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SQUARE INTEGRABLE REPRESENTATIONS AND THE
FOURIER ALGEBRA OF A UNIMODULAR GROUP

GIANCARLO MAUCERI

Let G be a unimodular group, and let i; be the sub-
representation of the left regular representation 2, which
is the sum of the square integrable representations. The
purpose of this paper is to study the representation 1, with
special emphasis on the closed subspace A4;(G) of the Fourier
algebra A(G) of the group which is generated by the coeffici-
ents of A;. In the last part of the paper we study in detail
a particular noncompact group for which 1= 4,

We denote, as in [4], by A(G) the algebra of the coefficients of
», that is the algebra of continuous functions on G of the type
() f, 9), with f, ge L¥G). The first section contains results of a
general nature: we show that A,(G) is the dual space of a C*-algebra
contained in VN(G), the von Neumann algebra generated by the
operators \(z), x € G, and that its unit ball is the weak closure of
the extreme points of the unit ball of A(G). We also show that
A Q) c LXG) if and only if the formal degrees of the square integrable
representations of G are bounded away from zero.

In the last section we make a closer study of an example due
to J. Fell of a noncompact group G for which A,G) = A(G). We
show that the traces of the square integrable representations of this
group are bounded measures and we construct a kind of Dirichlet
kernels, which also turn out to be bounded measures.

We prove that summation with respect to these kernels converges
in L?(G@) for 1 < p < o, but not for LYG).

We conclude the paper with some remarks on the Wiener-Pitt
phenomenon for bounded measures on this group.

1. We refer the reader to [4] for the definitions and the pro-
perties of the Fourier algebra A(G) and the Fourier-Stieltjes algebra
B(G) of a locally compact group G, and to [3] for the basic facts
about C*-algebras, von Neumann algebras and square integrable
representations of unimodular groups. Throughout the paper “group”
will always mean “locally compact unimodular group” and “repre-
sentation” will mean “unitary continuous representation.”

Following Arsac [1], given a representation = of G on a Hilbert
space H,, we denote by A, the closed subspace of B(G@) spanned by
the coefficients of =, i.e., the functions (w(x)u|v), x€@G, i, ve H,. Let
M; be the subrepresentation of the left regular representation of G
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which is the sum of all the irreducible square integrable Iepresenta-
tions of G. Then Ad(G) = Az is'a closed subspace of A(G). From
the results of [1]:it follows easﬂy that there exists a closed subspace
A (G)C A(@) such that A(G) = Ad(G) @ A/(G). Moreover A,G) itself
is the direct sum @..s, A., where Gd denotes the family of all equi-
valence classes of irreducible square integrable representations of G.

Now, ‘given a representation 7 of G on the Hilbert H,, we denote
by 7 its conjugate representation.on H the Hilbert space conJugate
to H,. We remember that A(G) is endowed with a structure of left
VN(G)-module [3, Prop. 3.17. For ne@G, let P, and K, denote
respectively the minimal central projection and the minimal biinvariant
subspace correspondmg to #. Then the following facts are a more
or less immediate consequence of [3, Ch. 14]. For every 7eG, A, =
P-A(G) is contained in K,. Moreover the mapping u — d.w(u), where
d. is the formal degree of 7 and 7n(u) = \ #(x)u(x)dz, is an isometric
isomorphism of A: onto the Banach spaceGTC(H,t) of all trace class
operators on H,. Any function u € 4,(G) is the sum of its Fourier
series:

u(®@) = 2, d. tr (w(e™)m(w))
reGq

where the series converges absolutely as well as in A(G).

If G is a compact abelian group it is well known that its dual
group G is a discrete measure space. Therefore A(G), being .isometric
to 1(G), can be identified with the dual of the Banach space ¢,(G) of all

bounded complex functions on G, vanishing at infinity. The following
lemma shows that for G nonabelian a similar result holds for A,(G).

LEMMA 1.1. Let ¢,(G,) be the direct sum, in the Ci*,-algeb'm
theoretical sense, of the algebras C} = n(C*(G@)) for all weG,. Thf'n
A (G) can be isometrically identified with the dual space of ¢(G,)
via the following pairing:

(T, uy = 3. dx tr (m(T)m(w))

neGy

for Teel(Gy), we A G).

Proof. For every z e G,, C* is isometric to the C*-algebra LC(H,)
of all compact operators on H, [3, 4.1.11, and 18.4.1]. Since A4: is
isometric to TC(H,), which is the dual of LC(H,), the lemma easily
follows.

Now, to find the extreme points of the unit ball of A(G), we
need the following lemma.
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LEMMA 1.2, Let T be an operator in the wnit ball of the space
TC(H) of trace class operators on a Hilbert space H. Then these
are equivalent:

(i) T is an extreme point.

(ii) |T| is a projection of rank one.

(iii) There exist p,ve H, |p| = |v| =1 such that T¢ = (¢|v)pt for
every ¢¢€ H.

Proof. Let us denote by TC,(H) the unit ball of the space T'C(H).
It is obvious that (ii) and (iii) are equivalent. We prove only the
equivalence between (i) and (ii). Let T be an extreme point in
TC(H) and suppose that there exist R, S in TC,(H) such that
[T| = 1/2(R + S); then 1 = 1/2(tr (R) + tr (S)).

It follows that tr(R) = tr(S) =1, so R and S are positive
operators.

Since |T| = 1/2(R + S) and since T is an extreme point we get:
T=UR=US. Then |T|=U*UR =R and T =U*US = S because
U*U is greater than or equal to the supports of R and S. So |T|
is an extreme point of TC,(H). Since TC(H) is the dual space of
the C*-algebra LC(H) |3, 4.1.2}, the extreme points in its positive
unit ball are just zero and the pure states, i.e., the positive opera-
tors P in TC,(H) such that 0 £ P' < P implies P" = AP, 0 =31
[3, 2.5.5]. This proves that | 7| must be a projection of rank one.

So (i) implies (ii).

To show that (ii) implies (i) we shall prove that if P is a pro-
jection of rank one and U is a partial isometry such that U*U = P,
then UP is an extreme point in 7'C,(H). Since the final projection
of U is one-dimensional there is an isometry W which coincides with
U on its support. Therefore UP =WP. Now let R, S be in CT\(H)
such that WP =1/2(R + 8); then P=1/2(W*R + W*S) and W*R, W*S e
TC,(H). Snece P is one-dimensional, P defines a pure state on
TC(H). Therefore P is an extreme point in 7C,(H) and P =
W*R = W*S.

So UP =WP =R = S and UP is extreme in TC,(H).

THEOREM 1.1. Let w be in the unit ball of A(G). Then u 1is
an extrems point if and only if there exist we G, and vectors U, Ve
H, |¢| =|v| =1, such that u(z) = (x(x)pt|v). Moreover A, G) is the
closed subspace of A(G) spanned by the extreme points of the unit
ball of A(G).

Proof. Let u be an extreme po'nt in the unit ball of A(G). Let
Pec VN(G) be the central support of u, considered as an ultraweakly
continuous form on VN(G). We claim that P is a minimal central
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projection in VN(G). Suppose to the contrary that there exists a
central projection @ in VN(G) such that 0 < @ < P. Let @ = ||Qu]||,
and 8= ||(P— Qul||,. Then &« + =1 and « > 0, 8> 0 because P
is the minimal central projection such that Pu = . Hence u = au, -
Bu,, where u, = Qu/||Qu||, and u, = (P — Q)u/||(P — Q)ul|, are in the
unit ball of A(G). But this contradicts the extremality of u. Hence
there exists 7 e G, such that » is an extreme point in the unit ball
of A,. Therefore d.7(u) is an extreme point in the unit ball of
TC(H,). Then, by Lemma 1.2, there exist g, veH, |¢| = |v]| =1,
such that d.7(w)p = (¢|p)p for every sc H,., We may assume that
T is a subrepresentation of the left regular representation A of G.
Then, denoting by [:|-] the inner product in H, and by (-|-) the
inner product in H,, and remembering that (¢|+) = [v]4], we have
by [3, 14.8.8]:

| @ E@8 | 9)de = E@)s|¥) = d='(6] )
x| @@l E@EmE = | @@l WE@ED

for every ¢, € H,. Since, by [3, 14.3.1], the functions (w(x)¢|),
¢, v € H, are dense in K;, the identity w(x) = [n(x)z|v] follows at
once. The last assertion of the theorem follows by Lemma 1.1 and
the Krein Milman theorem.

As we have seen in the introductory remarks, A,c L*G) for
every e G, It is natural to ask whether A,G) is contained in
L*@G) or not. Since we have that ||u||, = D\ d. tr (|7(u)]) for every
ueA,(G) and |f|i = S d.tr @(f)*n(f)) for every fe® K, reG,
a comparison of the two formulas, together with the closed graph
theorem, yields at once that A,(G) is contained in L*G) if and only
if the formal degrees of the square integrable representations of G
are bounded away from zero.

It is well known that if G is a locally compact abelian group
then A(G) = A,G) if and only if G is compact. If G is not abelian
the situation is more complicated, because there exist noncompact
groups such that A(G) = 4,G). In the next section we shall study
in detail an example of such groups. A more detailed discussion of
the structure and properties of unimodular groups, whose regular
representation is the direct sum of irreducible subrepresentations,
will appear in a forthcoming paper of M. Picardello and the author
[7]. Here we bound ourselves to the following few remarks.

REMARK 1. Let G be a noncompact unimodular group such that
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A(G) = Ay(G@). Then inf{d,:zeG,} = 0. This is an easy consequence
of the remark following Theorem 1.1 and the fact A(G) cannot be
contained in L*G), because G is noncompact [9].

REMARK 2. Let G be as before and let K be a compact normal
subgroup of G. Then G/K is again a noncompact unimodular group
whose regular representation is the direct sum of its irreducible
components. Indeed G/K is clearly unimodular and noncompact and
A(G/K) is isometric to the biinvariant closed selfadjoint subalgebra
of A(G) of the functions which are constant on K-cosets [4]. It
follows easily that A(G/K) = A (G/K).

We conclude this section with a result which is related to the
contents of the last remark but not to the main theme of the
paper. If G is any locally compact group and K is a compact normal
subgroup, the functions of A(G) which are constant on the cosets
of K form a closed biinvariant selfadjoint subalgebra of A(G). The
fact that viceversa every closed biinvariant selfadjoint subalgebra
of A(G) is of this type is a special case of a result of M. Takesaki
and N. Tatsuuma [Duality and subgroups, Annals of Math., v. 93
(1971) 344-364, Theorem 9]. It can also be deduced from the following
theorem which is a slight improvement of a result of [1]. We believe
that our proof, shorter than that of [1] can also shed light on the
result of Takesaki and Tatsuuma.

Let U be a nonzero right invariant closed selfadjoint subalgebra
of A(G). Then by [11] there exists a projection P e VN(G) such that
A = PA(G). Let H, = P(L*G)) be the corresponding subspace of
LA(@G).

THEOREM 1.2. The space Hp is closed under multiplication by
functions of A. If U separates the points of G then W = A(G).

Proof. First we claim that AN H, is dense in H,. Indeed let f
be any function in H, and let ¢, be an approximated identity for the
convolution of continuous functions with compact support in G. Then
d.+f is in A(G)N LYG) and lim ¢,+f = f in L*G). Since P(g.xf)e AN
H,, the claim is proved. Now let u e, f € H, and let {f,} be a net
in A N H, converging to f in L¥G). Then uf,eUN Hp, because u
is a bounded function and ¥ is an algebra. Since lim uf, = uf, we
have wf € Hp.

To prove the last assertion of the theorem, observe that if %A
separates the points of @, by the Stone-Weierstrass theorem, ¥ is uni-
formly dense in the space C,(G) of continuous functions on G vanishing
at infinity. Therefore H, is also closed under the multiplication by
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functions in Cy(G@). Let g be any nonzero continuous function in H,.
Such function actually exists, because U N H, is dense in H,. ‘Let
% be any open set on which g is bounded away from zero. Now
let f be any continuous function with compact support in % and
denote by h the function so defined: h(x) = f(x)/g9(x) for x e %, h(x)=0
for x¢%. Then heC,(G) and f = hg is in H,. Hence H, contains
the space C,(Z’) of the continuous functions with compact support
in %. Applying the translation invariance of H, and a simple
partition of unity argument, it is easy to see that C.(G) © H,. The-
refore H, = L*G). Hence P = I and A = A(G).

2. Fell’s example. In [2] L. Baggett describes the following
example, due to Fell of group G such that A(G) = A, (G).

Let p be a prime number, N the p-adic numbers field, K the
subset of p-adic numbers k¥ whose valuation |%|, is one. K is a compact
abelian group w.r.t. multiplication. ‘For n €N, ke K set k(n) = kn.
Then K acts as group of automorphisms of the additive group N.
The orbits of N under the action of K are {0} and N; = {n:n €N,
|n|, =27, jeZ. Let G = KoN be the semidirect product of K
and N. Then G is a regular semidirect product because N = N =
(Ujez N;) U{0}. Therefore using the representation theory of group
extensions [6], we can describe the irreducible representations of G.

One verifies that G is the union of two sets G, = {m;: 7€ Z},
G, = {mo: 6612'}. The representations in G, can be realized on the
Hilbert space LA(K), while the representations in G, are one-dimensional.

If me@l and f e L*K), then:

(71, m)f1(k) = exp (2 wipkm)f (kl)
for (I, m)e @, ke K. Here the exponential of a p-adic number
n=p >np,0=n <p,
is defined as follows:

exp (2rwip’ >, n;p°) for 7<0
exp (2min) = BER
for 7=0.

If moe@G,, (I, m)e G, then my(l, m) = 6(0).

Figa-Talamanca in [5] proved that when A(G) # A,(G) there exist
positive definite continuous functions which vanish at infinity but
are not in A(G). He also asked whether or not unimodularity alone
is sufficient to prove the existence of such functions for G noncompact.

The following corollary answers in the negative to this question.
Recall first that the Fourier-Stieltjes algebra B(G) is the algebra,



SQUARE INTEGRABLE REPRESENTATIONS 149

under pointwise operations of all linear combinations of continuous
positive definite functions on G [4]. B(G) is also the Banach involution
algebra of the coefficients u(x) = (z(x)&|®), & ne H, of all unitary
continuous representations of G, normed thus:

llwllz = min {|£][7]: u(x) = (@(@):]D)} .

COROLLARY 2.1. B(G) is the direct sum A(G) D AP(G), where
AP(®) is the Banach involution algebre of the almost periodic func-
tions on G. In particular o function u <€ B(G) vanishes ot infinity
of and only if ue A(G).

Proof. Since G is countable an arbitrary unitary represen-
tation = of G is the direct sum (rather than the direct integral)
T = (@jezn;7;) D (Boci nomy). Therefore if w is any coefficient of
7,  decomposes into the sum u = u, + u,, u, € A(G) and u, = Xypc 4 140,
where the series converges in B(G), and hence uniformly. Thus u,
is an almost periodic function [3, 16.2.1. (v)]. If w vanishes at infinity
Uy, %, and hence |u,|> vanish at infinity. Since AP(G@) is a Banach
involution algebra with respect to pointwisé operations and complex
conjugation, |u,|* is an almost periodic function whose mean is zero.
Hence u, = 0 [3, 16.3].

We shall now evaluate the “diagonal” coefficients .of the repre-
sentation 7; e G,, with respect to the orthonormal basis K in L(K).
This will enable us to compute the formal degrees of the square
integrable representations of G and to study the convergence of the
Fourier series for functions in L?(G),1 < p < + oo.

LeMMA 2.2. For m;€G, denote by ¢, m) = (x(1, m)¥0|6) the
coeffictent of m; corresponding to 6 € K. Then ¢4 (l, m) = ¢(m)d(l),
where:

1 Sfor |m|, < p’
1
1_
0 Jor |m|, > pitt.

5m) = for ml|, = p*

The formal degrée of w; is d; = p~{(p — 1)/p}-
Proof. We have for (I, m)eG:
g6y(l, m) = (m;(l, m)6|6) = S exp (2wip’km)6(kl)6(k)d (k)
. K

where d,(k) denotes the Haar measure on K which coincides with the
Haar measure dy(k) on N, since dy(m, k)=|m|,dy(k) for every me N.
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Then:
ot m) = 60 | _exp @rivkmid,k) 1, m)eG .
K
By a change of variable, setting p’km = t and |m|, = p*, the integral

I= S exp (2 ixp’km)d (k) becomes:
K

I= p"‘*‘g exp (2it)d,(t) .

i—p

So we need to compute, for every relative integer s, the integral:
I = S exp (2it)dy(£) -
N&

Let ¢t be in N,; then t = p°>.i5t,p” where 0<t, <p for neN,
and ¢, % 0. Then:

exp 2mip® >, t,p") for s <0
exp (2rmit) = 0si<=s
1 for s=0.

Therefore for s = 0, I, is just the measure of N, = p°K, i.e., I, = p*.
For s = —1 we have:

1 .o __ -1 e s g
=5 exp@rijpdut) = Sexp@rigp) | dut
F=LIN_y 5 J=1 —1,7
where N_, ;={t:te N_,, t,=j}. Since N_, is the disjoint union of the
N_,;for j=1,---,p—1land N_,;=N_,;,+J5—iforq,5=1,---,
p— 1:

1 S D
SN_M_ W =25 aw =2y
for every =1, ---,p — L.
So
p_5 ip- —P
I, = exp Crijp™) = .
p—1i= p—1

Now for s < —2, let J be the set of multiindices 7 = (4o, 1, ***, J1-s)
st. 057, <p for 1=0,---,1—s and j,# 0. Setting {J, ») =
=2 5,»* we have:

1= 5, exp @rip’(G, ) || ds(®)

8,

where N, ; ={t:teN,t, = Ju bty = Jy, s by = Ji_s}. Since N, is the



SQUARE INTEGRABLE REPRESENTATIONS 151

disjoint union of the N, ;, je€J and N,; = N, ; + {4, ) — {5, »), 7,
3’ e J, then

dy(t) = P
), 0 =D

for every jeJ. Therefore:

I = 1 >, exp 2wip*(j, p)) = 0
p(p — 1)

because
. . 21 . Pl .
Z,exp @rip*(g, p)) = sz) exp (2mip°k) — kZ(,) exp (21 p* k)
je = -
and
a}i‘: exp 2riak) = 0
k=0

for every positive integer «.
We have thus that:

6l) for [m|, < p’
. 1 .
o551, m) = 0()p L, = {7 pﬂ(l) for [m|, = p™*
0 for |[m|, > p'*.

To compute the formal degree d; of =«; it is sufficient to observe
that, since ¢’ is a positive definition function, whose value in the
identity is one d;' = |¢Y'|* = p’[p/p — 1] [3, 14.4.3].

Let 7; be the positive definite central measure on G, defined by
v xg*) = tr (z;()m;(g)*), for f, e C,(G) and 7;€G,. If 5, denotes
the Dirac measure at 1 on K then 7; = ¢’ ® 8, (here we have identified
69 with the measure ¢ (x)dy(x)). Indeed it is easy to verify by
means of Lemma 2.2 that for every € C,(N) and 6e K

(37 QNP ®0) = V(v R0).

The measure 7; is called the “character measure” of the representation
w; [3, 17.2.4].

DEFINITION 1. We define the Dirichlet Kernel {D,} by:

for every positive integer n.
An easy but lengthy computation shows that, for every =, D,
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is a measure whose total variation || D, ||, is bounded by the constant
2. Therefore the convolution operator A(D,)f = D,*f is a bounded
operator on L?(G) for 1 < p < + o. Since 7,*7; = d;'9,;7;, for <, je
Z, A,(Dn) is a projection, which for p = 2 coincides with the sum
3——n Pr; of the minimal central projections associated with the square
1ntegrable representations w;, j = —n, -+, n.
Therefore for f € L*G):

f= ]é a;(vixf)
where the series converges in L*G).

DEFINITION 2. For every function feL?(@),1 < p < « we call
Sicz @;(V;xf) the formal Fourier series of f. We say that a function
feL*@) is a trigonometric polynomial in L*(G) if

Df = 3 ditsef) = f

for some n. The following theorem shows that the Dirichlet kernel
is a summability kernel for LP(G) 1 < p < oo.

THEOREM 2.3. If feL*(G),1 < p < o, then:

f=limDyf = lim S d;(7;+f)

n—>+oo n—o+o j=—n

wn the L*(G) norm.

Proof. Assume that trigonometric polynomials are dense in L*(G)
for 1<p< . Let feL?(G) ¢>0 and let P be a trigonometric
poiynomlal in L?(@), satisfying |f — P|, <¢/4. For-n large enough
we have D, P = P and hence:

IDof — flo = | Dax(f = P)|, +{P —fl,<e.

Therefore it remains only to show that trigonometric polynomials are
actually dense in L?(G),1 < p < «. Let g be a continuous function
with compact support in G. Thén ge L¥G) and lim,... D,xg = g in
the L*G) norm. On the other hand, since |D,*g|, < 2|g|, and
1 < p < o, there exists a subsequence {D,,*9} which converges in
the weak topology of L"(G) to some limit h By the Banach-Saks
theorem, there is a sequence of convex combinations of the D, xg,
which converges to h in the norm of L?(G). Taking a subsequence
which converges almost everwhere, we have g = h a.e, = Thus trigo-
nometric polynomials are dense in L?(®), 1 < p. <. .
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REMARK. The Dirichlet kernel {D,} is not a summability kernel
for LYG). In fact let f e LY(G) be a function such that

mo) = | | £ mdy(L)dy(m) 0

for some f,¢ K. For every function he LYG) and for every 0 ek,
we have lim;._., (7;j(h)0|6) = ws(h), by Lemma 2.2 and the dominated
converge theorem. Since 7;(D,*h) = 0 for |j| > n, then 7,(D,+h) =0
for every positive integer n.

Now, for every neN:

Dy f = F1 Z IMDyxf = DIl = sup | 7,(Dy+ f — NIl Z 1705
since [|7;(Dyxf — NIl 2 |@i(Doxf — £)6,]6))], 5 € Z and
lim | (@ ADyef — F)00100] = | 70F) -

This proves that D,*f cannot converge to f in LYG), if m;(f) +# 0.

We conclude now our study of the group G with some final
remarks on the algebra M(G) of all complex measures of bounded
variation on G.

REMARK. There exists a measure ¢ € M(G) such that the operator
Mp)f = p+f for feL¥G) has inverse and yet g does not exist, as
an element of the algebra M(G). This phenomenon was first dis-
covered in M(R) by Wiener and Pitt |8], who showed that there exists
a measure /€ M(R) such that 0 is in the spectrum of g but the
Fourier-Stieltjes transform £ of y is bounded away from zero. Since
K is a compact abzlian group by [10, Th. 6.4.1], there exists a
measure Y € M(K) such that 0esp (v) and Y(d) = 1 for every fe k.

Then it is straightforward to check that if ¢ = 4§, — dp® Q (6, — V),
where 0§, is the Dirac measure at the identity ¢ =(1, 0) of G, 0 < sp(x).
Moreover, for j +# 0, 7;(¢) is the identity on L*K) and m,(y¢) is the
operator whose matrix representation with respect to the basis K in
LK) is given by the diagonal matrix whose eigenvalues are the
D(0), 6 K. Therefore M) exists.

REMARK. The same construction as above, together with |10,
Th. 6.4.1] can be used to show that the spectral radius of a measure
¢ in M(G) is much larger than the spectral radius of the operator
M),  Actually, given any complex number 2, there is a measure
L€ M(G) such that z,esp(y) and ||Mp)|| =< 1. (Take ye M(K) such
that zesp (¥) and |D(0)| <1 for every e K, and set s = dp® @ v.)

After this paper was completed we learned that Corollary 2.1
was also proved independently by M. E. Walter [12].
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