n$. In every $I \times I_{n,i}$ choose open disjoint discs with radius $2^{-k_n-3}e^{-n-1}$ in the following way. Every disc must not intersect $I \times E_{n+1}$ but every disc must touch $I \times E_{n+1}$. Moreover, the discs are arranged such that the centres of the discs lie on two horizontal lines in every $I_{n,i}$. There are 2^{k_n+3} centres on each line and the distance between two successive centres is 2^{-k_n-3} . Call the chosen discs $U_{n,i}$.

Repeat the construction for all $n, n = 1, 2, 3, \cdots$. Put

$$X = \overline{B_0(2)} \setminus \Big(\bigcup_{n,j} U_{n,j}\Big),$$

where $B_0(2)$ denotes the closure of $B_0(2)$. X is a compact set and

$$\partial X = \partial B_0(2) \cup \left(\bigcup_{n,j} \partial U_{n,j}\right) \cup (I \times E).$$

It is easy to see that $\sum_{n,j} \text{diam } U_{n,j} < \infty$. Lemma 2 and a standard argument give

$$R(X) \neq A(X)$$

See [2], p. 220. (i) Let

$$z \in \partial B_0(2) \cup \Big(\bigcup_{n,j} \partial U_{n,j}\Big).$$

Lemma 1 gives for all $m \ge m_z$

$$\gamma(B_z(2^{-m}) \setminus X) \geq \frac{1}{4} 2^{-m} \geq \frac{1}{4} a_m 2^{-m}.$$

(ii) Let $z \in I \times E$. Let *m* be a positive integer such that $a_m < e^{-2}$. The definition of *f* gives $f(-2 - \log a_m) = m$. Fix *n* such that $n = [-\log a_m] - 1$. If we use that *f* is an increasing function and the definition of b_m , we obtain

$$2^{-m} = e^{-f(-2 - \log a_m)} \ge e^{-f(-1 + [-\log a_m])} = e^{-f(n)} \ge b_n.$$

Thus

$$(2) 2^{-m} \ge b_n$$

One now easily shows that $B_z(2^{-m})$ contains disjoint discs $U_{n,j}$, $i = 1, 2, \dots, 2^{k_n+2}2^{-m}-2$, such that their centres are on one straight line. Lemma 1, (1) and (2) give

CLAES FERNSTRÖM

$$\gamma(B_{2}(2^{-m})|X) \ge \gamma\left(\bigcup_{i} U_{n,j_{i}}\right) \ge \frac{1}{4}\{2^{k_{n}+2}2^{-m}-2\}2^{-k_{n}-2}e^{-n-1}$$
$$= \frac{1}{4}e^{-n-1}\{2^{-m}-2^{-k_{n}-1}\} \ge \frac{1}{4}e^{-n-1}\{2^{-m}-\frac{1}{2}b_{n}\}$$
$$\ge \frac{1}{4}e^{-n-1}\{2^{-m}-\frac{1}{2}2^{-m}\} = \frac{1}{8}2^{-m}e^{-n-1}.$$

Thus

$$\gamma(B_z(2^{-m})\backslash X) \geq \frac{1}{8}2^{-m}e^{-n-1}$$

If we use that $n = [-\log a_m] - 1$, we obtain

$$e^{-n-1} = e^{-[-\log a_m]} \ge e^{\log a_m} = a_m.$$

Thus

$$\gamma(B_z(2^{-m}) \setminus X) \geq \frac{1}{8}a_m 2^{-m}.$$

Now (i) and (ii) give that for all $z \in \partial X$ there is a constant m_z such that

$$\gamma(B_z(2^{-m}) \setminus X) \ge \frac{1}{8} a_m 2^{-m}$$
 for all $m \ge m_z$.

The definition of a_m gives for all $z \in \partial X$ and for all $m \ge m_z$

 $\gamma(B_z(2^{-m})|X) \ge 2\psi(2^{-m+1})2^{-m}.$

If we use that ψ is increasing, we get

$$\gamma(B_z(\delta)\backslash X) \geq \psi(\delta)\delta$$

for all $z \in \partial X$ and for all δ , $0 < \delta < \delta_z$.

REFERENCES

1. A. M. Davie, An example on rational approximation, Bull. London Math. Soc., 2 (1970), 83-86.

2. T. W. Gamelin, Uniform algebras, Prentice-Hall series in modern analysis (1969).

3. J. Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, No. 297, Springer-Verlag (1972).

4. A. G. Vitushkin, *The analytic capacity of sets in problems of approximation theory*, Uspehi Mat. Nauk. 22 (1967), 141–199. (Russian Math. Surveys, 22 (1967), 139–200.)

5. L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag (1968).

Received August 31, 1976 and in revised form January 20, 1977.

UPPSALA UNIVERSITY Sysslomansgatan S-75223 UPPSALA, Sweden

350