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SQUARE INTEGRABLE REPRESENTATIONS AND THE
FOURIER ALGEBRA OF A UNIMODULAR GROUP

GlANCARLO MAUCERI

Let G be a unimodular group, and let λd be the sub-
representation of the left regular representation λ9 which
is the sum of the square integrable representations. The
purpose of this paper is to study the representation λd with
special emphasis on the closed subspace Ad(G) of the Fourier
algebra A(G) of the group which is generated by the coeffici-
ents of λd. In the last part of the paper we study in detail
a particular noncompact group for which λ — λd.

We denote, as in [4], by A{G) the algebra of the coefficients of
λ, that is the algebra of continuous functions on G of the type
(X(x)f, g), with f, ge L\G). The first section contains results of a
general nature: we show that Ad{G) is the dual space of a C*-algebra
contained in VN(G), the von Neumann algebra generated by the
operators X(x), xeG, and that its unit ball is the weak closure of
the extreme points of the unit ball of A(G). We also show that
Ad(G) c L\G) if and only if the formal degrees of the square integrable
representations of G are bounded away from zero.

In the last section we make a closer study of an example due
to J. Pell of a noncompact group G for which Ad(G) = A(G). We
show that the traces of the square integrable representations of this
group are bounded measures and we construct a kind of Dirichlet
kernels, which also turn out to be bounded measures.

We prove that summation with respect to these kernels converges
in LP(G) for 1 < p < <χ>, but not for L\G).

We conclude the paper with some remarks on the Wiener-Pitt
phenomenon for bounded measures on this group.

l We refer the reader to [4] for the definitions and the pro-
perties of the Fourier algebra A(G) and the Fourier-Stielt jes algebra
B(G) of a locally compact group G, and to [3] for the basic facts
about C*-algebras, von Neumann algebras and square integrable
representations of unimodular groups. Throughout the paper "group"
will always mean "locally compact unimodular group" and "repre-
sentation" will mean "unitary continuous representation."

Following Arsac [1], given a representation π of G on a Hubert
space Hπ, we denote by Aπ the closed subspace of B(G) spanned by
the coefficients of π, i.e., the functions {π(x)μ\v), x eG, μ, v eHπ. Let
Xd be the subrepresentation of the left regular representation of G
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which is the sum of all the irreducible square integrable representa-
tions of G. Then Ai(ίr) = Ax<i is a closed subspace of A(G). From
the results of [1] it follows easily that there exists a closed subspace
AC(G) c A{G) such that A(G) = i d ( ( ϊ ) φ i c ( G ) . Moreover Ad(G) itself
is the direct sum (&πeGd Aπ, where Gd denotes the family of all equi-
valence classes of irreducible square integrable representations of G.

Now, given a representation π of G on the Hubert Hπ, we denote
by π its conjugate representation on Bπ the Hubert space cpnjugate
to Hπ. We remember that A(G) is endowed with a structure of left
FiV(G)-module [3, Prop. 3.17]. For πeGd let Pπ and If* denote
respectively the minimal central projection and the minimal biinvariant
subspace corresponding to πv Then the following facts are a more
or less immediate consequence of [3, Ch. 14]. For every πeGd Aπ =
PήA(G) is contained in Kz. Moreover the mapping u —> dππ(u), where
dπ is the formal degree of π and π(u) — I π(x)u(x)dx, is an isometric

isomorphism of A* onto the Banach space TC(Hπ) of all trace class
operators on Hπ. Any function ueAd(G) is the sum of its Fourier
series:

where the series converges absolutely as well as in
If G is a compact abelian group it is well known th&t its dual

group G is a discrete measure space. Therefore A(G), being isoinetric
to l\G), can be identified with the dual of the Banach space co(G) of all
bounded complex functions on G, vanishing at infinity. The following
lemma shows that for G nonabelian a similar result holds for Ad(G).

LEMMA 1.1. Let co(Gd)r be the direct sum, in the C*-algebra
theoretical sense, of the algebras C* = π(C*(G)) for all π e Gd. Then
Ad{G) can be isometrically identified with the dual space of co(Gd)
via the following pairing:

πeGd

for Teco(Gd),ueAd(G).

Proof For every π e Gdf C* is isometric to the C*-algebra LC(Hπ)
of all compact operators on Hπ [3, 4.1.11, and 18.4.1], Since A* is
isometric to TC(Hπ), which is the dual of LC(Hπ), the lemma easily
follows.

Now, to find the extreme points of the unit ball of A(G)f we
need the following lemma.
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LEMMA 1.2. Let T be an operator in the unit ball of the space
TC(H) of trace class operators on a Hilbert space H. Then these
are equivalent:

( i ) T is an extreme point.
(ii) \T\ is a projection of rank one.
(iii) There exist μ,veH,\μ\ = \v\ = l such that Tφ = (Φ\v)μ for

every φe H.

Proof. Let us denote by TCγ{H) the unit ball of the space TC(H).
It is obvious that (ii) and (iii) are equivalent. We prove only the
equivalence between (i) and (ii). Let T be an extreme point in
TC^H) and suppose that there exist R, S in TC^H) such that
\T\ = 1/2(J2 + S); then 1 = l/2(tr (R) + tr (S)).

It follows that tr (R) = tr (S) = 1, so R and S are positive
operators.

Since | T\ — 1/2(1? + S) and since T is an extreme point we get:
T = UR = US. Then | T\ = U*UR = R and T = U*US = S because
U*U is greater than or equal to the supports of R and S. So | Γ |
is an extreme point of TC^H). Since TC(H) is the dual space of
the C*-algebra LC{H) [3, 4.1.2], the extreme points in its positive
unit ball are just zero and the pure states, i.e., the positive opera-
tors P in TG^H) such that 0 £ Pr ^ P implies P' = XP, 0 £ X ̂  1
[3, 2.5.51 This proves that | T\ must be a projection of rank one.

So (i) implies (ii).
To show that (ii) implies (i) we shall prove that if P is a pro-

jection of rank one and U is a partial isometry such that £7* Z7" = P,
then UP is an extreme point in TG^H). Since the final projection
of U is one-dimensional there is an isometry W which coincides with
U on its support. Therefore UP = WP. Now let R, S be in CTγ(H)
such that WP - l/2(i2 + S); then P = 1/2(W*R + W*S) and W*R, W*S e
TC^H). S'nce P is one-dimensional, P defines a pure state on
TC(H). Therefore P is an extreme point in TGλ{H) and P =
τr*ie - TT*S.

So UP = WP = R = S and UP is extreme in TC^H).

THEOREM 1.1. Let u be in the unit ball of A(G). Then u is
an extreme point if and only if there exist π e Gd and vectors μ> v e
Hπ, \μ\ = \ι>\ — 1, such that u(x) •= (π{x)μ\v). Moreover Ad(G) is the
closed subspace of A(G) spanned by the extreme points of the unit
ball of A(G).

Proof. Let u be an extreme po'nt in the unit ball of A(G). Let
P 6 VN(G) be the central support of u, considered as an ultra weakly
continuous form on VN(G). We claim that P is a minimal central
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projection in VN(G). Suppose to the contrary that there exists a
central projection Q in VN(G) such that 0 < Q < P. Let a = \\Qu\\A

and β = || (P - Q)u\\A. Then α + / 3 ^ 1 a n d α : > 0 , / 3 > 0 because P
is the minimal central projection such that Pu = w. Hence u — aut +
βu29 where ^ = Qw/||Qw|L and u2 = (P — Q)w/||(P — Q)w|U are in the
unit ball of A(G). But this contradicts the extremality of u. Hence
there exists πeGd such that u is an extreme point in the unit ball
of Aπ. Therefore dππ(u) is an extreme point in the unit ball of
TC(Hπ). Then, by Lemma 1.2, there exist μ, veHπ, \μ\ = \v\ = 1,
such that dππ(u)φ = (φ \ μ)v for every φ e Hπ. We may assume that
π is a subrepresentation of the left regular representation λ of G.
Then, denoting by [ | ] the inner product in Hπ and by ( | ) the
inner product in Hπ, and remembering that (φ\ψ) — [ψ\Φ], we have
by [3, 14.3.3]:

ί u(x)(π(x)φ\ψ)dx = (π(u)φ\ψ) =

for every φ,ψeBπ. Since, by [3, 14.3.1], the functions (π(x)φ\ψ),
φyiJΓeHπ are dense in Kz, the identity u{x)— [π{x)μ\v\ follows at
once. The last assertion of the theorem follows by Lemma 1.1 and
the Krein Milman theorem.

As we have seen in the introductory remarks, AπaL\G) for
every πeGd. It is natural to ask whether Ad(G) is contained in
L\G) or not. Since we have that \\u\\A = ^πdπ tr (\π(u)\) for every
ue Ad(G) and |/\\ = Σ , d x t r (TΓ(/)%(/)) for every fe®Kx,πeGd,
a comparison of the two formulas, together with the closed graph
theorem, yields at once that Ad{G) is contained in L\G) if and only
if the formal degrees of the square integrable representations of G
are bounded away from zero.

It is well known that if G is a locally compact abelian group
then A(G) = Ad{G) if and only if G is compact. If G is not abelian
the situation is more complicated, because there exist noncompact
groups such that A(G) = Ad(G). In the next section we shall study
in detail an example of such groups. A more detailed discussion of
the structure and properties of unimodular groups, whose regular
representation is the direct sum of irreducible subrepresentations,
will appear in a forthcoming paper of M. Picardello and the author
[7]. Here we bound ourselves to the following few remarks.

REMARK 1. Let G be a noncompact unimodular group such that
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A(G) = Ad(G). Then inf {dπ: π e Gd} = 0. This is an easy consequence
of the remark following Theorem 1.1 and the fact A(G) cannot be
contained in L\G)y because G is noncompact [9].

REMARK 2. Let G be as before and let if be a compact normal
subgroup of G. Then G/K is again a noncompact unimodular group
whose regular representation is the direct sum of its irreducible
components. Indeed G/K is clearly unimodular and noncompact and
A{GjK) is isometric to the biinvariant closed selfadjoint subalgebra
of A(G) of the functions which are constant on ϋΓ-cosets [4]. It
follows easily that A(G/K) = Ad(G/K).

We conclude this section with a result which is related to the
contents of the last remark but not to the main theme of the
paper. If G is any locally compact group and K is a compact normal
subgroup, the functions of A{G) which are constant on the cosets
of K form a closed biinvariant selfadjoint subalgebra of A(G). The
fact that viceversa every closed biinvariant selfadjoint subalgebra
of A{G) is of this type is a special case of a result of M. Takesaki
and N. Tatsuuma [Duality and subgroups, Annals of Math., v. 93
(1971) 344-364, Theorem 9]. It can also be deduced from the following
theorem which is a slight improvement of a result of [1]. We believe
that our proof, shorter than that of [1] can also shed light on the
result of Takesaki and Tatsuuma.

Let SI be a nonzero right invariant closed selfadjoint subalgebra
of A{G). Then by [11] there exists a projection P e VN(G) such that
SI = PA(G). Let HP = P{L\G)) be the corresponding subspace of
L\G).

THEOREM 1.2. The space HP is closed under multiplication by
functions of SI. If SI separates the points of G then SI = A(G).

Proof First we claim that SI Π HP is dense in HP. Indeed let /
be any function in HP and let φa be an approximated identity for the
convolution of continuous functions with compact support in G. Then
φa*f is in A(G) Π L\G) and lim φa*f = f in L\G). Since P(φa*f) e SI n
HP, the claim is proved. Now let ue% f eHP and let {fa} be a net
in Sί Π HP converging to / in L\G). Then ufa e Sί Π HP, because u
is a bounded function and 21 is an algebra. Since lim ufa = uf, we
have ufeHP.

To prove the last assertion of the theorem, observe that if Sί
separates the points of G, by the Stone-Weierstrass theorem, §ί is uni-
formly dense in the space C0(G) of continuous functions on G vanishing
at infinity. Therefore HP is also closed under the multiplication by
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functions in C0(G). Let g be any nonzero continuous function in HP.
Such function actually exists, because Sί D HP is dense in HP. Let
^ be any open set on which g is bounded away from zero. Now
let / be any continuous function with compact support in ^ and
denote by h the function so defined: h(x) = f(x)/g(x) for xe%S, h(x) = 0
for x^^f. Then h e C0(G) and / — hg is in HP. Hence HP contains
the space CC(^O of the continuous functions with compact support
in W. Applying the translation invariance of HP and a simple
partition of unity argument, it is easy to see that C£G) a HP. The-
refore HP = L\G). Hence P = I and 31 =

2* Fell's example* In [2] L. Baggett describes the following
example, due to Fell of group G such that A(G) = Ad(G).

Let p be a prime number, N the p-adic numbers field, K the
subset of p-adie numbers k whose valuation \k\v is one. K is a compact
abelian group w.r.t. multiplication. For neN, keK setk(n) = kn.
Then K acts as group of automorphisms of the additive group JV.
The orbits of N under the action of K are {0} and N3- = {n:neN,
I wIp• = ί?"5'}, i eZ. Let G = K°N be the semidirect product of K
and iV. Then G is a regular semidirect product because N=N =
(XJjezNj) U {0}. Therefore using the representation theory of group
extensions [6], we can describe the irreducible representations of G.

One verifies that G is the union of two sets G1 = {π3 : j e Z},
G2 — {πθ: θ 6 K). The representations in Gx can be realized on the
Hubert space L\K), while the representations in G2 are one-dimensional.

If πάeG, and feL\K), then:

l, m)f](k) = exp (2 πipjkm)f(kl)

ere the exponential

[π](l, m)f](k) = exp (2 πipkm)f(kl)

for (I, m)eG,keK. Here the exponential of a p-adic number

Σ
ί

is defined as follows:

f exp (2πipj Σ ^p*) for i < 0
exp ( I

(l for i ^ 0 .

If πθ 6 G2, (ί, m) e G, then π^(ί, m) = θ(l).
Figa-Talamanca in [5] proved that when A(G) Φ Ad(G) there exist

positive definite continuous functions which vanish at infinity but
are not in A(G). He also asked whether or not unimodularity alone
is sufficient to prove the existence of such functions for G noncompact.

The following corollary answers in the negative to this question.
Recall first that the Fourier-Stieltjes algebra B(G) is the algebra,
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under pointwise operations of all linear combinations of continuous
positive definite functions on G [4]. B(G) is also the Banach involution
algebra of the coefficients u(x) — (π(x)ξ \ η), ζ,ye Hπ of all unitary
continuous representations of G, normed thus:

COROLLARY &.I. B{G) is the direct sum A(G) 0 AP(G), where
AP{G) is the Banach involution algebra of the almost periodic func-
tions on G. In particular a function u e B(G) vanishes at infinity
if and only if ue A{G).

Proof Since G is countable an arbitrary unitary represen-
tation π of G is the direct sum (rather than the direct integral)
n = (0iez%^i) 0 (Θ*e£w*τr*). Therefore if u is any coefficient of
7Γ, u decomposes into the sum u=^uί + u2, ux e A{G) and u2 = Σβekneθ,
where the series converges in B(G), and hence uniformly. Thus u%

is an almost periodic function [3, 16.2.1. (v)]. If u vanishes at infinity
u2, ΰ2 and hence \uz\

2 vanish at infinity. Since AP{G) is a Banach
involution algebra with respect to pointwise operations and complex
conjugation, | u21

2 is an almost periodic function whose mean is zero.
Hence u2 = 0 [3, 16.3];

We shall now evaluate the "diagonal" coefficients of the repre-
sentation π3 e Gd, with respect to the orthonormal basis K in L\K).
This will enable us to compute the formal degrees of the square
integrable representations of G and to study the convergence of the
Fourier series for functions in LP(G), 1 ^ p < + <*>.

LEMMA 2.2. For π3-eGd denote by φ{jθ

](l, m) = (πs (l, m)θ\θ) the
coefficient of π3- corresponding to θ e K. Then φ$(l, m) = φU)(m)θ(l),
where:

1 for \m\p ^ pj

1 - ^ — for \m\p = pj+1

1 - p

0 for \m\p> pj+ί .

The formal degree of π3 is d3 — p~j[(p — l)/p]2.

Proof ψe have for (I, m) eG:

Φβ'θih m) = (ftjih ™)θ 10) — \ exp (2πipjkm)θ(kl)θ(k)dk(k)

where dk(k) denotes the Haar measure on K which coincides with the
Haar measure dN(k)\on N, since d#(mf k)'—\m\pdN(k) for every meN-..
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Then:

Φttθίh ™) = 0(1) [ exp(2πipskm)dN(k) (I, m)eG .

By a change of variable, setting pjkm = t and \m\p = pμ, tίie integral

/ = \ exp (2 iπp5km)dN(k) becomes:

I = pi-A exp (2πit)dN(t) .

So we need to compute, for every relative integer s, the integral:

I. = ί exp (2πit)dN(t) .

Let t be in N8; then t — p8 ΣίΓ0 ^%P% where 0 ^ tn < p for neN9

and t0 ^ 0. Then:

(exp (2πip8 Σ ^ΛPW) f o r s < 0
exp (2πit) = ] oύi<~s

(1 for s ^ O .

Therefore for s ^ 0, /8 is just the measure of N8 = ί?sίΓ, i.e., / s =
For s = - 1 we have:

I Σ e χ P (2πijp-ί)dN(t) = Σ exp Vπijp-1) \ dN(t)

where N_1>3 = {£: £ e N_lf t o '= j}. Since N^ is the disjoint union of the

iNLi j for j = 1, , p — 1 and iV-^ = JV_! < + i — i for i, j = 1, ,

p - ' 1:

^-i,i p — 1 J π-i p — 1

for every i = 1, , p — 1.
So

/__1 = — 2 — Σ exp (2πijp~ι) — ~~^ .
P — 1 i=i p — 1

Now for s ^ — 2, let J be the set of multiindices j = (j0, j 1 9 , j^a)
s.t. 0 <ί j t < p for 1 = 0, , 1 — s and j 0 Φ 0. Setting (j, p) =
Σί=o iίP* we have:

/s = Σ exp (2πip8(j, p » ( ^ ( t )

where i\Γg s = {t: 16 i\Γ8, t0 = i0, ^ = j l f , ^_8 = j ^ 8 ) . Since iV8 is the
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disjoint union of the Nttί, j eJ and N8ίj = N8yj, + <i,P> — (f, p>, j ,
, then

1)

for every jeJ. Therefore:

I = , * 1 λ Σ exp (2πΐps<i, p» = 0
P(P — 1) e./

because

exp (2πίps(j,

and

= Σ 'exp (2πipsk) - Σ

= 0

(2ττi p 8 - 1

Σ exp
k0

for every positive integer a.
We have thus that:

(I, m) -

for |

for I m I p = p i + 1

for \m\p> pj+1.

To compute the formal degree dό of π^ it is sufficient to observe
that, since φU) is a positive definition function, whose value in the
identity is one djι = \φ{j)\2 = p3'[p/p - I]2 [3, 14.4.3].

Let Ίt be the positive definite central measure on G, defined by
7j(f*g*) = tr (jΓyCOπyCff)*), for f,geCe(G) and ^ e ^ . If ^ denotes
the Dirac measure at 1 on ίΓ then 7, = ^ ( i ) (x) 5X (here we have identified
0(i) with the measure φU)(x)dN(x)). Indeed it is easy to verify by
means of Lemma 2.2 that for every ψeCc(N) and θeίt

(ΦU) <8> §M (8) 0) = 7 y(t <8>«).

The measure 7y is called the "character measure" of the representation
πs [3, 17.2.4].

DEFINITION 1. We define the Dίrichlet Kernel {Dn} by:

for every positive integer w.
An easy but lengthy computation shows that, for every n, Dn
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is a measure whose total variation | |AJU is bounded by the constant
2. Therefore the convolution operator X(Dn)f = Dn*f is a bounded
operator on LP(G) for 1 ^ p ^ + oo. Since 7**7y = dj'δ^-Ύj, for ΐ, i e
Z, λ(DΛ) is a projection, which for p = 2 coincides with the sum
Σi=-» P*y of ^ e minimal central projections associated with the square
integrable representations πjf j = —n, , n.

Therefore for feL\G):

j e Z

where the series converges in L\G).

DEFINITION 2. For every function / 6 LP(G), 1 <> p <^ co we call
Σi6z^i(75 */) the formal Fourier series of/ We say that a function
/ e LP(G) is a trigonometric polynomial in LP(G) if

D.*f= Σ>dJ(χi*f) = f
j=-n

for some n. The following theorem shows that the Dirichlet kernel
is a summability kernel for LP{G) 1 < p < oo.

THEOREM 2.3. // f eLp(G), I < p < oo, tfeew:

/ = lim A>*/ = lim Σ dj(Ύ3'*f)

in the LP(G) norm.

Proof. Assume that trigonometric polynomials ar^ dense in LP(G)
for 1 < p < oo. Let / eLV(G) ε > 0 and let P b0 a trigonometric
polynomial in LP(G), satisfying \f — P\p < s/4. For n large enough
we have DM*P = P and hence:

Therefore it remains only to show that trigonometric polynomials are
actually dense in LP(G), 1 < p < oo. Let g be a continuous function
with compact support in G. Then g e L\G) and \imn^+oo Dn*g =. # in
the L2(G) norm. On the other hand, since \Dn*g\p^2\g\p and
1 < p < oo, there exists a subsequence {DΛJk * g} which converges in
the weak topology of LP(G) to some limit h. By the Banach-Saks
theorem, there is a sequence of convex combinations of the Dnje*g,
which converges to h in the norm of LP(G). Taking a subsequence
which converges almost everwhere, we have g = h a*et ,Thus trigo-
nometric polynomials are dense in LP(G), I < P< °°.
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REMARK. The Dirichlet kernel {Dn} is not a summability kernel
for L\G). In fact let / e L\G) be a function such that

πθQ(f) = \ 5/(1, m)θll)dN(l)dN{m) Φθ

for some θoeK. For every function heL\G) and for every θeίt,
we have limi^_oo (πά(h)θ \ 0) = π^fc), by Lemma 2.2 and the dominated
converge theorem. Since πό(Dn * h) = 0 for | i | > w, then πθ(Dn*h) — 0
for every positive integer n.

Now, for every neN:

\Dn*f - / U ^ | |λ(2). / - / ) | | = sup HTΓXA,*/ - / ) | | ^ \πθQ(f)\

since ||π3-(A,*/ - f)\\ 2: | ( π , ( i W - /)<?. |^l, JeZ and

lim I(ff,(2?. / - f)θo\θo)I = Iπ,0(f) .

This proves that Dn * / cannot converge to / in L\G), if 7Γ<?0(/) ̂  0.
We conclude now our study of the group G with some final

remarks on the algebra M(G) of all complex measures of bounded
variation on G.

REMARK. There exists a measure μ e M(G) such that the operator
X(μ)f = μ*f for feL\G) has inverse and yet μ~γ does not exist, as
an element of the algebra M(G). This phenomenon was first dis-
covered in M(R) by Wiener and Pitt [8], who showed that there exists
a measure μ 6 M{R) such that 0 is in the spectrum of μ but the
Fourier-Stieltjes transform μ of μ is bounded away from zero. Since
K is a compact abalian group by [10, Th. 6.4.1], there exists a
measure v 6 M(K) such that 0 6 sp (v) and 0(0) ^ 1 for every 0 e K.

Then it is straightforward to check that if μ = δe - c^ (0) (g) (δx - v),
where δe is the Dirac measure at the identity β = (1, 0) of G, 0 6 sp(μ).
Moreover, for j Φ 0, πό(μ) is the identity on L\K) and ττo(/ί) is the
operator whose matrix representation with respect to the basis K in
L\K) is given by the diagonal matrix whose eigenvalues are the
0(0), θeK. Therefore λ(μ)"1 exists.

REMARK. The same construction as above, together with [10,
Th. 6.4.1] can be used to show that the spectral radius of a measure
μ in M{G) is much larger than the spectral radius of the operator
X(μ). Actually, given any complex number z0 there is a measure
μeM(G) such that zoesp(μ) and | |λ(μ) | |<: i . (Take veM(K) such
that zesp(v) and 10(0)| <£ 1 for every ΘeK, and set μ = d0φ

{0) (x)v.)
After this paper was completed we learned that Corollary 2.1

was also proved independently by M. E. Walter [12].
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