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ON REPRESENTATIONS OF DISCRETE, FINITELY
GENERATED, TORSION-FREE,
NILPOTENT GROUPS

RoGER E. HOWE

With A. A. Kirillov’s work on the representations of nil-
potent lie groups, a new chapter in the theory of group
representations opened. Subsequent papers of Bernat, Moore
and Auslander-Kostant have further demonstrated the power
of the methods introduced by Kirillov. The purpose of this
paper is to begin an extension of these methods in yet an-
other direction. Specifically, the object here is to calculate
the primitive ideal spaces of the groups indicated in the title.

While this again is a fairly special extension of what eventually
should be a very far-reaching theory, it has present merit for several
reasons: (1) Much work necessary for further extensions is already
done in handling these particular groups. In particular, slight modi-
fications and extensions of these methods allow one to deal with most
unipotent groups that occur in arithmetic; (2) Most of these groups
are not type I (see Thoma [14]); hence they provide examples of
what can be said about such “bad” groups; (8) The theory of these
groups also sheds light on the harmonic analysis of finite p-groups.

From now on, I will always denote a discrete, finitely generated,
torsion-free, nilpotent group. e will be its identity element, I" = I'",
e, e, ete, its descending central series, and 2(I"), 2 ®(I), etc.
its ascending central series, If I'*™ = {¢}, we will say I" is k-step
nilpotent.

To carry out for I a program analogous to Kirillov’s we need
for I' a dual of a lie algebra, and so, first, a lie algebra. Malcev
(see [1]) has shown that any I" such as we are considering may be
embedded as a discrete subgroup in a simply connected nilpotent lie
group _#; so that the quotient _#°/I" is compact; furthermore .+~
and the embedding are unique up to isomorphism. From now on,
-+~ will always denote this group, and we will consider I to be a
subgroup of .4~ whenever this is convenient.

N will denote the lie algebra of _#. Then exp: N— _#" is a
diffeomorphism, with log as its inverse. We would like to say
log I" £ N is the lie algebra of I'. However, this makes no sense
in general, because log I' need be closed neither under addition, ner
under taking commutators. But suppose .#" is k-step nilpotent, and
L £ N is a lattice, such that [L, L] S k! L. Then an easy calcula-
tion with the Campbell-Hausdorff formula ([13]) shows that I’ =
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exp L is a subgroup of _#7 We will call such a lattice L, and exp L,
elementarily exponentiable, or e.e., for short.

Then given an e.e. group I, it has a well defined lie algebra L =
logI", and we may consider E, the dual group to L. Via exp, any
€ L may be considered to be a function on I"; and will be whenever
convenient. Now inner automorphisms of I" induce an action of I
on L by automorphisms, denoted by Ad, and by duality, an action
Ad* on L. More generally, if I' is not necessarily e.e., but I, < I

is e.e. and normal, I" acts on L, = lo/g\F1 by Ad*. We will denote
the quasiorbit space ([5]) of this action by 4(I", I').

To avoid problems in ergodic theory, we will not attempt to
compute representations of I”, but only primitive ideals of C*(I"), the
enveloping C*-algebra of [,(I') (see [6] and [12]). We denote the
primitive ideal space of a group G, with the hull-kernel topology,
by M(G). More generally if H S G is normal, we consider the rela-
tive primitive ideal space, M(H, G). This is defined as follows. G
acts on M(H) by conjugation. As H is in the kernel of this action,
we denote this action by Ad* G/H. Then M(H, G) is defined as the
quasiorbit space of Ad* G/H acting on M(H). As we will see later,
M(H, G) also has an interpretation in terms of restrictions to H of
irreducible representations of G. The main theorem of this paper
may now be stated as follows:

THEOREM. Let I’ be k-step nilpotent and e.e., L=1logl', L' =
2L, I'"=expL'. Then there is a canonical homeomorphism
a: A, ) — MU, T).

To arrive at this theorem, we have had to restrict our attention
to e.e. groups. It is therefore of interest to know how general they
are. In this regard, we have

PROPOSITION 0. If I is k-step nilpotent, but not e.e., let log I'**
denote the lattice generated in N by logI’. Then k)* log I'** =
log I', and [log I'**, log I'**]1 S 1/(k — 1)] log I'**. Hence there exist
e.e. lattices L, L, such that L, S logI’ € L,, and kl*log I'** < L,
and (kK!(k — 1)) L, < log I'**,

If ', I is e.e., and of finite index, then a very slight varia-
tion of the theorem allows computation of M([",, I') and as we shall
see there is a natural surjective map r: M(I") — M(I',, I') which is
boundedly finitely many to one. Thus, up to a finite covering, one
can calculate M(I") for any I.

Here is how the paper is organized. In §II we analyze the
finite dimensional representations of an e.e. I'. Roughly speaking,
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they correspond to finite Ad* I' orbits, and in a sense, form the
“rational” points of M(I). They are dense in M(I"). We obtain
character formulas, from which multiplicities of induced representa-
tions and tensor products may be read off. In §III, we develop
some machinery which facilitates calculation of primitive ideal spaces.
In §IV, the structure of ideals of C*(I') is investigated. We show
that to each primitive ideal, a trace may be associated in a unique
and nice way. In §V, the structure of Ad* I" orbits is analyzed in
a fashion as parallel as possible to that of §IV, and the main result
is established. In § VI, we apply some of the results to harmonic
analysis of finite p-groups. In an appendix, we prove Proposition 0.
Throughout, we lean very heavily on the Campbell-Hausdorff formula,
which we abbreviate C. H. Results of calculations using it will simply
be stated.

Perhaps, before beginning, it would be instructive to provide an
example of a particular primitive ideal space. Let H be the group
of upper triangular integral unipotent 3 X 3 matrices; i.e., the “dis-
crete Heisenberg group.” Then 2 (H) = Z, and there is a natural
fibration 7: M(H)— T = Z. The fiber over a torsion element of T
is a two-torus, and over an irrational, or nontorsion, element, is a
single point. The topology of M(H) is such that any set-theoretic
section of 7 is continuous.

I should like here to express my thanks to Calvin Moore. The
contents of this paper are essentially my doctoral dissertation, done
under his guidance. His influence on my development and direction
has been both beneficial and far-reaching.

II. Finite dimensional representations of I'. We begin with
some definitions and notation. Let G be a group. If a,be@, then
(a, b) = aba™b7" is the commutator of ¢ and b. If A, BZ G, then
(4, B) = {(a,b),ac A, beB}). If HZ G is a subgroup and V is a
representation of H, then U"¥ or U” is the corresponding induced
representation of G. If V has a character +, then U»# or U¥ may
also be used.

If again H < G is a subgroup, we say H is saturated if ¢g"e¢ H
implies g€ H, for any geG. Given H, H, will denote the smallest
saturated subgroup containing H. Evidently, if H is normal, H is
saturated if and only if G/H is torsion-free.

If "< I', then [ is of finite index in I'.. In terms of _#~ and
N, log I'; =log I' N N’, where N’ is the real subspace of N spanned
by log I".

If X is any set, f any function on X, and Y £ X any subset,
then fy is the restriction of f to Y. If f is a complex-valued func-
tion on Y, f is the extension of f to X, which is identically zero
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off Y. If A is a finite set, #(4) will denote the cardinality of A.

Now, given I', the family of groups {exp (nk!?log I'**)} form a
family of e.e. characteristic subgroups of I" of finite index, such that
any subgroup of finite index contains one of them, and their total
intersection reduces to the identity. This implies that I" has only a
finite number of subgroups of given finite index, and also that the
finite dimensional representations of I" form a sufficient family, i.e.,
separate points of C*(I).

To begin, we will show that all finite dimensional representations
of I' are monomial.

Consider first the one dimensional characters of I'. They form,
of course, the dual group of I'/I'®. But I'/T® = (I'/['®) x (I'"®[['®),
the first factor being a lattice, the second a finite group. Any

RS
character in (I'/I"") is the restriction of a character of _#; and so
may be extended to a character of any I containing I.

PROPOSITION 1. A finite dimensional irreducible representation

S
Uof I' may be written U=y XV, where yc'/['?), and V is «a
representation of a finite quotient group.

Proof. We induce on rank (I") (=dim .#"). Choose z¢€ 2°*(") —
2(I'), and choose y €I’ such that (x, y) = 2 # e. Now U, , defines
a character + on 2°(I'), and U(xyx ™) = 4(2)U(y). Hence, the spec-
trum of U(y), which is a finite set, is invariant when multiplied by
(z). Hence +(z*) =1 for some n. Let Z be the saturated sub-
group generated by z, and let 7" & I" be a normal subgroup of finite
index, such that + ;. is trivial. Then if U’ is an irreducible com-
ponent of U, U’ may be considered as a representation of I'/ZNI",
and so may be written U’ =)' ® V’. Extend y’ to a character y
of I'/T'. Consider V =% ® U (—denotes the conjugate, or inverse,
character). Then V' is a subrepresentation of V.. If H is a
normal subgroup of finite index in I', such that HN I’ < ker V7,
then V is seen to be trivial on HNI'. Writing U=yx®V gives
the result.

COROLLARY. All finite dimensional irreducible representations
U of I" are induced by one dimensional representations of subgroups
of T.

Proof. Write U=yxQ® V. By the classical result for finite
groups, V = V¥, 4 being a one dimensional character of I < I'.
Putting ¥’ = Xir, the character formula for induced representations
shows U = U*¥7'",
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Now we take a more global point of view towards the represen-
tations of I'. For this, we assume I is e.e., and write L = log .

If I' € L is a sublattice, we denote by 7, or », when no con-
fusion will arise, for the restriction map from L to I'. We say
e L is rational on L’ if () is a torsion element. Clearly + is
rational on L' if and only if it is rational on L;, if and only if
is identically one on nL’' for some n. If L’ is e.e., and + is rational
on L', we will also say + is rational on I = exp L/.

LEMMA 1. The orbit of apeE under Ad* I is finite +f and only
f 4 18 rational on log I'\?.

Proof. By C. H., given yeL, é6el', y— Addé"(y)enlog'®.
Therefore, if 4 is trivial on » log I'\®, 4 is invariant by Ad* exp (nL),
so #(Ad* I'(y)) < #(L/nL), which is finite. On the other hand, there
is a largest Ad " invariant sublattice I’ on which + is rational.
I'" = exp L' is then a saturated normal subgroup of I. If I" 2T,
then I'/T"” is nonabelian.

Consider z: I' — I'/I"", and choose 6 € I, so that z(d) € Z"*( /") —
2 (I'/I""). Then, by C. H., we see that for yelogl, Adé(y) =
y+mnflogd, y] (mod L'). By choice of L’ and 9, vlogd, y] is irrational
for some y. For this y, Ad*é"(4)(y) takes on an infinite number
of values. A fortiori, Ad* I'(y) is infinite.

LEMMA 2. Given n}ref/, the isotropy subgroun Iy of + under
Ad* T s an e.e. subgroup of I' and log I'y conststs of all yeL

such that [y, L]) = 1.

Proof. If 6el'y, then Ad* 6y = o, or (Ad*6 — I)» =1. C.H.
then shows, if I is e.e., this is equivalent to «([logd, L)) =1. If
a,belogl'y, then [b, L)< kl1L. Hence +(1/k![b,[a, L]]) =1. In-
terchanging ¢ and b, and using the Jacobi identity shows log I'y
is e.e.

LEMMA 8. If veL is Ad* I' invariant, then v defines a one-
dimensional character on I'.

Proof. C. H.

REMARK. This slight discrepancy between the +’s which are
class functions and those which are characters is the main source
of the complexity of the statement of Theorem 1.

To parallel Kirillov’s theory, we need also a notion like “maximal
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subordinate subalgebra.” This we now provide. Let . be a finite
abelian group, and B a biadditive, antisymmetric form on & X .&
into the circle. Then B induces a homomorphism .o — 7 in the
obvious way. The kernel <# of this map is called the radical of
B, and B factors to a nondegenerate form B on %/ = 7. B
can be polarized, that is, there are subgroups .,Q/:, Ja/: of . such
that &7 = &/: x &7, and p is trivial on .7, so B defines an iso-

morphism of .7 with 5%, and vice-versa. A subgroup .97 of .5
containing <2, such that there (.84/#) = (W% /.%%) and B/.%7 is trivial
will be said to form half a polarization of B.

Now if .o is a finite lie algebra, and we&a/: then By(l,l,) =
v([l;, .]) is a biadditive antisymmetric form, and &, its radical, is
a subalgebra of .9 It would be nice to find a subalgebra & such
that & 2 <&, and /B, formed half a polarization of By on
| Hy. If F exists, we will call it a polarizing subalgebra for .

LEMMA 4. If &7 is a nilpotent finite lie algebra, and q/re,ja/:
then polarizing subalgebras for + exist.

REMARKS. The parallel result for real nilpotent lie algebras was
essentially established by Kirillov [9] and emphasized by Brezin [4].

(b) This is a key place where we imitate Kirillov’s inductive
arguments.

Proof. We first assume a sublemma.

Sublemma. If B is an antisymmetric biadditive form on the
finite abelian group .97 into the circle, with radical <2, and 7. &% —
S| is the natural map, and if 7(.%7), 7(.%4) form a polarization
of B, for subgroups .94 containing <7, then #(.%7) = #(.%4), and
# A Z) = §(7[4). Conversely, if #(.9) = #(.7)4(2), and Bis
trivial on .97, then 7(.%7) forms half of a polarization of B.

Now consider By on &% Clearly 2°(L), the center of .& con-
sidered as lie algebra, is contained in .&&. Let C = kery N 27(7).

If C +# {e}, then factor + to ap’e&?/\%. Then there is a subalgebra
' of |¥, polarizing ' by induction. Then .&7 the inverse
image of “’ in . is seen by the sublemma to be a polarizing
subalgebra for q.

If + is faithful on 2°(.%7), then 2 must be cyclic. Let z gen-
erate 2. Pick ye 2®(Ww) — 2(), such that pye 2() for
some prime p. Then C(y), the centralizer of y in .97 is an ideal of
7, of index p. For C(y) # .7 since y¢ 2 (), but [y, ]S
% (&), so the Jacobi identity implies [.%7 .97] < C(y), so C(y) is an
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ideal. Pick z€ . — C(y). Then [y, 2] = mz, for some m e Z. Hence
[ay, bx] = abmz. In particular [py, x] = pmz = ¢, so pm is a multiple
of the period of z, and [y, px] = pmz = e. Therefore px e C(y), and
x generates .7 over C(y), so C(y) is as stated.

Let ' = 40, By induction ' admits a polarizing subalgebra
. Clearly y € &y, but y ¢ &y, since ¥([x, y]) # 1 by construction.
Hence, as #(F) = #£(Fy)8(C(y)), and #(FZ). /| Hy) = p, the sublemma
shows &’ must polarize .

These notions are easily transferable to L = log I" for I" e.e. If
e L, then we may form By just as in the finite case. By Lemma
2, “#y =logl'y. Hence if « is rational on I'®, <Z is of finite
index in L. Moreover, by changing + by a character of I'/["{?,
which does not alter By, we may assume r is itself rational, and
so0 by passing to a quotient algebra, may consider ourselves to be
in the finite situation. In particular we may talk about polarizing
subalgebras P for «. The crucial relation that P satisfies is here
expressible by the formula #(P/<%,) = #(L/P). We have the following
corollary to Lemma 4.

COROLLARY. Taking L =logl, if eL is rational on I'?®,
then there are e.e. polarizing subalgebras P for .

Proof. As indicated above, we may assume + is rational on L.
Put L' = (1/k!)L. Let 4 be the element of L' defined by +'(y) =
J(k1*y) for ye L'. Passing to a finite quotient, applying Lemma 4,
and lifting back, there is P’ < L/, a polarizing subalgebra for 4.
But then P = k! P’ is an e.e. polarizing subalgebra for «r.

LEMMA 5. If P is an e.e. polarizing subalgebra for n;reI:, Jr
rational on log L, and +f m = exp P, then Ad* n(y) consists of all
@€ L such that @ = Y.

Proof. Since P is e.e., and polarizes +, C. H. shows Ad* z(y)r =
4rp for any x€zw. On the other hand, the remark just above shows
by counting that Ad* z(y) consists of all possible .

Now we need a lemma on induced representations. We say rep-
resentations U, V, are disjoint if they have no common subrepre-
sentation.

LEmMMA 6. If G is a finite group, H, H, subgroups, V, re-
presentations of H, with characters «, then U, = U™ and U, =
U":2: qre disjoint if and only if Ad* z(y,) and Ad* y(i,) are or-
thogonal (in I(G)) for all z,y in G. U, is irreducible if and only
of Ad* x(y,) 1s orthogonal to +, for all x€G — H,.
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Proof. Let @, be the character of U,. By the formula for
induced characters, @; is a sum of terms Ad* z(4;). As U, and U,
are disjoint if and only if @, and ¢, are orthogonal, and since the
inner product of Ad* z(+r,) and Ad* y(+,) is nonnegative, since they
are positive definite functions, the first statement is clear. By a
theorem of Mackey [10], U is irreducible if and only if the repre-
sentation V? of x'H,x = H!}, given by h'— V(zh'z™) when restricted
to HiN H = F, is disjoint from V, restricted to F, for any x€G —
H,. This happens exactly when +,, and Ad* z(+,), are orthogonal
in [(F). But off F, either ++, or Ad* x(4,) vanishes. Hence or-
thogonality on F' implies orthogonality on G, and conversely. The
result follows.

We now classify the finite dimensional representations of I'.

THEOREM 1. Let I' be an e.e., discrete, finitely generated, tor-
sion free-nilpotent group. Let L =logl, L' =2L, I'" =exp L/,
L® =log I'®, and nl = exp (nL) for n > 2.

(a) Let 0 be a finite Ad* I orbit im L, and <c0. Let n be
the period of i?. Call n the period of 0. If n is odd, then a
finite dimensional irreducible representation U, of I’ may be as-
sociated to 0 in the following manmer. If P is an e.e. polarizing
subalgebra for ¥, and & = exp P, put v, = ¥. Then U, = U¥. The
dimension of U, is #(0)%, and the character &, of U, is given by
£ =2(0)"12 S 0. All representations of the form Yy QV, with y <
I|ir®, and V defined modulo nl’, n odd, are realized in this manner.

(b) In general, there is a surjective map from finite dimen-
sional irreducible representations of I to finite Ad* I" orbits in L.
This map 18 at most §(I'/I"')-to-one. If {U;}\=, map onto the orbit
0, then the U, are permuted transitively among themselves by the
actton Ad* '/, so that they define a point tn MUI',I'). 1 is «a
power of 2, and if m is the common dimension of the U,, lm* = %(0).
The sum of the characters & of the U, is given by the formula

2& =m" Ztveo P-

REMARK. For two-step nilpotent groups, it is not hard to see
that the correspondence is even more immediate: the functions ¢ in
an orbit 0 span the annihilator (in [.(I")) of the kernel of U,. This
appears not to be true in general. The precise role played by an
individual «,keﬁ is as yet unclear.

Proof. It may be verified using C. H., that for 6 e I, log (dnl") =
log 6 + log nI". Therefore, if A, is the group of elements of L of
order dividing =», A, can be naturally interpreted as a set of func-
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tions on I'/nl’, and in fact, they form an orthogonal basis for I, (I'/nl").

More generally, if y¢ ]7]“\;2’, ¥ A, may be considered as an orthogonal
basis for the induced module U?*», where ¥, = X.r. Moreover,
given 0 with odd period =, it is clearly a subset of y A, for suita-
ble y.

Now take 0 with odd period, and 4 €0, and P, an e.e., polarizing
subalgebra for 4, and put 7 = exp P. By Lemma 3, «* is a character
on 7, and since 4, has odd period, it follows that 4 itself defines
a character +, on w. Consider U, = U¥>", This is a representation
of I with dimension #(I"/z) = #(0)“2%. It follows from Lemma 5, and
the orthogonality properties of characters on finite abelian groups,
that #(0)™2 e aazr @ = 4. From this, we see if 6 € I' — «, Ad* 0(4,)
is then a similar sum over a subset of 0, disjoint from Ad* z(y),
and hence is orthogonal to . Lemma 6 now shows U, is irreducible.
The general formula for induced characters is seen to reduce to the
stated one in this case. The formula then guarantees that U, is
independent of « and x, and depends only on 0. Finally, since
dim U2 = £(0), the total dimension of representations coming from
orbits in A, is #(4,) = #("/nI’). This shows that all representations
of the stated form arise in this manner. This establishes (a).

For (b), we refine these considerations. Take I, I’, and a finite
Ad* I' orbit 0 in L', and Y €0. Since [L/, L'] £ 2k! L/, the proof of
the corollary to Lemma 4 shows we can find P’ £ I/, which polarizes
4, and such that [P’, P'1S2k!P’. Put P = (1/2)P'. Then P ise.e.,
and P’ is an ideal in P. Write #’ = expP’, and w =expP. As
before Ad* 7'(y) = 0., consists of all pe L’ such that @, = 4p.
However 4., may not define a character on n’. We account for this
discrepancy in this way. Consider the form By(z, y) = ¥(1/2[z, ¥])
on P'. If By is trivial, then + does define a character on #/, and
we may proceed as before. If B is not trivial, let A’ £ P’ denote
its radical. Then A’ is an e.e. ideal in P’, and A’ 2 2P’ D [P, PV].
Let A=(1/24", & =expA, &' =expA’. Also, let I'" be the
subgroup of I' generated by I” and m, and let H=znI". We
verify the following facts:

(1) ., defines a character v, of .o,

(2) O, = Ad* n(yr) consists of all gpeﬁ' such that @, = 9.

(3) .7 is the subgroup of 7 consisting of elements a such that
Ad* a()p = Pire

(4) Ao =$T"[7") 7 Dpeo, P-

(5) #('[I'"") = $(H[r") and $(I"'/I"") = ¥(x/H).

(6) ®n < H. If heH— 7, then h¢ &%

(1) is clear by the definition of .’ and Lemma 8. Since
i/ ) = #(xn'/.&7"), (2) is implied by the parallel fact for 0., together
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with (8). (38) follows from the definition of A, using C. H. (4) is
immediate from (2) and the orthogonality properties of the @’s. (5)
is clear from the definitions, as is the first statement of (6). The
second statement in (6) follows because P’ polarizes 4, and so con-
stitutes a maximal subalgebra of L’ on which By, is trivial. We
now consider the induced representation V = V¥~ of n’. Since P’
is e.e., one can verify using C. H., that log 7'® is just the lattice
generated by [P/, P']. Since « must be trivial on this lattice, it
follows that V is just a sum of #(z'/.%7’) one dimensional represen-
tations with characters {x,}. Consider the induced representation
U, =U""of I". U,is irreducible. Because, if 6 eI’ — H, then (4)
above shows Ad* d(4,) is orthogonal to +,, so a fortiori, Ad* d(},) is
orthogonal to ¥,. On the other hand, if 6=h ¢ H—x’, then Ad* h(),)(p)=
X:(P)¥o((h, D)), for pen’. Hence Ad* h(),) = ), means ((h, P)) = v,
([log h, log p]) = 1 for all p in 7/, which is not true since h ¢ .7 by
(6) above.

Therefore, by the transitivity properties of induced representa-
tions, the representation U = U¥>*" of I, decomposes into a direct
sum of #(x'/.o7") factors U,, each of dimension #(I"”/z'). However,
the U, are not all distinct. From the discussion just above, we see
U, and U; are equivalent if and only if ¥, and y; are in the same
Ad* H/z' orbit. But we also saw above that Ad* H/z' acts freely
and faithfully on the {x;,}. Hence each equivalence class of repre-
sentations occurs #(H/zn') times, and the number [ of equivalence
classes is I = #(zn'/.7")#(H/7')"*. Both these numbers are powers of
two, and [ is clearly < #(I'/I""). Now Ad* z/z’ permutes transitively
the {x.}, because 7/.%7 acts freely on the {y,}, for the same reason
that H/z' does, and #(z/.%7) = #(n’/.&7'). Therefore Ad* I'’[/I’ per-
mutes transitively the classes of the {U,}; so they define a point in
M, r.

, We now compute the character & of U. If {h;} is a set of coset
representatives for .o’ in H, and {0;} is a set of coset representa-
tives for H in I, then {0;h;} are a set of coset representatives of
&7 in I, and & = 3, ; Ad* 0;h,(V)

= iZ} Ad* ok, (8" ’)‘1%20. P)
= 5 Ad* O,((B(H) W] 7)) S5 )
= g(I"/H)™ 3, @, where 0" = Ad* I'"'(y) ,
peo0’’
since {6;} also form a set of coset representatives for 7 in I"”’. Since

each representation involved occurs #(H/z') times, &, the character
of the quasiequivalent multiplicity free representation is
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b= (D) HHT) 3, 0 = 40T 5, p = @m U™ 5, o

Let S, S, S” denote the isotropy subgroups of + under Ad* I,
Ad* I, and Ad* I". We have #(I"/S") = #(I"’/=’)* since P polarizes .
Moreover, since Ad* .97 fixes 4, we have #(S"”/S") = #(.&7/n’). From
these relations, we see #(0") = #(I'""/S") = #(I"'|SNEI"'|TE(s7 ")~
But #(I'/I"#I™"|I") = $(I'/I") and #(n/ 7)4(/z") = $#(x/z’). But as
the two right hand sides are equal, and as #(z/.%) = #(#’/.%7"), and
using (5), we have #(0") = I(dim U,)".

Thus the set 0” may be associated with representations {U.}
satisfying all the claims of the theorem. But 0 is just a union of
07 = Ad* 8(0”), for del’, and the representations associated to dif-
ferent 0 are clearly disjoint, again by orthogonality. Hence the
theorem holds for 0, and a counting argument again shows all finite
dimensional representations are obtained thus. _

We remark that the character formula allows effective computa-
tion of the irreducible decomposition of induced representations and
tensor products of representations of I'. For example, let F < I’
be e.e., and contain nl" for n odd, and let « be a one dimensional
character of F/nI". Then UYT contains U, to multiplicity #(0)~/*
£(0 N 7(+p)), Where 7 = Tiogr.

III. Primitive ideal spaces. Let G be a countable discrete
group. Then M(G) is compact. According to Fell [6] and Prosser
[12], if I is a closed two-sided *-ideal of C*(G), the map which sends
I to I+, the Ad* G invariant weak *-closed cone of positive definite
functions in [..(G) which annihilate I is a bijective correspondence,
and the hull-kernel topology goes over to the weak *-topology, which
in this case is equivalent to the topology of pointwise convergence.
Call I* a dual ideal. We will use the correspondence I« I+ to
consider I* as defining or being a closed set in M(G). If I* is a
minimal dual ideal, then I is maximal, and the corresponding set in
M(G) is a closed point. Recall M(G@) is T, if and only if all primi-
tive ideals are maximal. If S is a dual ideal, and S = I+, we will
also write I = S*.

Let H < G be a normal subgroup. We have already introduced
Ad* G/H and M(H;G). If S is a dual ideal of G, let 74(S) = #(S)
be the dual ideal of H consisting of restrictions to H of functions
in §. If T is a dual ideal of H, let ¢(T) be the dual ideal of G
generated by all functions f, fe T. The following relations are im-
mediate:

(1) »&(T)H)=T.

(2) =(S) is Ad* G/H invariant, and T = »(#(T)) if and only if T
is Ad* G/H invariant.
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(8) 7rotor =17 and 4107017 = 1.
Moreover, if G is amenable (of if just G/H is amenable) (as is the
case for our I') then it follows from results of Greenleaf [8] that

(4) 1(»(8)=S18.

(5) S =14((S)) if and only if fe S implies (f )€ S.
If S =1(»(S)), we will say, S is induced from H, or S may be re-
duced to H. We do not distinguish notationally between this opera-
tion 7, and the » previously defined for restrictions of characters to
sublattices, because they are in fact the same operation.

r and % are closely related to familiar operations on represen-

tations.

LEMMA 7. If I is a closed *ideal of C*(G), and U is a repre-
sentation of G with kernel I, then U, has kernel J = r(I*)*. If J
18 & closed *ideal of C*(H), V a representation of H with kernel
J, then U"" has as kernel in C*(G) the tdeal I = i(J*)".

Proof. This is straight forward from the definitions, plus the
well known fact ([6]) that if U is a representation of G, on the
Hilbert space 57, with kernel I < C*(G), then I* is generated as
dual ideal by the positive definite functions g — (U(g)z, ), x € SZ

LEMMA 8. If IeM(@), then »(I*) defines a point in M(H, G).

Proof. M(H, G) is the quasiorbit space of the action Ad* G/H
on M(H). Let U be an irreducible representation of G on 5%, with
kernel I, and consider U,;. Let .& be the von Neumann algebra
generated by U(H), and C the center of &7 If B< M(H) is a closed
subset, let I, be the intersection of the ideals in B. Let 5% be the
null space of U(I;). Then P; orthogonal projection onto 573, is in
C. Since I31UB2 =1Iz N IBzy Gy 5, = FHn, + T,y SO PBluBz = sup (PBl, Paz)-
Therefore, we may extend this to a map from the o-Boolean algebra
of Borel sets of M(H) to the projections in C. (See [7].)

Take xe€ M(H) — r(I*). Since M(H) is compact, and »(I*) is
closed, there exists a neighborhood A of =z, disjoint from »(I*).
Therefore P, + 1 — P,_, is zero, since M — A 2 »([*), and P,;:, =1,
by Lemma 7. On the other hand, take x € #(I*), and A any neigh-
borhood of . Then P, is not zero. For if it were, then P,_, = 1,
so the null space of U(I,_,) would be all of 5%, which would mean
I, .S ker Uy or M — A2 r(I'), contrary to the choice of x and A.

Now choose {x;}2,e 5%, which span, and such that |z, = 1.
Define M(B) = Y(Pyx;, x;,) for any borel set B < M. This defines a
borel measure on M. Clearly M(B) =0~ P, =0. We conclude
that ¢ is concentrated on 7(I*), and on no smaller closed set. Since
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U is irreducible for G, ¢ is also seen to be ergodic under Ad* G/H.

M(H) is known to be an analytic Borel space, and in particular,
countably separated. Now apply Lemma 1.1 of Effros and Hahn [5]
to conclude that g is concentrated in a unique quasiorbit for Ad* G/H.
From the above, r(I*) must be this quasiorbit.

Thus 7 becomes a map r: M(G) — M(H, G), and M(H, G) is seen
to be the quotient of M(G) by the equivalence relation defined by
restriction of dual ideals of G to H. This justifies the term, relative
primitive ideal space. 7 is clearly continuous.

Addendum. The author is grateful to the reference for raising
the following two points bearing on the justification of the term
“relative primitive ideal space.” The points are:

(1) Is r: M(G)— M(H) surjective?

(2) Is r an open map? That is, is the topology of M(H,G) as the
set of ideals of C*(H) primitive relative to the action of Ad* G/H
the same as the topology of M(H, G) as the set of classes of primi-
tive ideals of C*(G) relativized to H?

The answer to (1) is always yes. I do not know the answer to
(2) in general, but if G/H is amenable the answer is yes. Amenability
is certainly not necessary, because one can take H to be finite for
example. However, amenability covers the case at hand.

The proof of surjectivity goes as follows. Let 0c M(H) be an
Ad* G/H quasiorbit. Let Je M(H) generate 0 (i.e., Ad* G/H(J) is
dense in 0). Let V be an irreducible representation of H corre-
sponding to .J, on the Hilbert space 2#. Consider the positive definite
function f(h) = (V(h)u, u), defined by the unit vector ue 5% f is
an extreme point of the states of C*(H). Now #(i(J)) = 0, and (J)
is a dual ideal of C*(G); so the states in 4(J) form a support of the
states of C*(@) (see [12]). Thus we may choose an extreme point
g of the states of C*(G), such that gei(J) and g, = f. The dual
ideal generated by g will then define a point of M(G) whose image
under 7 is 0.

We pass to point (2). The inverse images under 7 of the closed
sets of M(H, G) are the sets of the form S, = {I< M(G); r(I) < J},
J < M(H), J closed and Ad* G/H invariant. Now let T be any
closed r-saturated set in M(G), and let J= »(T). Then I claim
oW(J) S T always. To see this, let I be any point of T. Then to
say that T is r-saturated is to say that for any I’, such that
r(I"y = r(I), I'e T. Now the proof of surjectivity given above may
be refined by looking at all possible functions g chosen as in that
argument, If f is an extreme point of the states in »(I), the
Krein-Milman theorem implies fe r~*(r(I)), hence f€T. Applying the
Krein-Milman theorem again shows ge T for any ger(I), and apply-
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ing it again shows ¢((T')) & T as claimed. Thus always S; 2 T 2
i(J). But now if G/H is amenable, «(»(T)) 2 T. Hence T = +(+(T)) =
S; and the topologies agree in this case.

We also note that it is only the nonmaximal primitive ideals
which cause problems in these considerations. If one is interested
in maximal ideals only, then Lemma 8 and the above discussion
become trivial. 7 exists and is open automatically.

IV. Structure of ideals of C*(I").

LEMMA 9. (a) Let I', = I be a subgroup, and n(l',) its nor-
malizer in I'. Then n(l), = n(l},).

(b) If I', is saturated, them for amy 6€l’, Ni-—. Ado™([,) =
Nizt Ad* 6~(") for any (k — 1) values of n,, when I' is k-step nil-
potent.

(¢) Ifé,d,el, (0,0, =0 if and only tf (67, 05) =0 for some
m, n = 0.

Proof. C. H.

Now let I be a primitive ideal of C*(I"), and let U be an irre-
ducible representation of I with kernel I. Let K(I) be the kernel
of U in I', and let C(I) be the inverse image in I" of the center of
U. Then U,y is a one dimensional character y(I). K(I) is the
subset of 6 € C(I) for which ¥(I)(0) = 1. C(I) is the subset of 6,
such that all feI' are eigenfunctions under translation by é, with
eigenvalue y(I)(0). In particular K and C depend only on I. K(I),
is the subset of 0 € C(I) such that y(I)(0)" =1 for some n. Clearly
K(I), C(I), etc. are normal subgroups of I'. If n:I'—TI/K(I), is
the natural map, then 7#7Y(2"(n(I"))) = C(I),. We write also K(I) =
K(I*) and so forth.

It is our purpose in this section to reduce I‘ to subgroups of
I', eventually to C(I)..

LEMMA 10. Notations as above. C(I'), is the largest of those
subgroups H such that ry(I*) is finite dimensional. If I* is mot
finite dimensional, thenm choose 0 €' such that w(0)e 2 (x(l")) —
n(CI),). Let D(9) be the tnverse image in I' of the centralizer of
w(0) in w(l"). Then I* can be reduced to D(J).

Proof. Let {0;}7-, be a set of coset representatives for C(I) in
C(I),. Then {U(9,)} span U(l,(C(I),)), so Iy, certainly is finite di-
mensional. Let H, be maximal among subgroups H such that »,(I")
is finite dimensional. Then clearly H, is saturated, and as H, 2 C(I),
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H,2>C), If H,+ C(),, then H, contains F, a normal subgroup
of I', strictly containing C(I),. As 7 (I') is a fortior: finite dimen-
sional, U is a sum of finitely many distinct finite dimensional rep-
resentations which are permuted by Ad* I'/F. Using Proposition 1,
we see that there is F”, an e.e. characteristic subgroup of F, such
that U, is a sum of finitely many distinct one dimensional repre-
sentations, again permuted by Ad*I'/F’. By C. H., analogously
with Lemma 1, we see (I, F') € K(I),. From the discussion just
before this lemma, this shows F' < C(I),, which is a contradiction,
establishing our first assertion.

Choose ¢ as stated. C. H. shows that there is m € Z such that
for all acZ, (6~ I') < C(I), and (6°™, D)) < K(I) for all a. By
Lemma 9, D(0™) = D(0), so assume m =1. Now if ye¢D (9),
x(ID)((0, )* # 1 for any a<Z. Define operators T, on [.(I") defined
by T.(f) = 1/(n + 1) 3%, Ad* 6(f). Clearly T, preserves I+. More-
over, for felI*, yel', T,(f)(y) = (1/(n + 1) 33~ x((0, ¥))~9)f(y). Thus,
as n goes to «, T,.f approaches (f5;) as a weak* limit, so we see
I* is indeed reducible to D(d).

Let us denote the process of reduction described above by
R, T,6,I';), where I', = D(6) is the group to which we reduce
I‘. Suppose we apply R(I',I,06,I)) to I' to obtain r,(I*). By
Lemma 8, we may choose I/, a dual ideal of I',, such that »,(I*)
is the Ad* I'/I", quasiorbit generated by I, so I* = 4(It+). If 1t is
not finite dimensional, we may go through another reduction process
R, Ty, 6, '), and so forth. Clearly this process must terminate
in a finite dimensional dual ideal I on a saturated subgroup I'; of
I', and we will have 4(I}) = I*. Hence any primitive dual ideal is
generated by a finite dimensional dual ideal on a subgroup. More-
over, we have

PROPOSITION 2. Notations as above, let + be a one dimensional
representation of H & I’ such that + induces I} on I',. Then the
representation U¥Z of I' is irreducible, with kernel I*.

Proof. That U¥¥ has kernel I‘+ follows from Lemma 7. To
show it is irreducible we invoke a theorem of Mackey ([10], p. 141).
If yelI', and HNy™* Hy has finite index in H, then y normalizes
I, If yerl, then Ad* y4 and - are inequivalent on H Ny~ Hy,
since 4 on H induces I} by assumption. If yen(l’;) — I, then y
was eliminated at some stage R(If, I';, 0,41, I';1). Now clearly
0;€C(I}), and C(I}) & H, and + agrees with y(I}) on C(I}) for all
j =1l. The fact that y was eliminated by d,,, implies that (6;,,, ¥) €
C(I}) and y(I})((0;41 ¥)) # 1. This implies that d,,,€ HN y'Hy, and
Ad* yy(0,,,) # ¥(0;;,). Hence the criteria of Mackey’s result are
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satisfied, so U¥*# is irreducible.
Thus the classical fact persists, slightly changed.

LEMMA 11. I+ can be reduced to C(I*),.

Proof. Using R( ) successively, reduce I' to the finite dimen-
sional dual ideal I on I',. Then K(I}), 2 I'®. Take 6el’, and put
H=Ny-—-Ado"(I";), and let H, be the set of heH, such that
6%, k) e HN K(I}), for all a,beZ. Then C. H. shows that H and
H, are saturated subgroups of I, normalized by 4, and H, =2 H®,
Again using C. H., it may be verified that for some m > 0, (6*", H) €
CIH) N H and (6°m, H) < K(I})N H, for all a€Z. As replacing o
by 6™ does not change H or H,, once more by C. H., we may as-
sume m = 1.

Now consider, for this 4, the operators T,, defined in Lemma
10. By the above, Ad*d°f(h) = f(h) y(I+)((d% k) for heH, and
fel+. Hence, if he H, T,f(h) = f(h). Also, if yeI' — H, Lemma
9 (b) implies T,f(y)—0 as n— . Take he H— H,. Then T,f(h) =
F)A/(n + 1) 37, x(IH)((é%, h)). C. H. shows that this last summa-
tion has the form >\7,e¥ where P(j) is a polynomial. Moreover,
by definition of H,, h¢ H, implies at least one coefficient of P is
irrational. By a classical theorem of Weyl [15], this means T,f (k) — 0,
as n— oo, Therefore, we can reduce I to H,. Repeating this
process using other ¢’s, we see we may reduce I* to a finite dimen-
sional dual ideal J* on a saturated normal subgroup F of I'. More-
over, the fact that Ad* o y(I+)(h) = x(I+)(h) for he K(I}) N H, will
imply that Ad* I'(rz(x(I}))) is a finite set. Therefore, 75(I*) is finite
dimensional. Therefore, by Lemma 10, FF & C(I‘),. But clearly I*
cannot be reduced to a saturated subgroup smaller than C(I%),.
Therefore F' = C(I*),.

COROLLARY. Hvery primitive ideal in C*(I") ©s determined by
its intersection with ().

Proof. This is the same as to say, that if I +# I are two
distinet primitive dual ideals of I', then the w*-closed subspaces
M, M,, of l.,(I") generated by I, I}, are also distinct. But if M, =
M, then, as every function in M, transforms by x(I;) under trans-
lation by elements of C(I}), we must have C = C(I}) = C(I}), and
x(It) = x(I3#), and, also, of course M,,, = M,,. But for finite di-
mensional dual ideals, the result is quite clear. Hence I}, = Ijg,.
But now Lemma 11 shows I} = I3.

This corollary may be regarded as a sort of Tauberian theorem
for I'.
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By a trace on I', we understand a positive definite function f,
constant on conjugacy classes, and satisfying f(¢) =1 (¢ is the
identity). See [14].

PROPOSITION 3. Ewery primitive dual ideal I' contains exactly
one trace, 0(I*). If I* is finite dimensional, let U be an irreduci-
ble representation of I', corresponding to I*. Then if @(U) is the
character of U, 6(I*) = (dim U)"'p(U). In general, let {J}}i-, be the
primitive dual ideals of C(I*), contained wn I. Then 0(I*) =
A/n)S, 6(TH).

Proof. The formula above clearly gives a trace contained in
I*. Let @ be any trace in I*. Then clearly ¢ agrees with 6(I*) on
C(I*),. Let notations be as in Lemma 10. Then the method of
reduction in that lemma shows immediately that ¢ is zero on
T ZE (T K(IY),)) — C(I+),. We will show by induction on <, that
@ is zero on H, = (2" (I'/K(I"),)) — C(I*),. Suppose it so for 1,
and take 6 e H,,, — H,. Let Y be the conjugacy class of é. Since
(I, H,,)C H, every gcY can be written g =4d-h, with heH,.
7n(y) is infinite. Therefore, either (1) for some g, = 0h,, there are
an infinite number of g, = oh; such that h;'h, € C(I*), — K(I'),; or (2)
there are an infinite number of g, = dh,, such that hh;'¢ C(I*),, for
1 # j. If (1) holds, then, for some <, hy'h, € C(I*) — K(I*), so ¢(g,) =
1(hi*h)@(g,), which is impossible unless o(g,) = @(g,) = 0. If (2)
holds, consider the element a of I,(I") given by a = ¢ — @(0)(Z,i0 g:)-

Then a* =e—@(8)(Xi g7%), and a*a=e(1l+n|p(d)F) — (@) (im0 g:)—
P(0) (o g7 + [9(0) F(Xizs hi*h:). Hence 0 = p(a*a) =1 — n|p(d),
for any n. But this is absurd, unless ¢(d) = 0, so the proposition
is established.

COROLLARY. M(I") is T,. That s, every primitive ideal of I’
18 maximal.

Proof. If I, = I, are two primitive ideals, then I} 2 I}, so
0(Iy) < I, so 6(Iy) = 0(It), so It = I.

As an example, we give the traces of the primitive ideals of
H, the “discrete Heisenberg group,” cited in the introduction. Clearly
for any primitive ideal I of C*(H), 2 (H) < C(I). If x(I) is irra-
tional, i.e., faithful on 2°(H), then 2" (H) = C(I), and the reduction
process shows 6(I) is x(I) on 2 (H) and zero elsewhere.

If x(I) is rational, however, #(2"(H)/ker x(I)N 2 (H)) =mn is
finite. Let H' = Hjker x(I) N 2°(H), and let w: H— H' be the quo-
tient map. Then $(H'/2 (H')) = n®is also finite, and y(I) is actually
defined on #~Y(Z (H")) = C(I). It is an arbitrary extension of y(I)
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on 2°(H) to C(I). An easy calculation shows that again @(I) is y(I)
on C(I), and zero elsewhere. These facts, together with the descrip-
tion of the topology to be provided by Theorem 2, suffice to verify
the description of M(H) given earlier.

To finish this section, we note a result on type. We will say a
primitive ideal I of C*(I") is type one if there is only one irreduc-
ible representation of I" with kernel I. This is more or less con-
sistent with existing terminology.

ProPOSITION 4. If IS C*(I') is a type one primitive ideal, I*
18 finite dimensional.

Proof. If I* is not finite dimensional, we can choose 0 as in
Lemma 10, and apply R(I*, I', 0, D(6)). Since I' is minimal, any
dual ideal J- of D(d) contained in #(I') will generate I‘. Since
0 € C(J*), regardless of the J* chosen, choosing J* involves specifying
x(JH)(0). It is easily seen that the spectrum of U(d), where U is
any irreducible representation of I with kernel I, is the whole unit
circle. Hence y(J*)(d) may be specified arbitrarily. Let H be the
group generated by ¢ and C(I*). Then H is normal, and Ad* ['/H
acts on the one dimensional representations of H. Since I’ is counta-
ble, there are an uncountable number of orbits. Pick J!, J;, so that
ra(x(J1)) and r,(x(J+)) are in different orbits. Then, continuing the
reduction of J}, we will arrive at one dimensional characters on
subgroups and then induce back up to get representations U, U..
These representations are clearly inequivalent, for in each of them,
U,(8) has pure point spectrum, and the points of the spectrum are
different, by choice of Ji, J;.

V. Classification of ideals. Here we return to the notations
of §II. In particular, I" is now e.e. L=1logl. L' =2L. I'=
exp L’. We shall analyze the structure of 4(I”, I') along lines paral-
lel to the last section.

Consider 0, an Ad* I" quasiorbit in /. We let log K(0) be the
sublattice of L'/, of elements y such that +(y) =1 for all 4r<O0.
log C(0) is the set of y such that the set {y:(¥): 40} is one number.
Then it is not hard to verify (using Theorem 1) that K(0) =
exp (log K(0)) is a normal subgroup of I, as is C(0) = exp (log C(0)).
K(0), is seen to be the maximal subgroup of I’ on which all 4+€0
are rational, and C(0), is the largest of the groups H such that
r4(0) is finite. The common restriction of 40 to C(0) is a one
dimensional character, which we will denote %(0). Using C. H., it
follows that if =: I — I""/K(0), is the natural projection, then C(0), =
(2 (@)



DISCRETE, FINITELY GENERATED, TORSION-FREE, NILPOTENT GROUPS 299

LEMMA 12. Notations as above. If C(0), = I'', then pick del”’
such that ()€ Z ¥ (n(I")) — n(C(0),). Let D' = D'(6) = n*C(9)),
where C(6) is the centralizer of w(0) im =w(I"'). Put 4 =logD'.
Then 0 = r(r(0)), where r = 7.

Proof. C. H. shows that for some m >0, Ad* é™(r(y)) = r(¥)
for every €0, and (9°", D'(6)) < C(0), and (o°™, D'(9)) < K(0) for
every o€ Z. As Lemma 9 guarantees D'(6) = D’(6™), assume m = 1.
Then C. H. gives, for ye L/, 4 €0, Ad* 6°(y(y)) = ¥ (y)y(—mn[log J, y]).
Hence the set S = {v Ad* ¢*(«)} forms a group of characters of
A = L'/4. Since, for y ¢ 4, Ad* ¢°(4»)(y) = 4(y) for any a € Z, €0,
S is dense in A. Hence {Ad* §"(y)} is dense in 7 (). Letting
range over 0, the result follows.

Call the process described above R(0, I, 6, I';), where I'; = D’.
Put 4= (1/2)4', D = D(0) = exp 4. We can pick an Ad* D(d) quasi-
orbit 0, in 4 whose Ad* I quasiorbit is 7(0). Then we may repeat
the reduction process, until we arrive at '], a saturated subgroup
of I'", and 0,, a finite Ad* I', quasiorbit in log";, where I', =
exp ((1/2)log I",). Then an induction using Lemma 12 shows, if ¢ I,
and 7,(y)€0,, then Ad* I',(y) is dense in »;'(0).

LeMMA 13. Let V be an irreducible representation of I;, as-
sociated to 0,. Then the induced representation UY of I 1s irre-

ductible.

Proof. V is induced from a one dimensional character on a sub-
group HC I';. An argument entirely parallel to that of Proposition
2, applied to H and «, establishes the lemma.

We are now ready to prove the main result. We remark that
the analysis of M(I") in §IV can be trivially modified to apply to
MI", I'). We define 6(0) = £(74(0))™ e p0 P, Where C = C(0).

THEOREM 2. Notations as above. There is a canonical homeomor-
phism a: A", ') — MU, I'). Canonical means, for any automor-
phism of I', the induced maps on the two spaces commute with a.
If a(0) = I, then C(0) = C(I), x(0) = x(I), and 6(0) = 6(I).

Proof. Take 0e4(l”’,I"). Via Lemma 12, we can reduce 0 to
a finite Ad* I'; orbit 0, on some subgroup I'; of I'. By Theorem 1, -
0, corresponds to a finite dimensional dual ideal I} of I'j, which
defines a point of M(I';, I';). Lemma 13 shows that I} generates a
dual ideal I* of I”, which defines a point of M, I'). We write
a(0) = I*. Considering all possible reductions of 0, we get a ca-
nonical relation @. We shall show « is a bijection.
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First, we check that C(0) = C(I), x(0) = x(I), and 6(0) = 0(I).
It is clear that any I* €a(0) is a subset of the positive functionals
associated to U*”°®  and as y(0) is invariant under Ad* I'|C(0),
all fel* by transform y%(0) under translation by C(0). Therefore
C(0) < C(I*), and x(0) and x(I) agree on C(0). On the other hand,
Ity is finite dimensional. If I* is induced from I+ e M(I, I'),
then the characters associated to I} are in I*, and they are finite
sums of restrictions to I'; of elements of 0. Likewise, all conjugates
by elements of I' of these characters are in I*, and their restric-
tions to C(I*),, which is normal, are the same sums of the conjugate
elements of 0, and every restriction of an element of 0 to C(I'), is
involved in one of these sums. Since these sums can span only a
finite dimensional space, the restrictions of elements of 0 to C(I'),
can be only finite in number, since distinct restrictions are linearly
independent. Hence C(I*), < C(0),, by the discussion preceding
Lemma 12. Hence C(I*), = C(0),. It is now easy to see that 0(0)¢
I+, and, as 6(0) is clearly a trace on [I”, 6(0) = 6(I). From this,
the equality C(I*) = C(0) follows, since C(0) is the subset of & e C(0),,
such that [6(0)| = 1 and similarly for C(I*). That K(I) = K(0) is
now evident.

The above shows « is a function. It also shows that « is onto.
For Theorem 1 guarantees that, given I*, there is 0, such that
a(r(0)) = r(I*), where r restriction to C(I'),, and a here is the map
a: AC(IY),, I')— M(C(I*),, I'). But then it is clear that C(0), =2 C(I*),,
and 6(0)¢;t), = 6(I*). From this, it follows, as in Proposition 3,
that 6(0) = 6(I*), and so indeed I* = «(0). Finally, we show « is
one-to-one. We may assume the theorem true for groups of lower
rank than I. Since a is canonical, it follows that if H S I is any
proper normal saturated subgroup then A(H,I') and M(H,I') are
homeomorphic. Now take 0,0,€4("”, I'), and suppose «a(0,) =
a(0,) = I*. Then x(0,) = x(0,) = x(I*), and we may reduce O, 0,
and I* to D'(6) for some one 6. Here we conclude that a(r(0,)) =
a(r(0,)) = r(I*), and since « is a bijection on this level, 7(0,) = 7(0,),
and so 0, = 0,, by Lemma 12.

Finally we must compare the topologies. To do this essentially
involves refining previous considerations, particularly Proposition 3,
and Lemma 12. Let {I}}, be a sequence of points of M, I').
Let K; = Nz; K(I}), and C; = N&,; C(I}#), and K = U5, K;, and C =
Us.C;. Inducing on the rank of C;, then on #((C;),/C;), we see
there is an m such that K = K,, and C = C,.. Then we see that
K, is the subgroup of I', consisting of elements 6, such that there
exists m, such that U,(6") =1, for all + = m, where U, is a repre-
sentation attached to It. If w:I'— I'/K, is the natural map, then
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C,=n(2{'/K,). C, may also be described as the largest of the
subgroup H S I', such that there exists d, such that dim (U;(l,(H)) < d
for all : = m. Suppose that for any subgroup D < C of finite index,
containing K, that CN K(I}) £ D for 4 sufficiently large. Then I
claim lim,_.. 0(I}+)(0) = 0 for 6¢C,.

To show this, let C, = H, = n(% (I'/K,)), and H, = (& (['|K,)).
For 6c¢ H, — H,, we can find yeI such that (y,6)eC — K. From
now on, write X(I}) = x;, 6(I}) = 6,. Then, by our assumption above,
for ¢ sufficiently large %.((y, 9)) # 1, so 6(I})(9) = 0. Now suppose
0eH,,,— H, t>1. Now either there is ye I, such that (3, y) e
C, — K,, or, if Y is the conjugacy class of d, then #(Y) intersects
each coset of #(C,) at most once. In the first case (6, ¥*)eC — K
for some @, and then 6,(6) is eventually zero as before. Otherwise,
we may pick an infinite sequence {g;}7, of elements of Y, such that,
if g; = 6h;, then hh;'e H;, — H,. Construct ¢ as in Proposition 3,
using 6, instead of @. Then we have 0 < §,(a*a) = 1 + |6,(0) ]*(—n +
Siei 0(h7'h;). Choosing [ sufficiently large, we may conclude, by
induction, that |6,(h7'h;)| < 1/2n% so |6,(0)]* < 2/n. This establishes
the claim.

Now suppose S & M(I", I'), I €S, and {I}}i, & S converges to
I+. Suppose C and K as constructed above are the same for all
subsequences. (If {I[}}%, does not satisfy this condition, we may
find a subsequence which does.) Then ¥(I}) converges to y(I;) on C.
Let C, £ C be the subgroup on which x(I}) is constant for 7 suf-
ficiently large. Then K < C,, and conversely, K contains C, N K(I}).
If 6¢C — C,, then yx(I}) is a nonconstant sequence converging to
x(I+)(8) and so, by our assumption on {I}},, x(I#)(6) = 1, for 4 large.
It follows that the ¥, satisfy the condition discussed above, and so
6,(0) — 0 for 6 ¢C,. We conclude immediately that {I}} converges to
all dual ideals J* such that 0(J*),; = 6(I3)c.

Now we notice that the topology of A", I') is given by the
quotient of the weak *topology by the action of Ad* " on the posi-
tive definite functions of L' =logl”’. Using this fact, we may
repeat the above analysis, substituting 6(0,)’s for 6(I})’s. Then we
see the topologies are indeed the same by virtue of the identity of
6(0) and 0(x(0)).

This concludes Theorem 2.

REMARKS. (a) Perhaps the best way to think of the above
analysis is to regard it as establishing the equality of the topologies
of both 4", I') and M(I", I') with Effros’ simplex topology [5] on
the extremal traces of I', which are identified via exp with the
Ad* I' invariant states on L/ .

(b) Theorem 2 implies that the orbits in 4(I”, I') have a fairly
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simple structure. 0 is a finite union of cosets of the subtorus of
L’ which annihilates C(0),.

(¢) One way of looking at Theorem 2 is as a duality theorem.
If G is an extension of I' by log I, for example, the semidirect
product, and G’, the included extension of I by log I”’, then Theo-
rem 2 says M(log I, G) and M(G'/log I"’, G) are naturally isomorphic.
The significance of this interpretation is unclear.

VI. Application to finite groups. Let I' be e.e., and I, & I
a normal e.e. subgroup. Put L =logl', L, =logl',., We will say
I', is e.e. embedded if [L, L,] < k! L,, where, as usual, I' is k-step
nilpotent. If I, & I' is e.e. embedded, C. H. shows immediately,
that for 6el’, logdl’, = logé + L,. Hence functions on L, constant
on cosets of L, can be interpreted as functions on I'/I",, In par-
ticular, the annihilator of L, in L defines an orthogonal basis for
I(I'/I"). exp: L— I can also be factored to a map exp: L/L,—I'/T",.

LEMMA 15. If p is a prime, and p >k, and I', S I' is normal,
and #(I|T") = p™, me Z, then I', is e.e. embedded in I.

Proof. Let L, be the lattice generated by -logI',, Then cer-
tainly L, S L = log [, and also p™L S logl", & L,. Also, Proposition
0 gives k!* L, & log I',. Therefore, as p and k! are relatively prime
by assumption, L, = log I',. C. H. now shows [L, L,] S (k — 1)! 'L,
or kl(k —1)! (k!'[L, L,])= L,. But as k!Y[L, L,] < L, we have also
p™k! L, L]) < L,. Hence [L, L,] S k!L,. A fortiori L, is e.e. and
so is e.e. embedded.

Now let P be a p-group, which is (p — 1)-step nilpotent. Then
if p,, -++, », generate P, the natural map « from F, the free group
on p, *-+, P, onto P, factors to a map = on I' = F/F*, which is
known [13], to be a discrete, finitely generated, torsion-free, (p — 1)-
step nilpotent group. Let I & I' be the kernel of #. By Proposi-
tion 0, there is a normal e.e. subgroup I", of I', such that if 6T,
o#*eI',, Now = restricts to a map =:I',/[", N I — P, which we see
is onto, since k!® and p are relatively prime. Therefore, Lemma 14
shows H=1I,NI"is e.e. embedded in I',. Therefore, we have the
following result.

THEOREM 3. Let P be a (p — 1)-step milpotent p-group. Then
there is an abelian group L, which also has the structure of a
(p — 1)-step milpotent lie algebra, and a bijection exp: L — P, satis-
fying the Campbell-Hausdorf formula. Inner automorphisms of P
induce an action by automorphisms of P on L, denoted Ad. The
dual action on L is demoted Ad*. Via exp, the elements of L may
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be viewed as a multiplicative group of functions on P, which are
permuted by imner automorphism, and are an orthogonal basis for
1(P). The irreducible representations of P are in one-to-one corre-
spondence with the Ad* P orbits in L. If 0 and U, correspond,
then dim U, = #(0)*. The character, &, of U 1is given by &, =
20)72 Y peop. U, may be realized as an induced representation
as follows: take any €0, and any Q@ = P, a subgroup such that
Jro 18 @ ome dimensional character, and #(Q) is mazimal with re-
spect to this property. Then U, = U

We have also these results on induced representations and tensor
products.

COROLLARY 1. If P and P’ are as in the theorem, P’ < P, L’
and L, the associated groups, and *: L — L' the natural map; and
if O 1s an orbit in L', and 0 an orbit in L; then the multiplicity
of U, in the representation induced from U, is #0Nr740")) £(0) /2
£(0)712,

If 0, 0, are two orbits in L, then the multiplicity of orbit 0,
in 0, + 0, is the number of distinct ways some given €0, can be
represented in the form 4, = 4, With 4, €0,.

COROLLARY 2. If k is the multiplicity of 0, in 0, 0,, then the
multiplicity of Uy, in Uy, ® U, is k £(0)"* £0)77* #(0,)™".

APPENDIX. Proposition 0.

Proposition 0 essentially involves inverting the Campbell-Hausdorft
formula. That [log I'** log I’'**] < (kK — 1) 'log I'** is a simple
calculation. The longer part is to show k!% logI™** S logl. We
begin with two observations crucial to the purpose.

(1) We recall the definition of the order of a commutator in a
lie algebra N. Any x€ N is a first order commutator. The bracket
of an ith order with a jth order commutator is an 7 + jth order
commutator. Then, if N is k-step nilpotent, C. H. for N takes the
form log (TI%. expx;) = >y J!*S;, where S; is an integral sum of
jth order commutators in the z,’s.

(2) If C(z;) is a commutator in the x,’s, then C(expz;), the
parallel commutator in the exp z,’s is gotten from C(zx;) by replacing
x, by expx,, and each bracket by a like oriented parenthesis. If
C(x;) is of jth order, then C. H. gives log C(exp x,) = C(x,) + (1/2)S;,, +
Sk U17%S,, where S, is again an integral sum of commutators in
the z,’s.
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Now with I' as always, log " £ N, we want to show k!®3x, €
logI". We consider log (ITr,expax;,) = aSx, + X5, a’j172S;, and
seek to modify it successively by elements from logI” in order to
eliminate the higher order terms. Suppose at some point in this
process, we have an expression F = aSz, + C Y%, Bj17%S;. Assume
CB')~* is integral and write CB!~* = C’R’", where C’ is not divisible
by d' for any deZ. Suppose S, = 37,C,(x;), where the C, are
commutators, and 7, are integers. Then multiply exp E by
IIC,(exp 8'x;) ¢ "m =exp F. Then C. H. shows that log (exp Eexp F') =
E =aXx, + C 3k, 871 2T;, where the T, are new integral sums
of jth order commutators in the x,’s. The problem now becomes
computing « so that this process may be carried through the kth
step. Factoring a into primes, we see we may compute the neces-
sary power of each prime separately. First take p > 2. If [ =
S, a;p%, then p appears in j! to the power v(l) = (I — »())(p — 1)
times, where »(l) = >\{_,a;. If, at the Ith step, the power of » in
Cpt is p*(p?)?', and b < 2v(l), so that is necessary to withdraw a
power of » from p* in order to proceed, we will call this process
“dropping an exponent.” So suppose we are at the Ith place, with
p appearing to the power b + dl — 2y(l) and we must drop an ex-
ponent. Doing so, we see from the form of vy(l), that we may
proceed to the [ + ((p — 1)/2)th the stage without dropping an ex-
ponent. There the power of » will be b + ¢ (= (v(l + 3) — 9)) +
(d -1+ q) — 2v( + q), where ¢ = (p — 1)/2. Here again we will
probably (but not always) have to drop another exponent.

Let us start at | = ap’, and proceed, dropping an exponent every
gth step, until we are come to m = (@ + 1)p°* — 1. If our initial
power of p is b + dap® — 2v(ap’), we shall arrive to find the power
o+ m(d — ¢ *(»* — 1) — 2v(m)), where o, the accumulated surplus, is
given by o=¢q¢'(S(m — 1) — Sl —1) — (p* —1)(¢ — 1)) + b. Here
S(n) = Xr, r(¢). If we calculate this, we find o > 2v(m), so we may
proceed to m + 1 without dropping an exponent, and then carry on.
Beginning from zero, we see that we need at most 2v(k) powers of
» to carry through the kth step. For p = 2, the same argument
works if we drop two exponents at each step, except just before
powers of 2. Putting this together, we see a = k!® is indeed suf-
ficient to begin with to carry through the whole procedure to the
kth step.

From this, the existence of I', as stated in Proposition 0 is im-
mediate. To construct /', is independent of the argument above.
Put L, = NN (logI'**), and log I, = X (k! (k — 11)7*L,. This
will work.
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