RATIONAL APPROXIMATION AND THE GROWTH OF ANALYTIC CAPACITY

Claes Fernström

Let X be a compact set in the complex plane C. Denote by $R(X)$ the closure in the supremum norm of the rational functions with poles off X and by $A(X)$ the set of continuous functions, which are analytic on the interior of X. The analytic capacity of a set S is denoted by $\gamma(S)$. For the definition of γ see below. Let $B_{z}(\delta)=\{\zeta \in C ;|z-\zeta|<\delta\}$ and let ∂X denote the boundary of X. Vitushkin has proved that $R(X)=A(X)$ if

$$
\varliminf_{\delta \rightarrow 0} \frac{\gamma\left(B_{z}(\delta) \backslash X\right)}{\delta}>0 \text { for all } z \in \partial X
$$

Let ψ be a function from \mathbf{R}^{+}to \mathbf{R}^{+}, where $\mathbf{R}^{+}=\{x \in \mathbf{R}$; $x \geqq 0\}$. We now ask the following questions. If $\lim _{\delta \rightarrow 0} \psi(\delta)=$ 0 , is it possible to find a compact set X such that $R(X) \neq A(X)$ and such that $\gamma\left(B_{z}(\delta) \backslash X\right) \geqq \delta \psi(\delta)$ for all $z \in \partial X$ and for all δ, $0<\delta<\delta_{z}$? If the answer is yes, can the answer still be yes, if $\lim _{\delta \rightarrow 0} \psi(\delta)=0$ is replaced by $\lim _{\delta \rightarrow 0} \psi(\delta)>0$? The answers of these questions can be found in Theorem 1 and Theorem 2.

Definition. Let K be a compact subset of C. Then $\gamma(K)=$ $\sup \left|f^{\prime}(\infty)\right|$, where the supremium is taken over all functions f such that f is analytic on the unbounded component of $\mathbf{C} \backslash K,|f(z)| \leqq 1$ for all $z \in \mathbf{C}$ and $f(\infty)=0$. Let S be an arbitrary subset of \mathbf{C}. Then $\gamma(S)=$ sup $\gamma(K)$, where the supremum is taken over all compact subsets of S.

For further information about this capacity see for instance [2], [3], [4] and [5].

Theorem 1. Let $\delta_{n} \searrow 0$ when $n \rightarrow \infty$. Suppose that

$$
\varliminf_{n \rightarrow \infty} \frac{\gamma\left(B_{z}\left(\delta_{n}\right) \backslash X\right)}{\delta_{n}}>0 \text { for all } z \in \partial X .
$$

Then $R(X)=A(X)$.
Theorem 2. Let ψ be a function from \mathbf{R}^{+}to \mathbf{R}^{+}. Suppose that $\lim _{\delta \rightarrow 0} \psi(\delta)=0$. Then there exists a compact set X such that
(a) $\quad R(X) \neq A(X)$ and
(b) $\quad \gamma\left(B_{z}(\delta) \backslash X\right) \geqq \psi(\delta) \delta$ for all $z \in \partial X$ and for all $\delta, 0<\delta<\delta_{z}$.

Remark. Theorem 1 gives the following. Let ψ be a function from \mathbf{R}^{+}to \mathbf{R}^{+}. Suppose that $\lim _{\delta \rightarrow 0} \psi(\delta)>0$ and suppose that $\gamma\left(B_{z}(\delta) \backslash X\right) \geqq \psi(\delta) \delta$ for all $z \in \partial X$ and for all $\delta, 0<\delta<\delta_{z}$. Then $R(X)=A(X)$.
2. The proofs. Theorem 1 can be proved in the same way as the theorem of Vitushkin mentioned in the introduction. See [4], Ch. 2, §4. We omit the proof.

In [1] A. M. Davie constructed a compact set X such that every point of ∂X is a peak point for $R(X)$, but $R(X) \neq A(X)$. Our proof of Theorem 2 is a refinement of Davie's construction. We start by formulating two lemmas. The first lemma is well-known (see for instance [2], p. 199). The second lemma is due to Carleson. For a proof see [1].

Lemma 1. Let L be a compact set on a line. Then

$$
\gamma(L) \geqq \frac{1}{4}\{\text { the length of } L\} \text {. }
$$

Lemma 2. Let E be a a perfect subset of the real line and I the closed interval $[0,1]$. Then we can find a continuous function on \mathbf{C}, analytic outside $I \times E$, such that $f(\infty)=0, f^{\prime}(\infty)=\frac{1}{4}$ and $|f(z)| \leqq 1$ for all $z \in \mathbf{C}$.

If $x \in \mathbf{R}$, let $[x]$ denote the greatest integer less than or equal to x.
Proof of Theorem 2. We may assume that $\psi(\delta)$ is a strictly increasing function. Put $a_{n}=16 \psi\left(2^{-n+1}\right), n=1,2,3, \cdots$. Then $a_{n} \searrow 0$ when $n \rightarrow \infty$.

Let f be an increasing function such that $f\left(-2-\log a_{n}\right)=n$. Put

$$
b_{0}=1
$$

and

$$
b_{n}=\min \left(e^{-f(n)}, \frac{1}{4} b_{n-1}\right) \quad \text { for } \quad n \geqq 1
$$

Let E be the usual Cantor set on the real axis such that the set E_{n} obtained in nth step consists of 2^{n} intervals of length b_{n}. Let $I=[0,1]$.

Let n be fixed for a moment. There exists an integer k_{n} such that

$$
\begin{equation*}
b_{n} \geqq 2^{-k_{n}} \tag{1}
\end{equation*}
$$

Denote the intervals in E_{n} by $I_{n, t} i=1,2, \cdots, 2^{n}$. In every $I \times I_{n, 1}$ choose open disjoint discs with radius $2^{-k_{n}-3} e^{-n-1}$ in the following way. Every disc must not intersect $I \times E_{n+1}$ but every disc must touch $I \times$ E_{n+1}. Moreover, the discs are arranged such that the centres of the discs lie on two horizontal lines in every $I_{n, l}$. There are $2^{k_{n}+3}$ centres on each line and the distance between two successive centres is $2^{-k_{n}-3}$. Call the chosen discs $U_{n, j}$.

Repeat the construction for all $n, n=1,2,3, \cdots$. Put

$$
X=\overline{B_{0}(2)} \backslash\left(\bigcup_{n, j} U_{n, j}\right),
$$

where $\overline{B_{0}(2)}$ denotes the closure of $B_{0}(2) . \quad X$ is a compact set and

$$
\partial X=\partial B_{0}(2) \cup\left(\bigcup_{n, j} \partial U_{n, j}\right) \cup(I \times E)
$$

It is easy to see that $\sum_{n, j} \operatorname{diam} U_{n, j}<\infty$. Lemma 2 and a standard argument give

$$
R(X) \neq A(X)
$$

See [2], p. 220.
(i) Let

$$
z \in \partial B_{0}(2) \cup\left(\bigcup_{n, j} \partial U_{n, j}\right) .
$$

Lemma 1 gives for all $m \geqq m_{z}$

$$
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) \geqq \frac{1}{4} 2^{-m} \geqq \frac{1}{4} a_{m} 2^{-m} .
$$

(ii) Let $z \in I \times E$. Let m be a positive integer such that $a_{m}<$ e^{-2}. The definition of f gives $f\left(-2-\log a_{m}\right)=m$. Fix n such that $n=\left[-\log a_{m}\right]-1$. If we use that f is an increasing function and the definition of b_{n}, we obtain

$$
2^{-m}=e^{-f\left(-2-\log a_{m}\right)} \geqq e^{-f\left(-1+\left|-\log a_{m}\right|\right)}=e^{-f(n)} \geqq b_{n} .
$$

Thus

$$
\begin{equation*}
2^{-m} \geqq b_{n} \tag{2}
\end{equation*}
$$

One now easily shows that $B_{z}\left(2^{-m}\right)$ contains disjoint discs $U_{n, j, i}, i=$ $1,2, \cdots, 2^{k_{n}+2} 2^{-m}-2$, such that their centres are on one straight line. Lemma 1, (1) and (2) give

$$
\begin{aligned}
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) & \geqq \gamma\left(\bigcup_{1} U_{n, \mathrm{ji}}\right) \geqq \frac{1}{4}\left\{2^{k_{n}+2} 2^{-m}-2\right\} 2^{-k_{n}-2} e^{-n-1} \\
& =\frac{1}{4} e^{-n-1}\left\{2^{-m}-2^{-k_{n}-1}\right\} \geqq \frac{1}{4} e^{-n-1}\left\{2^{-m}-\frac{1}{2} b_{n}\right\} \\
& \geqq \frac{1}{4} e^{-n-1}\left\{2^{-m}-\frac{1}{2} 2^{-m}\right\}=\frac{1}{8} 2^{-m} e^{-n-1} .
\end{aligned}
$$

Thus

$$
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) \geqq \frac{1}{8} 2^{-m} e^{-n-1} .
$$

If we use that $n=\left[-\log a_{m}\right]-1$, we obtain

$$
e^{-n-1}=e^{-\left[-\log a_{m}\right]} \geqq e^{\log a_{m}}=a_{m}
$$

Thus

$$
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) \geqq \frac{1}{8} a_{m} 2^{-m} .
$$

Now (i) and (ii) give that for all $z \in \partial X$ there is a constant m_{z} such that

$$
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) \geqq \frac{1}{8} a_{m} 2^{-m} \text { for all } m \geqq m_{z} .
$$

The definition of a_{m} gives for all $z \in \partial X$ and for all $m \geqq m_{z}$

$$
\gamma\left(B_{z}\left(2^{-m}\right) \backslash X\right) \geqq 2 \psi\left(2^{-m+1}\right) 2^{-m} .
$$

If we use that ψ is increasing, we get

$$
\gamma\left(B_{z}(\delta) \backslash X\right) \geqq \psi(\delta) \delta
$$

for all $z \in \partial X$ and for all $\delta, 0<\delta<\delta_{z}$.

References

1. A. M. Davie, An example on rational approximation, Bull. London Math. Soc., 2 (1970), 83-86.
2. T. W. Gamelin, Uniform algebras, Prentice-Hall series in modern analysis (1969).
3. J. Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, No. 297, SpringerVerlag (1972).
4. A. G. Vitushkin, The analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk. 22 (1967), 141-199. (Russian Math. Surveys, 22 (1967), 139-200.)
5. L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag (1968).

Received August 31, 1976 and in revised form January 20, 1977.

```
Uppsala University
Sysslomansgatan
S-75223 UppSALA, SWEDEN
```

