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ON REPRESENTATIONS OF DISCRETE, FINITELY
GENERATED, TORSION-FREE,

NILPOTENT GROUPS

ROGER E. HOWE

With A. A. Kirillov's work on the representations of nil-
potent lie groups, a new chapter in the theory of group
representations opened. Subsequent papers of Bernat, Moore
and Auslander-Kostant have further demonstrated the power
of the methods introduced by Kirillov. The purpose of this
paper is to begin an extension of these methods in yet an-
other direction. Specifically, the object here is to calculate
the primitive ideal spaces of the groups indicated in the title.

While this again is a fairly special extension of what eventually
should be a very far-reaching theory, it has present merit for several
reasons: (1) Much work necessary for further extensions is already
done in handling these particular groups. In particular, slight modi-
fications and extensions of these methods allow one to deal with most
unipotent groups that occur in arithmetic; (2) Most of these groups
are not type I (see Thoma [14]); hence they provide examples of
what can be said about such "bad" groups; (3) The theory of these
groups also sheds light on the harmonic analysis of finite ^-groups.

From now on, Γ will always denote a discrete, finitely generated,
torsion-free, nilpotent group, e will be its identity element, Γ = Γ(1),
Γ(2), Γ(3), etc. its descending central series, and %T(Γ), ;T(2)(T), etc.
its ascending central series. If Γ{k+1) — {e}, we will say Γ is A -step
nilpotent.

To carry out for Γ a program analogous to Kirillov's we need
for Γ a dual of a lie algebra, and so, first, a lie algebra. Malcev
(see [1]) has shown that any Γ such as we are considering may be
embedded as a discrete subgroup in a simply connected nilpotent lie
group *sV\ so that the quotient ^V\r is compact; furthermore <yV~
and the embedding are unique up to isomorphism. From now on,
Λr will always denote this group, and we will consider Γ to be a
subgroup of <sV whenever this is convenient.

N will denote the lie algebra of ^/K Then exp:JV —^^V is a
diffeomorphism, with log as its inverse. We would like to say
log Γ £ N is the lie algebra of Γ. However, this makes no sense
in general, because logΓ need be closed neither under addition, nor
under taking commutators. But suppose ^V is fc-step nilpotent, and
L £ N is a lattice, such that [L, L]ςzk\L. Then an easy calcula-
tion with the Campbell-Hausdorff formula ([13]) shows that Γ =
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exp L is a subgroup of ^/K We will call such a lattice L, and exp L,
elementarily exponentiable, or e.e., for short.

Then given an e.e. group Γ, it has a well defined lie algebra L =
logΓ, and we may consider L, the dual group to L. Via exp, any
fzL may be considered to be a function on Γ; and will be whenever
convenient. Now inner automorphisms of Γ induce an action of Γ
on L by automorphisms, denoted by Ad, and by duality, an action
Ad* on L. More generally, if Γ is not necessarily e.e., but Γ1 Q Γ
is e.e. and normal, Γ actfe on L1 = logΓ1 by Ad*. We will denote
the quasiorbit space ([5]) of this action by J(Γlf Γ).

To avoid problems in ergodic theory, we will not attempt to
compute representations of Γ, but only primitive ideals of C*(Γ), the
enveloping C*-algebra of ix(Γ) (see [6] and [12]). We denote the
primitive ideal space of a group G, with the hull-kernel topology,
by M(G). More generally if H £ G is normal, we consider the rela-
tive primitive ideal space, M(H, G). This is defined as follows. G
acts on M(H) by conjugation. As H is in the kernel of this action,
we denote this action by Ad* G/H. Then M(H, G) is defined as the
quasiorbit space of Ad* G/H acting on M(H). As we will see later,
M(H, G) also has an interpretation in terms of restrictions to H of
irreducible representations of G. The main theorem of this paper
may now be stated as follows:

THEOREM. Let Γ be k-step nίlpotent and e.e., L = logjΓ, U —
2L, Γ' — exp I/. Then there is a canonical homeomorphism
a\Δ(Γ',Γ)-+M{Γ',Γ).

To arrive at this theorem, we have had to restrict our attention
to e.e. groups. It is therefore of interest to know how general they
are. In this regard, we have

PROPOSITION 0. If Γ is k-step nilpotent, but not e.e., let logΓ**
denote the lattice generated in N by logΓ. Then k\2 logΓ** £
logΓ, and [logΓ**, logΓ**] Q 1/φ - 1)1 logΓ**. Hence there exist
e.e. lattices Llf L2 such that I/! £ log Γ £ L2, and fc!2logΓ** £ L19

and (fc!(fc - I)!)*"1 L2 Q logΓ**.

If Γ1 Q Γ is e.e., and of finite index, then a very slight varia-
tion of the theorem allows computation of M(Γl9 Γ) and as we shall
see there is a natural surjective map r: M(Γ) —> M(Γ19 Γ) which is
boundedly finitely many to one. Thus, up to a finite covering, one
can calculate M{Γ) for any Γ.

Here is how the paper is organized. In § II we analyze the
finite dimensional representations of an e.e. Γ. Roughly speaking,
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they correspond to finite Ad* Γ orbits, and in a sense, form the
"rational" points of M(Γ). They are dense in M(Γ). We obtain
character formulas, from which multiplicities of induced representa-
tions and tensor products may be read off. In § III, we develop
some machinery which facilitates calculation of primitive ideal spaces.
In § IV, the structure of ideals of C*{Γ) is investigated. We show
that to each primitive ideal, a trace may be associated in a unique
and nice way. In § V, the structure of Ad* Γ orbits is analyzed in
a fashion as parallel as possible to that of § IV, and the main result
is established. In § VI, we apply some of the results to harmonic
analysis of finite p-groups. In an appendix, we prove Proposition 0.
Throughout, we lean very heavily on the Campbell-Hausdorff formula,
which we abbreviate C. H. Results of calculations using it will simply
be stated.

Perhaps, before beginning, it would be instructive to provide an
example of a particular primitive ideal space. Let H be the group
of upper triangular integral unipotent 3 x 3 matrices; i.e., the "dis-
crete Heisenberg group." Then ^Γ(iί) ~ Z, and there is a natural
fibration π: M(H) —• T = Z. The fiber over a torsion element of T
is a two-torus, and over an irrational, or nontorsion, element, is a
single point. The topology of M(H) is such that any set-theoretic
section of π is continuous.

I should like here to express my thanks to Calvin Moore. The
contents of this paper are essentially my doctoral dissertation, done
under his guidance. His influence on my development and direction
has been both beneficial and far-reaching.

II* Finite dimensional representations of Γ. We begin with
some definitions and notation. Let G be a group. If a, b eGf then
(α, 6) = aba~ιb~ι is the commutator of a and 6. If A, B £ G, then
(A, JB) = {{a, b), a e A, b e B). If H Q G is a subgroup and V is a
representation of H, then UV%H or Uv is the corresponding induced
representation of G. If V has a character ψ, then U^>H or U* may
also be used.

If again H Q G is a subgroup, we say H is saturated if gn eH
implies g e H, for any g e G. Given H, Hs will denote the smallest
saturated subgroup containing H. Evidently, if H is normal, H is
saturated if and only if G/H is torsion-free.

If Γ Q Γ, then Γ is of finite index in Γ's. In terms of ^Γ and
N, log Γ's = log Γ Π N', where N' is the real subspace of N spanned
by log Γ.

If X is any set, / any function on X, and 7 g l any subset,
then f\γ is the restriction of / to Y. If / is a complex-valued func-
tion on Y, f is the extension of / to X, which is identically zero
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off Y. If A is a finite set, #(A) will denote the cardinality of A.
Now, given Γ, the family of groups {exp Ofc!2logΓ**)} form a

family of e.e. characteristic subgroups of Γ of finite index, such that
any subgroup of finite index contains one of them, and their total
intersection reduces to the identity. This implies that Γ has only a
finite number of subgroups of given finite index, and also that the
finite dimensional representations of Γ form a sufficient family, i.e.,
separate points of C*(Γ).

To begin, we will show that all finite dimensional representations
of Γ are monomial.

Consider first the one dimensional characters of Γ. They form,
of course, the dual group of Γ/Γ™. But Γ/Γ{2) = (Γ/Γ{

s

2)) x (Γ<2)/Γ(2)),
the first factor being a lattice, the second a finite group. Any

character in {ΓjΓ{2)) is the restriction of a character of <sf~, and so
may be extended to a character of any Γ' containing Γ.

PROPOSITION 1. A finite dimensional irreducible representation

U of Γ may be written U = χ 0 F, where χ e (Γ/Γ{

s

2)), and V is a
representation of a finite quotient group.

Proof. We induce on rank (Γ) ( = dim ^Γ). Choose x e %Ti2)(Γ) -
and choose yeΓ such that (x, y) = z Φ e. Now U\^Γ) defines

a character ψ on %*{Γ), and U(xyx~ι) = ψ(z)U(y). Hence, the spec-
trum of U(y), which is a finite set, is invariant when multiplied by
f(z). Hence ψ{zn) = 1 for some n. Let Z be the saturated sub-
group generated by z, and let Γ' £ Γ be a normal subgroup of finite
index, such that ψ\znn is trivial. Then if Uf is an irreducible com-
ponent of U\r>, U' may be considered as a representation of Γ'/ZΓlΓ',
and so may be written V = χ' <g) V. Extend χ' to a character χ
of Γ/Γ(

s

2). Consider V = X®U ( — denotes the conjugate, or inverse,
character). Then V is a subrepresentation of V\Γ*. If H is a
normal subgroup of finite index in Γ, such that H Π Γ' Q ker F',
then V is seen to be trivial on H Π Γ. Writing U = χ (x) F gives
the result.

COROLLARY. AΪZ finite dimensional irreducible representations
U of Γ are induced by one dimensional representations of subgroups
of Γ.

Proof. Write U = χ 0 F. By the classical result for finite
groups, F = F^ Γ / , ψ being a one dimensional character of Γf £ Γ.
Putting χ' = χi/v, the character formula for induced representations
shows U = C7χ/^ Γ /.
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Now we take a more global point of view towards the represen-
tations of Γ. For this, we assume Γ is e.e., and write L = logΓ.

If U Q L is a sublattice, we denote by rL, or r, when no con-
fusion will arise, for the restriction map from L to L'. We say
ψ e L is rational on U if r(ψ) is a torsion element. Clearly f is
rational on U if and only if it is rational on L's, if and only if ψ
is identically one on nU for some n. If U is e.e., and ψ is rational
on I/, we will also say ψ is rational on Γr = expL'.

LEMMA 1. Tfce orδiέ of ψeL under Ad*Γ is,/ϊwifce if and only
if ψ is rational on logΓ{

s

2).

Proof. By C. H., given yeL, δeΓ, y - Adδn(y) enlogΓ(

s

2).
Therefore, if ψ is trivial on n log Γ{

8

2), ψ is invariant by Ad* exp {nL),
so #(Ad* Γ(f)) <> %{L\nL\ which is finite. On the other hand, there
is a largest Ad Γ invariant sublattice U on which ψ is rational.
Γ' — exp U is then a saturated normal subgroup of Γ. If Γ' g Π2),
then Γ/Γ' is nonabelian.

Consider π: Γ-^ΓjΓ, and choose δ e Γ, so that π(δ) e ̂ (2)(Γ/Γ') -
%{Γ\Γ). Then, by C. H., we see that for yelogΓ, Aάδn(y) =
y + nllogδ, y] (modL') By choice of U and δ, ψ\\ogδ, y] is irrational
for some y. For this y, Ad* δn(ψ)(y) takes on an infinite number
of values. A fortiori, Ad* -Γ(ψ) is infinite.

LEMMA 2. Given ψ e L, the isotropy subgroup Γψ of ψ under
Ad* Γ is an e.e. subgroup of Γ and log Γψ consists of all yeL
such that ψ([y, L]) Ξ= 1.

Proof. If δ e Γ^, then Ad* δψ = ψ, or (Ad* δ - I)ψ = 1. C. H.
then shows, if Γ is e.e., this is equivalent to ψ([\ogδ, L]) = 1. If
a, b e log />, then [δ, L] Qk\L. Hence ^(1/fe! [&, [α, L]]) = 1. In-
terchanging a and b, and using the Jacobi identity shows log Γψ
is e.e.

LEMMA 3. IfψeLis Ad* Γ invariant, then ψ2 defines a one-
dimensional character on Γ.

Proof. C. H.

REMARK. This slight discrepancy between the ψ's which are
class functions and those which are characters is the main source
of the complexity of the statement of Theorem 1.

To parallel Kirillov's theory, we need also a notion like "maximal
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subordinate subalgebra." This we now provide. Let Szf be a finite
abelian group, and B a biadditive, antisymmetric form on Jzf x j y
into the circle. Then B induces a homomorphism jy'—> J^ in the
obvious way. The kernel & of this map is called the radical of
B, and B factors to a nondegenerate form B on J&Ί& = jy\ i?
can be polarized, that is, there are subgroups j*£, J^J of J ^ such
that J^ = J^f x J^J, and i? is trivial on J^J, so 2? defines an iso-
morphism of Stf[ with J^J, and vice-versa. A subgroup J < of J ^
containing ^ , such that there (J^/^g5) = (J^/J^) and B/ĵ f is trivial
will be said to form half a polarization of B.

Now if J ^ is a finite lie algebra, and ψ e Stf, then Bψ(lίf l2) =
ψ(U>if U) i s a biadditive antisymmetric form, and ^V, its radical, is
a subalgebra of Ĵ C It would be nice to find a subalgebra & such
that & 2 ^V, and ^l&ψ formed half a polarization of Bψ on

If ^ exists, we will call it a polarizing subalgebra for ψ.

LEMMA 4. 1/ j ^ is a nilpotent finite lie algebra, and ψ e
then polarizing subalgebras for ψ exist.

REMARKS. The parallel result for real nilpotent lie algebras was
essentially established by Kirillov [9] and emphasized by Brezin [4]

(b) This is a key place where we imitate Kirillov's inductive
arguments.

Proof. We first assume a sublemma.

Sublemma. If B is an antisymmetric biadditive form on the
finite abelian group Stf into the circle, with radical ^ , and π: J^f —>
Sv?l& is the natural map, and if π(J%ζ), π(jχζ) form a polarization
of B, for subgroups J^ containing ^ , then #(J^<) = #(J*J), and
#(JK/^) - #(J^/J^) . Conversely, if #(J^) 2 = #(J^)#(^),^and B is
trivial on J ^ , then τr(j<) forms half of a polarization of B.

Now consider Bψ on Ĵ Γ Clearly J%*(L), the center of J ^ con-
sidered as lie algebra, is contained in ^V. Let C = ker ψ* Π ̂ ( J^O
If C ̂  {e}, then factor 'f to 'f' e jy/^ 7 . Then there is a subalgebra
^ ' of J^/^ 7 , polarizing ψ*' by induction. Then ^ , the inverse
image of ^ ' in Jzf, is seen by the sublemma to be a polarizing
subalgebra for ψ.

If ψ is faithful on ^ ( J ^ ) , then 5£ must be cyclic. Let z gen-
erate ^ . Pick y e βtr™(j*7) - %{^/\ such that ^ e f f j / ) for
some prime p. Then C(̂ /), the centralizer of y in J ^ is an ideal of

of index p. For C(y) Φ Ssf, since /̂ 0 %T(J^), but [#, J ^ ] S
, so the Jacobi identity implies [ J^f J ^ ] C C(y), so C(y) is an
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ideal. Pick x e*s*f — C(y). Then [y, x] = mz, for some me Z. Hence
[ay, bx] = abmz. In particular [py, x] = pmz = e, so pm is a multiple
of the period of z, and [y, px] = pmz = e. Therefore px 6 C(y), and
a? generates J ^ over C(y), so C(y) is as stated.

Let ψ' = ψΊtf(2/). By induction ψ*' admits a polarizing subalgebra
^ . Clearly y e ^V ,, but # e ^V, since ψ([α;, #]) =£ 1 by construction.
Hence, as # ( ^ ) 2 = #(^V0#(C(i/))f and #(^fW^V) ^ P, the sublemma
shows & must polarize ^.

These notions are easily transferable to L = log Γ for Γ e.e. If
| e L , then we may form Bψ just as in the finite case. By Lemma
2, ^V = log/V. Hence if ψ* is rational on Γ(2), &+ is of finite
index in L. Moreover, by changing f by a character of Γ/Γ{

s

2),
which does not alter Bψ, we may assume ψ is itself rational, and
so by passing to a quotient algebra, may consider ourselves to be
in the finite situation. In particular we may talk about polarizing
subalgebras P for ψ. The crucial relation that P satisfies is here
expressible by the formula #(P/^V) = #(L/P). We have the following
corollary to Lemma 4.

COROLLARY. Taking L — \ogΓ, if ψeL is rational on Γ(2),
then there are e.e. polarizing subalgebras P for ψ.

Proof. As indicated above, we may assume ψ is rational on L.
Put U = (l/k\)L. Let ψ' be the element of U defined by f(y) =
ψ(k\2y) for yeU. Passing to a finite quotient, applying Lemma 4,
and lifting back, there is P' £ L', a polarizing subalgebra for φ'.
But then P = k\Pf is an e.e. polarizing subalgebra for ψ.

LEMMA 5. If P is an e.e. polarizing subalgebra for f eL, ψ
rational on log Z42), and if π — exp P, then Ad* π(ψ) consists of all
φ e L such that φΪP = ψlP.

Proof. Since P is e.e., and polarizes ψ, C. H. shows Ad* x(ψ)\P =
ψlP for any # e π . On the other hand, the remark just above shows
by counting that Ad* π(ψ) consists of all possible φ.

Now we need a lemma on induced representations. We say rep-
resentations £7, V9 are disjoint if they have no common subrepre-
sentation.

LEMMA 6. If G is a finite group, Hλ, H2 subgroups, Vt re-
presentations of Hi with characters ψίf then U1 — UVlfHl and U2 =
IJV2H2 a r e disjoint if and only if Ad* x(ψj) and Ad* y{ψ2) are or-
thogonal (in 12(G)) for all x, y in G. U1 is irreducible if and only
if Ad* cc( î) is orthogonal to ψί for all xeG — H^
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Proof. Let φt be the character of Ut. By the formula for
induced characters, φ\ is a sum of terms Ad* x(fi). As E7i and U2

are disjoint if and only if φ± and φ2 are orthogonal, and since the
inner product of Ad* x(ψ^) and Ad* y(f2) is nonnegative, since they
are positive definite functions, the first statement is clear. By a
theorem of Mackey [10], U is irreducible if and only if the repre-
sentation Vl of x~λΉ.γx ~ H\, given by h1—+V(xh1x~1) when restricted
to H\ Π H — F, is disjoint from V1 restricted to F, for any x e G —
Hi. This happens exactly when ψllF and Ad* x(ψ^)\F are orthogonal
in 12(F). But off F, either ψ1 or Ad* x{fx) vanishes. Hence or-
thogonality on F implies orthogonality on G, and conversely. The
result follows.

We now classify the finite dimensional representations of Γ.

THEOREM 1. Let Γ be an e.e., discrete, finitely generated, tor-
sion free-nilpotent group. Let L = log Γ, U = 2L, Γf = exp U,
Lί2) = \ogΓi2), and nΓ = exp (nL) for n > 2.

(a) Let 0 be a finite Ad* Γ orbit in L, and f eθ. Let n be
the period of Ψ\2LS* Call n the period of 0. If n is odd, then a
finite dimensional irreducible representation Uo of Γ may be as-
sociated to 0 in the following manner. If P is an e.e. polarizing
subalgebra for ψ, and π = exp P, put ψlπ = ψ. Then UQ = U^. The
dimension of Uo is #(0)1/2, and the character ζ0 of Uo is given by
ζQ= #(O)~1/2Σf>6θ9> -AW representations of the form χ®V, with χ e
Γ/Γ{

s

2), and V defined modulo nΓ, n odd, are realized in this manner.

(b) In general, there is a surjective map from finite dimen-
sional irreducible representations of Γf to finite Ad* Γ orbits in U.
This map is at most %(Γ/Γ')-to-one. If {ί/JLi map onto the orbit
0, then the Ut are permuted transitively among themselves by the
action Ad* Γ/Γ', so that they define a point in M(Γ', Γ). I is a
power of 2, and if m is the common dimension of the Uif lm

2 — #(0).
The sum of the characters & of the Ut is given by the formula

REMARK. For two-step nilpotent groups, it is not hard to see
that the correspondence is even more immediate: the functions φ in
an orbit 0 span the annihilator (in L(Γ)) of the kernel of Uo. This
appears not to be true in general. The precise role played by an
individual ψeL is as yet unclear.

Proof. It may be verified using C. EL, that for d eΓ, \og(dnΓ) —
log δ + log nΓ. Therefore, if An is the group of elements of L of
order dividing n, A% can be naturally interpreted as a set of func-
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tions on Γ/nΓ, and in fact, they form an orthogonal basis for l2 (Γ/nΓ).
More generally, if χ e Γ/Γ{

s

2), χ An may be considered as an orthogonal
basis for the induced module Uχ»9 where χn = χ,nΓ. Moreover,
given 0 with odd period nf it is clearly a subset of χ An for suita-
ble χ.

Now take 0 with odd period, and f eO, and P, an e.e., polarizing
subalgebra for ψ, and put π = exp P. By Lemma 3, ψ2 is a character
on π, and since ψlL(2) has odd period, it follows that ψ itself defines
a character ψ0 on π. Consider Uo = CΓ*0'*. This is a representation
of Γ with dimension #(Γ/π) = #(0)1/2. It follows from Lemma 5, and
the orthogonality properties of characters on finite abelian groups,
that #(0)~1/2Σ?eAd*;r(̂ ) ψ = Ψo- From this, we see if δ e Γ — π, Ad* d(fQ)
is then a similar sum over a subset of 0, disjoint from Ad* ττ(ψθ,
and hence is orthogonal to ψ0. Lemma 6 now shows UQ is irreducible.
The general formula for induced characters is seen to reduce to the
stated one in this case. The formula then guarantees that UQ is
independent of ψ and π, and depends only on 0. Finally, since
dim Ul — #(0), the total dimension of representations coming from
orbits in An is #(AJ = §{ΓjnΓ). This shows that all representations
of the stated form arise in this manner. This establishes (a).

For (b), we refine these considerations. Take Γ, Γ', and a finite
Ad* Γ orbit 0 in £', and ψeO. Since [U, L'] £ 2k\L'9 the proof of
the corollary to Lemma 4 shows we can find P' £ Lr, which polarizes
ψ, and such that [P', P']£2&!P\ Put P = (1/2)P'. Then P is e.e.,
and P' is an ideal in P. Write π' — exp P', and π = exp P. As
before Ad* π'(ψ) = 0π, consists of all φeU such that φΪP, — ψlP,.
However φ{κ, may not define a character on πr. We account for this
discrepancy in this way. Consider the form B'ψ(x, y) — ̂ (l/2[α?, y])
on P'. If B^ is trivial, then ψ does define a character on π', and
we may proceed as before. If B'ψ is not trivial, let A! £ P ' denote
its radical. Then A! is an e.e. ideal in P', and A! 2 2P' 2 [P', P'].
Let A = (1/2)A', J ^ = exp A, J ^ ' = exp A!. Also, let Γ" be the
subgroup of Γ generated by Γ' and π, and let ί ί = π Π P ;. We
verify the following facts:

(1) ψu,, defines a character ψQ of j ^ ' .
(2) Or = Ad* π(ψ) consists of all φeL' such that φ[jr, — ψQ.
(3 ) j y is the subgroup of π consisting of elements a such that

Ad* a(ψ)lP = ψ\P.

(4) ψ0 = #(/ I7Jθ-1Σ*βo ir9>.
( 5 ) WIΓ") = #(H/7Γ') and #(Γ"/Γ')
( 6 ) π' QH. If heH - π', t h e n fc
(1) is clear by the definition of J&" and Lemma 3. Since

= %{π'lJ%r'), (2) is implied by the parallel fact for 0*, together
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with (3). (3) follows from the definition of A, using C. H. (4) is
immediate from (2) and the orthogonality properties of the φ's. (5)
is clear from the definitions, as is the first statement of (6). The
second statement in (6) follows because P' polarizes φ, and so con-
stitutes a maximal subalgebra of U on which Bψ is trivial. We
now consider the induced representation V = V+0-*" of π'. Since P'
is e.e., one can verify using C. H., that logττ'(2) is just the lattice
generated by [P', P']. Since ψ must be trivial on this lattice, it
follows that V is just a sum of #(τr'/jaθ one dimensional represen-
tations with characters {χj. Consider the induced representation
Ut = UXi>*' of Γ. Ut is irreducible. Because, if δeΓ' - H, then (4)
above shows Ad* δ(ψ0) is orthogonal to ψQ, so a fortiori, Ad* δ(χt) is
orthogonal to %. On the other hand, if δ = h e H—πr, then Ad* h(χi)(p) =
χt(p)ψo((h, p)), for p 6 π'. Hence Ad* hfc) = χt means ψQ((h, p)) = ψ0

([log h, log p]) = 1 for all p in π', which is not true since h g Ĵ < by
(6) above.

Therefore, by the transitivity properties of induced representa-
tions, the representation U = EΓ*Ό Λr" of Γ\ decomposes into a direct
sum of #(7r'/jy) factors t/<, each of dimension %(Γ'/π'). However,
the i7i are not all distinct. From the discussion just above, we see
Ut and DV are equivalent if and only if χt and χ3 are in the same
Ad* H/π' orbit. But we also saw above that Ad* Hjπ' acts freely
and faithfully on the {χj. Hence each equivalence class of repre-
sentations occurs #(JH/TΓ') times, and the number I of equivalence
classes is I — #(π'/'ĵ f)̂ (H/πF)~\ Both these numbers are powers of
two, and I is clearly ^ #(Γ/Γ0 Now Ad* TΓ/TΓ' permutes transitively
the {%<}, because TΓ/J^ acts freely on the {χj, for the same reason
that H/π' does, and #(TΓ/J^) = #(π'/j^'). Therefore Ad* Γ"//" per-
mutes transitively the classes of the {Ut}; so they define a point in
M(Γ, Γ").

We now compute the character ξ, of U. If {λ<} is a set of coset
representatives for jy" in £Γ, and {dά} is a set of coset representa-
tives for H in Γ', then {̂ -ΛJ are a set of coset representatives of
j * " in Γ', and f - Σ*,i Ad* δA(Ψo)

- Σ Ad* δjhMΠ^T1 Σ ?>)

- Σ Ad* δΛOKfZ/jOJK ΓVJO-1) Σ ?>)

?>, where 0" - Ad* Γ"(ψ) ,
φeO"

since {<?,} also form a set of coset representatives for π in Γ". Since
each representation involved occurs #(iϊ/π') times, f0, the character
of the quasiequivalent multiplicity free representation is
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ί0 = SiΓ'/HrWHMT1 Σ φ = ^(Γ'/πT1 Σ Ψ = (dim ET,)"1 Σ Ψ •
φeQ" O" φQ"φeQ"

Let S, S', S" denote the isotropy subgroups of ψ under Ad* Γ,
Ad* Γ", and Ad* Γ. We have #(/7S') - %{Γ/πJ since P polarizes f.
Moreover, since Ad* J ^ fixes ψ* |P,, we have %(S"/S') = #(J^/π ;). From
these relations, we see #(0") = #(Γ"/S") = %(ΓrIS'MΓ"/Γ')%(J*'lπf)-ί.
But #(Γ/Γ")#(Γ"/Γ') = #(Γ/r) and #(TΓ/J^)#(J^/;Γ') - #(*#')• But as
the two right hand sides are equal, and as #(π/j^O = #(7Γ'/JO» and
using (5), we have #(0"j = ί(dim i7,)2.

Thus the set 0" may be associated with representations {Z7J
satisfying all the claims of the theorem. But 0 is just a union of
07 — Ad* δ(0"), for δeΓ, and the representations associated to dif-
ferent 07 are clearly disjoint, again by orthogonality. Hence the
theorem holds for 0, and a counting argument again shows all finite
dimensional representations are obtained thus.

We remark that the character formula allows effective computa-
tion of the irreducible decomposition of induced representations and
tensor products of representations of Γ. For example, let F Q Γ
be e.e., and contain nΓ for n odd, and let ψ be a one dimensional
character of F/nΓ. Then U^F contains UQ to multiplicity #(0)~1/2

#(0 Π r~\f)), where r = rlogF.

ΠL Primitive ideal spaces* Let G be a countable discrete
group. Then M(G) is compact. According to Fell [6] and Prosser
[12], if I is a closed two-sided *-ideal of C*(G), the map which sends
/ to I1, the Ad* G invariant weak *-closed cone of positive definite
functions in l^G) which annihilate I is a bijective correspondence,
and the hull-kernel topology goes over to the weak *-topology, which
in this case is equivalent to the topology of pointwise convergence.
Call I1 a dual ideal. We will use the correspondence I^I1 to
consider I1 as defining or being a closed set in M(G). If JΓ1 is a
minimal dual ideal, then / is maximal, and the corresponding set in
M(G) is a closed point. Recall M(G) is Tί if and only if all primi-
tive ideals are maximal. If S is a dual ideal, and S — I1, we will
also write I = SL.

Let H Q G be a normal subgroup. We have already introduced
Ad* G/H and M(H; G). If S is a dual ideal of G, let rH(S) = r(S)
be the dual ideal of H consisting of restrictions to H of functions
in S. If T is a dual ideal of H, let i(T) be the dual ideal of G
generated by all functions /, / 6 T. The following relations are im-
mediate:

(1) r ( i ( Γ ) ) 2 Γ .
(2) r(S) is Ad* G/H invariant, and T = r(i(T)) if and only if T

is Ad* G/H invariant.
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( 3 ) ro%oγ = r a n d i ° r ° i = i.

Moreover, if G is amenable (of if just G/H is amenable) (as is the
case for our Γ) then it follows from results of Greenleaf [8] that

(4) i ( r (S))2S.
( 5 ) S = i(r(S)) if and only if fe S implies (flH) e S.

If S — i(r(S)), we will say, S is induced from H, or S may be re-
duced to H. We do not distinguish notationally between this opera-
tion r, and the r previously defined for restrictions of characters to
sublattices, because they are in fact the same operation.

r and i are closely related to familiar operations on represen-
tations.

LEMMA 7. If I is a closed "ideal of C*(G), and U is a repre-
sentation of G with kernel I, then UlH has kernel J = r(IL)L. If J
is a closed "ideal of C*(H), V a representation of H with kernel
J, then UV>H has as kernel in C"{G) the ideal I = ί(J 1 ) J .

Proof. This is straight forward from the definitions, plus the
well known fact ([6]) that if U is a representation of G, on the
Hubert space ^ with kernel / C C*(G), then I 1 is generated as
dual ideal by the positive definite functions g —> (U(g)x, x), x e Sίf.

LEMMA 8. / / IeM(G), then r(Iλ) defines a point in M(H, G).

Proof. M{H, G) is the quasiorbit space of the action Ad* G/H
on M(H). Let U be an irreducible representation of G on βg*, with
kernel I, and consider UlH. Let Ssf be the von Neumann algebra
generated by U(H), and C the center of Szf. If BQM(H) is a closed
subset, let IB be the intersection of the ideals in B. Let 3ί?B be the
null space of U(IB). Then PB, orthogonal projection onto £ίfB, is in
C. Since IBlΌBz = IBl n I*a, ^ u ^ = <&?* + <^ 2, so P*lUi?2 = sup (PBι, P*2).
Therefore, we may extend this to a map from the σ-Boolean algebra
of Borel sets of M(H) to the projections in C. (See [7].)

Take xeM(H) - r(Iλ). Since M(H) is compact, and r(IL) is
closed, there exists a neighborhood A of α?, disjoint from r(IL).
Therefore PA + 1 — P^-^ is zero, since M — A 2 'K/1), and Pr(7^) = 1,
by Lemma 7. On the other hand, take x e r(/1), and A any neigh-
borhood of x. Then P 4 is not zero. For if it were, then PM^A = 1,
so the null space of U(IM-A) would be all of ^ which would mean
IM_A £ ker U\N or M - 4 2 ̂ (I1), contrary to the choice of x and A.

Now choose {Xi}T=i £ Sff, which span, and such that 2Ί|^||2 = 1.
Define M(B) = Σ(PBxu xx) for any borel set B Q M. This defines a
borel measure on M. Clearly M(B) = 0 » P 5 = 0. We conclude
that μ is concentrated on r(71), and on no smaller closed set. Since
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U is irreducible for G, μ is also seen to be ergodic under Ad* G/H.
M(H) is known to be an analytic Borel space, and in particular,

countably separated. Now apply Lemma 1.1 of Eίfros and Hahn [5]
to conclude that μ is concentrated in a unique quasiorbit for Ad* G/H.
From the above, r{IL) must be this quasiorbit.

Thus r becomes a map r: M(G) —> M(H, G), and M(H, G) is seen
to be the quotient of M(G) by the equivalence relation defined by
restriction of dual ideals of G to H. This justifies the term, relative
primitive ideal space, r is clearly continuous.

Addendum. The author is grateful to the reference for raising
the following two points bearing on the justification of the term
"relative primitive ideal space." The points are:

(1) Is r: M(G) -> M{H) surjective?
( 2) Is r an open map? That is, is the topology of M{H, G) as the

set of ideals of C*(H) primitive relative to the action of Ad* G/H
the same as the topology of M{H, G) as the set of classes of primi-
tive ideals of C*{G) relativized to HI

The answer to (1) is always yes. I do not know the answer to
(2) in general, but if G/H is amenable the answer is yes. Amenability
is certainly not necessary, because one can take H to be finite for
example. However, amenability covers the case at hand.

The proof of surjectivity goes as follows. Let 0 Q M(H) be an
Ad*G/ff quasiorbit. Let JeM(H) generate 0 (i.e., Ad* G/H(J) is
dense in 0). Let V be an irreducible representation of H corre-
sponding to J, on the Hubert space £$f. Consider the positive definite
function jf(fe) = (V(k)u9 u), defined by the unit vector ueβέf. f is
an extreme point of the states of C*(H). Now r(i(J)) — 0, and i(J)
is a dual ideal of C*(G); so the states in i(J) form a support of the
states of C*(G) (see [12]). Thus we may choose an extreme point
g of the states of C*(G), such that g e i{J) and glH = /. The dual
ideal generated by g will then define a point of M(G) whose image
under r is 8.

We pass to point (2). The inverse images under r of the closed
sets of M(H, G) are the sets of the form Sj = {IeM(G); r(I) Q J},
J £ M(H), J closed and Ad* G/H invariant. Now let T be any
closed r-saturated set in M(G)f and let J — r(T). Then I claim
i(J) Q T always. To see this, let I be any point of T. Then to
say that T is r-saturated is to say that for any /', such that
r(Γ) = r(I), Γ 6 T. Now the proof of surjectivity given above may
be refined by looking at all possible functions g chosen as in that
argument. If / is an extreme point of the states in r(I), the
Krein-Milman theorem implies fGr~ι(j(J))9 hence feT. Applying the
Krein-Milman theorem again shows g e T for any g 6 r(J), and apply-
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ing it again shows i{r{T)) £ T as claimed. Thus always Sj 2 T 2
i{J). But now if G/H is amenable, i(r(T)) 2 Γ. Hence T = i(r(Γ)) =
Sj and the topologies agree in this case.

We also note that it is only the nonmaximal primitive ideals
which cause problems in these considerations. If one is interested
in maximal ideals only, then Lemma 8 and the above discussion
become trivial, r exists and is open automatically.

IV. Structure of ideals of C*(Γ).

LEMMA 9. (a) Let ΓtQ Γ be a subgroup, and w(/\) its nor-
malizer in Γ. Then n{Γ^)s = n(Γls).

(b) // Λ is saturated, then for any δeΓ, ΓΊ =-co Ad δn(Λ) =
Π*=ί Ad* (^(Ti) for any (k — 1) values of nit when Γ is k-step nil-
potent.

(c) If dί9 δ2 e Γ, (δ19 δ2) = 0 if and only if (3?, δ?) = 0 /or some
m, n Φ 0.

Proof C. H.

Now let I be a primitive ideal of C*(Γ), and let U be an irre-
ducible representation of Γ with kernel 7. Let JBΓ(/) be the kernel
of U in Γ, and let C(I) be the inverse image in Γ of the center of
U. Then UlCm is a one dimensional character χ(J). K(I) is the
subset of 8 6 C(/) for which χ(I)(δ) = 1. C(/) is the subset of δ e Γ,
such that all fe I1 are eigenfunctions under translation by δ9 with
eigenvalue χ(I)(8). In particular if and C depend only on I. K(I)S

is the subset of δ e C(/) such that χ(I)(δ)n = 1 for some w. Clearly
JBΓ(/), C(J), etc. are normal subgroups of Γ. If π:Γ-+Γ/K(I), is
the natural map, then π~\^(π(Γ))) = C(I)S. We write also K(I) =
^ I 1 ) and so forth.

It is our purpose in this section to reduce I1 to subgroups of
Γ, eventually to C(I)S.

LEMMA 10. Notations as above. C(Iλ)s is the largest of those
subgroups H such that rH(IL) is finite dimensional. If IL is not
finite dimensional, then choose δ e Γ such that π{δ) 6 %*{2)(π(Γ)) —
π(C(I)s). Let D(δ) be the inverse image in Γ of the centralizer of
π(δ) in π(Γ). Then I1 can be reduced to D(δ).

Proof. Let {SJJU be a set of coset representatives for C(I) in
C(I)S. Then {?/(£,)} span UH^Ctf).)), so I{C{I)s certainly is finite di-
mensional. Let HQ be maximal among subgroups H such that rH(IL)
is finite dimensional. Then clearly HQ is saturated, and as Ho 2 C(I),
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Ho 2 C(/)s. If Ho Φ C(I)S, then Ho contains F, a normal subgroup
of Γ, strictly containing C(I)S. As rF(Iλ) is a fortiori finite dimen-
sional, U\F is a sum of finitely many distinct finite dimensional rep-
resentations which are permuted by Ad* Γ/F. Using Proposition 1,
we see that there is Fr, an e.e. characteristic subgroup of F, such
that U{F, is a sum of finitely many distinct one dimensional repre-
sentations, again permuted by Ad* Γ\F'. By C. H., analogously
with Lemma 1, we see (Γ, Fr) £ K(I)S. From the discussion just
before this lemma, this shows Fr £ C(I)8, which is a contradiction,
establishing our first assertion.

Choose δ as stated. C. H. shows that there is meZ such that
for all a e Z, (δam, Γ) C C(I), and (δam, D(δ)) £ K(I) for all a. By
Lemma 9, D(δm) = D(δ), so assume m = 1. Now if yiD (§),
χ(I)((<5, ?/))α ^ 1 for any α 6 Z. Define operators 2\, on L(Γ) defined
by Γ,(/) = l/(n + 1) Σy=o Ad* δ*(f). Clearly Γ, preserves I1. More-
over, for feP,yeΓ, Tn(f)(y) = (l/(n + 1) Σ?=o χ(($, y)Yά)f{y). Thus,
as ^ goes to c>o, Γ^/ approaches (f\mi)) as a weak* limit, so we see
I1 is indeed reducible to D(δ).

Let us denote the process of reduction described above by
R(IL, Γ, δ, Γj), where ΓΊ = D(δ) is the group to which we reduce
I1. Suppose we apply R(Iλ

9 Γ, δ, A) to I 1 to obtain rΓl(IL). By
Lemma 8, we may choose Iϊ, a dual ideal of Γlf such that rΓl{IL)
is the Ad* Γ/Γ1 quasiorbit generated by It, so I1 = i(It). If It is
not finite dimensional, we may go through another reduction process
R(It, Γlf δif Γ2), and so forth. Clearly this process must terminate
in a finite dimensional dual ideal It on a saturated subgroup Γt of
Γ, and we will have i{It) — I 1 . Hence any primitive dual ideal is
generated by a finite dimensional dual ideal on a subgroup. More-
over, we have

PROPOSITION 2. Notations as above, let ψ be a one dimensional
representation of H Q Γt such that ψ induces It on Γl9 Then the
representation U^H of Γ is irreducible, with kernel I 1 .

Proof. That U+'H has kernel I 1 follows from Lemma 7. To
show it is irreducible we invoke a theorem of Mackey ([10], p. 141).
If y eΓ, and H Π y~ι Hy has finite index in H, then y normalizes
/V If y e Γlf then Ad* yψ and ψ are inequivalent on H Π y~ι Hy,
since f on H induces It by assumption. If y e w(.Γz) — Γz, then 2/
was eliminated at some stage R(It, Γit δi+1, Γi+ί). Now clearly
δjeC(Ij), and G{If) £ if, and α/r agrees with χ(Ij-) on C(If) for all
j" ^ ϊ. The fact that y was eliminated by <?i+1 implies that (δi+1, y) 6
C{Ii) and χ(It)((δi+1, y)) Φ 1. This implies that δ<+1 e if Π ί/"1^, and
Ad* yψ(δi+ί) Φ ψ(δt+1). Hence the criteria of Mackey's result are
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satisfied, so U+*H is irreducible.
Thus the classical fact persists, slightly changed.

LEMMA 11. I 1 can be reduced to C(Iλ)s.

Proof. Using R{ ) successively, reduce I1 to the finite dimen-
sional dual ideal It on Γt. Then K(It)s 2 Γ\2). Take δeΓf and put
H = n^-oo Ad δn(Γz), and let H, be the set of heH, such that
(<5α, hb)eH{] K(It)s for all a, b e Z. Then C. H. shows that H and
Hx are saturated subgroups of Γ, normalized by <5, and Hι 2 iϊ (2).
Again using C. H., it may be verified that for some m > 0, (§αm, H) e
C(I/0 Π H and (<5αw, JEfJ £ K{It) n ̂  for all α e Z . As replacing <5
by δm does not change i ϊ or Hl9 once more by C. H., we may as-
sume m — 1.

Now consider, for this δ, the operators Tn, defined in Lemma
10. By the above, Ad* δaf(h) = f(h) x(It)((da, h)) for h e H9 and
felt. Hence, if heHlf TJih) = f(h). Also, if yeΓ - H, Lemma
9 (b) implies Γn/(#)->0 as n-* oo. Take heH- H,. Then Γn/(fe) =
f(h)(l/(n + l)Σ%oχ(ItWj,h)). C. H. shows that this last summa-
tion has the form Σ?=o βίP(i), where P(j) is a polynomial. Moreover,
by definition of Hlf h£Hι implies at least one coefficient of P is
irrational. By a classical theorem of Weyl [15], this means Tnf(h)—>0,
as n —> co. Therefore, we can reduce IL to Hλ. Repeating this
process using other δ's, we see we may reduce I 1 to a finite dimen-
sional dual ideal J1 on a saturated normal subgroup F of Γ. More-
over, the fact that Ad* δ χ(It)(h) = χ(It)(h) for h e K(It) Π H, will
imply that Ad* Γ(rF(χ(It))) is a finite set. Therefore, rF{IL) is finite
dimensional. Therefore, by Lemma 10, F £ C(IL)S. But clearly I
cannot be reduced to a saturated subgroup smaller than
Therefore F =

1

COROLLARY. Every primitive ideal in C*(Γ) is determined by
its intersection with lγ(Γ).

Proof. This is the same as to say, that if It Φ It are two
distinct primitive dual ideals of Γ, then the w*-closed subspaces
Mlf M2, of loo(Γ) generated by It, #, are also distinct. But if M1 =
Λfa, then, as every function in Mt transforms by %{It) under trans-
lation by elements of C(It), we must have C — C(Jt) = C(It), and
χ(jj-) = χfTg1), and, also, of course ΛflU7s = M2\Cs. But for finite di-
mensional dual ideals, the result is quite clear. Hence Itcs = Iέ\c8

But now Lemma 11 shows It = It.
This corollary may be regarded as a sort of Tauberian theorem

for Γ.
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By a trace on Γ, we understand a positive definite function /,
constant on conjugacy classes, and satisfying f(e) = 1 (e is the
identity). See [14].

PROPOSITION 3. Every primitive dual ideal I1 contains exactly
one trace, Θ(IL). If F is finite dimensional, let U be an irreduci-
ble representation of Γ1 corresponding to I 1 . Then if φ(U) is the
character of U, θ(Iλ) = (dim U)~~ιφ(U). In general, let {Jj-}*^ be the
primitive dual ideals of C(/1)s contained in I1. Then Θ(IL) =

Proof The formula above clearly gives a trace contained in
I1. Let φ be any trace in I1. Then clearly φ agrees with Θ{IL) on
C(Iλ)s. Let notations be as in Lemma 10. Then the method of
reduction in that lemma shows immediately that φ is zero on
τt-\%-{2\ΓIK{IL)8)) - C(IL)S. We will show by induction on i, that
φ is zero on Ht = π"\Sr^{ΓIK{IL\)) - C(IL)S. Suppose it so for ί,
and take δeHi+1 — Ht. Let Y be the conjugacy class of δ. Since
(Γ, H i + ι ) £ Hif e v e r y g e Y c a n b e w r i t t e n g = 3 - h , w i t h h e H i .
π(y) is infinite. Therefore, either (1) for some g0 — δh0, there are
an infinite number of gi — δhi such that h^% 6 C(Iλ)s — K(IL)S) or (2)
there are an infinite number of gt = δhi9 such that hihj1 $ Cr(/1)s, for
i Φ j . If (1) holds, then, for some i, hόιht e C(IL) - K(IL), so <p(gt) =
X(K%)φ(g0), which is impossible unless φ(gt) — φ(gQ) = 0. If (2)
holds, consider the element a of lλ(Γ) given by a = e —

oΛ"1), and α*α
9>(δ)(Σ?«o ίJTΓ1) + I ?>(«) WΣnΦi hj%). Hence 0 ^ φ(a*a) = 1 -
for any %. But this is absurd, unless φ(δ) = 0, so the proposition
is established.

COROLLARY. M(Γ) is Γ1# ΓAαέ is, every 'primitive ideal of Γ
is maximal.

Proof. If Ii Q I2 are two primitive ideals, then It 2 /2

J, so
Θ(U) Q It, so θ{Ii) =.θ(It), so Λ1 - It.

As an example, we give the traces of the primitive ideals of
H, the "discrete Heisenberg group," cited in the introduction. Clearly
for any primitive ideal / of C*(H)9 3T(H) £ C(I). If χ(J) is irra-
tional, i.e., faithful on %*(H), then ^(H) — C(I), and the reduction
process shows Θ(I) is χ(I) on %{ΈL) and zero elsewhere.

If χ(J) is rational, however, #(^(ίf)/ker χ(I) Π -^(Jϊ)) = w is
finite. Let R' = H/ker χ(I) Π -^(fl"), and let π\H->H' be the quo-
tient map. Then %{Ή.'\%\H')) = w2 is also finite, and χ(I) is actually
defined on π~\%'{Hr)) = C(I). It is an arbitrary extension of χ(I)
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on %*(H) to C(I). An easy calculation shows that again Φ(I) is χ(2)
on C(I), and zero elsewhere. These facts, together with the descrip-
tion of the topology to be provided by Theorem 2, suffice to verify
the description of M(H) given earlier.

To finish this section, we note a result on type. We will say a
primitive ideal I of C*(Γ) is type one if there is only one irreduc-
ible representation of Γ with kernel /. This is more or less con-
sistent with existing terminology.

PROPOSITION 4. If Iζ^C*(Γ) is a type one primitive ideal, I1

is finite dimensional.

Proof. If I1 is not finite dimensional, we can choose δ as in
Lemma 10, and apply R{Γ, Γ, §, D(δ)). Since I1 is minimal, any
dual ideal J 1 of D(δ) contained in r(lA) will generate I1. Since
δ e C(JL), regardless of the J1 chosen, choosing JL involves specifying
χ(J1)(§). It is easily seen that the spectrum of Z7(<5), where U is
any irreducible representation of Γ with kernel I, is the whole unit
circle. Hence χ(JL)(δ) may be specified arbitrarily. Let H be the
group generated by δ and C(IL). Then H is normal, and Ad* Γ/H
acts on the one dimensional representations of H. Since Γ is counta-
ble, there are an uncountable number of orbits. Pick Jΐ, J2

L, so that
rH(χ(Jt)) and rH(χ(J2

L)) are in different orbits. Then, continuing the
reduction of J , we will arrive at one dimensional characters on
subgroups and then induce back up to get representations U19 U2.
These representations are clearly inequivalent, for in each of them,
Ui(δ) has pure point spectrum, and the points of the spectrum are
different, by choice of Jt, Jt-

V* Classification of ideals* Here we return to the notations
of § II. In particular, Γ is now e.e. L = log Γ. L' = 2L. Γ' =
exp U. We shall analyze the structure of Δ{Γ\ Γ) along lines paral-
lel to the last section.

Consider 0, an Ad* Γ quasiorbit in £'. We let log JSΓ(O) be the
sublattice of I/, of elements y such that ψ(y) = 1 for all feO.
logC(O) is the set of y such that the set {ψ(y): ψ 6 0} is one number.
Then it is not hard to verify (using Theorem 1) that K(O) =
exp (log K(0)) is a normal subgroup of Γ', as is C(0) = exp(logC(0)).
UL(O), is seen to be the maximal subgroup of Γ' on which all ψ eO
are rational, and C(0)s is the largest of the groups H such that
rH(0) is finite. The common restriction of + 6 0 to C(0) is a one
dimensional character, which we will denote χ(0). Using C. H., it
follows that if π: Γ'~+Γ'IK(0)s is the natural projection, then C(0), =
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LEMMA 12. Notations as above. If C(0)β Φ Γ', then pick δ e Γf

such that π(δ) 6 βT{t\π(Γf)) - τr(C(O)s). Let D' = D'(δ) - π~\C(δ)),
where C(δ) is the centralizer of π(β) in τc(Γr). Put A' = logDr.
Then 0 = r-1(r(0)), where r = rA,.

Proof. C. H. shows that for some m > 0, Ad* dm{r(ψ)) = r(f)
for every φeO, and (δαw, D'(δ)) Q C(0), and (δαw, D'(δ)) Q K(0) for
every aeZ. As Lemma 9 guarantees D\δ) = D'(δm), assume m = 1.
Then C. H. gives, for j/eL', t e 0, Ad* δa(ψ(y)) = ̂ ) f (~w[logδ, 2/]).
Hence the set S = {ψ Ad* δα(ψ)} forms a group of characters of
A = LrIΔf. Since, for y gz/', Ad* δa(ψ)(y) Φ f{y) for any α e Z , f e0,
$ is dense in A. Hence {Ad* δn{ψ)} is dense in r " 1 ^ ) . Letting α/r
range over 0, the result follows.

Call the process described above J?(0, Γ', δ, Γ[), where Γ[ = J9'.
Put J = (1/2)J', D = D{δ) = exp z/. We can pick an Ad* D(δ) quasi-
orbit 0i in A' whose Ad* Γ quasiorbit is r(0). Then we may repeat
the reduction process, until we arrive at Γ[, a saturated subgroup
of Γ', and 0z, a finite Ad* Γz quasiorbit in logΓz', where Γι =
exp ((1/2) log Γ{). Then an induction using Lemma 12 shows, if ψ e £',
and rι(ψ)eθι, then Ad* Γ^ψ) is dense in rr\0).

LEMMA 13. Let V be an irreducible representation of Γ'u as-
sociated to 0j. Then the induced representation Uv of Γf is irre-
ducible.

Proof V is induced from a one dimensional character on a sub-
group H Q Γ[. An argument entirely parallel to that of Proposition
2, applied to H and ψ, establishes the lemma.

We are now ready to prove the main result. We remark that
the analysis of M(Γ) in § IV can be trivially modified to apply to
M(Γ', Γ). We define 0(0) - ftfofl)))-1 Σ*βr(7«» Φ, where C = C(0).

THEOREM 2. Notations as above. There is a canonical homeomor-
phism a: Δ(Γf, Γ)—*M(Γ', Γ). Canonical means, for any automor-
phism of Γ, the induced maps on the two spaces commute with a.
If «(<)) = I, then C(0) - C(I), χ(0) - χ(Z), and θ(0) = Θ{I).

Proof. Take 0 6 A(Γ', Γ). Via Lemma 12, we can reduce 0 to
a finite Ad* Γt orbit 0t on some subgroup Γ[ of Γ. By Theorem 1,
0ι corresponds to a finite dimensional dual ideal It of ΓΊ, which
defines a point of M(Γ'h Γt). Lemma 13 shows that It generates a
dual ideal I1 of Γ'f which defines a point of M(Γ', Γ). We write
a(0) = I 1 . Considering all possible reductions of 0, we get a ca-
nonical relation a. We shall show a is a bijection.
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First, we check that C(0) = C(I), χ(0) = χ(J), and 0(0) = 0(J).
It is clear that any I 1 6 α(0) is a subset of the positive functionals
associated to Uχ{0)>C{0), and as χ(0) is invariant under Ad*Γ|C(0),
all fe I1 by transform χ(0) under translation by C(0). Therefore
C(0) £ COT1), and χ(0) and χ(J) agree on C(0). On the other hand,
I\c(iλ)s is finite dimensional. If I 1 is induced from It eM(Γ\, Γ{)f

then the characters associated to It are in I 1 , and they are finite
sums of restrictions to Γ\ of elements of 0. Likewise, all conjugates
by elements of Γ of these characters are in I 1 , and their restric-
tions to C{IL)S, which is normal, are the same sums of the conjugate
elements of 0, and every restriction of an element of 0 to C(IL)S is
involved in one of these sums. Since these sums can span only a
finite dimensional space, the restrictions of elements of 0 to Cf(/1)s

can be only finite in number, since distinct restrictions are linearly
independent. Hence C(IL)S £ C(0)s, by the discussion preceding
Lemma 12. Hence C(IL)3 = C(0)s. It is now easy to see that 0(0) 6
I 1 , and, as 0(0) is clearly a trace on Γ\ 0(0) = 0(7). Prom this,
the equality C(IL) = C(0) follows, since C(0) is the subset of δ e C(0)s,
such that 10(0) I = 1 and similarly for C(IL). That K{I) = K(0) is
now evident.

The above shows a is a function. It also shows that a is onto.
For Theorem 1 guarantees that, given I1, there is 0, such that
α(r(0)) = r(IL), where r restriction to Cil1),, and a here is the map
a: Δ{C(IL)S, Γ)->M(C(IL)S, Γ). But then it is clear that C(0). 2 C(Iλ)s,
and 0(O)!ί7(Ii)g = 0(I1). From this, it follows, as in Proposition 3,
that 0(0) = 0(/1), and so indeed I1 = a(Q). Finally, we show a is
one-to-one. We may assume the theorem true for groups of lower
rank than Γ. Since a is canonical, it follows that if H £ Γ' is any
proper normal saturated subgroup then Δ(H, Γ) and M(H, Γ) are
homeomorphic. Now take 0lf 02 6 Δ(Γ\ Γ), and suppose afflj) =
α(0a) = I1. Then χ(0x) = χ(02) = χ(IL), and we may reduce 019 02

and I 1 to D'(β) for some one <5. Here we conclude that a(r(0j)) —
0L(r(Qι)) = rCJ1), and since a is a bijection on this level, r(0j) = r(02),
and so 0x = 02, by Lemma 12.

Finally we must compare the topologies. To do this essentially
involves refining previous considerations, particularly Proposition 3,
and Lemma 12. Let {It}?=i be a sequence of points of M(Γr

9 Γ).
Let Ks = Γ[7=όK{IΪ), and Cd = ΠΓ=, C(Ji), and K = U ^ i ^ and C =
UΓ=i^ Inducing on the rank of Cίf then on #((C )̂β/Cy), we see
there is an m such that K = JΓΛ, and C = Cw. Then we see that
Ks is the subgroup of Γ, consisting of elements δ9 such that there
exists n, such that Ui(δn) = 1, for all i^m, where [7* is a repre-
sentation attached to /<-. If π: Γ —+ Γ/K8 is the natural map, then
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Cs = π~\^r(Γ/Ks)). Cs may also be described as the largest of the
subgroup HQΓ, such that there exists d, such that dim (Uβ^H))) ^ d
for alH ^ m. Suppose that for any subgroup D Q C of finite index,
containing K, that C Π K{If) S D for i sufficiently large. Then I
claim l inw θ{H){δ) = 0 for δ i Cs.

To show this, let CS = H^ π-\^T(Γ/K9))9 and H, = TT^JT
 (i)(Γ/iQ).

For 3eH2- Hίf we can find | /eΓ such that (y, δ)eC — K. From
now on, write χ(I< ) = χ*, #(.#•) = 0,. Then, by our assumption above,
for i sufficiently large χt((y, <5)) ̂  1, so θ(Jϊ)(β) = 0. Now suppose
δ e Hi+ι -Hif i > 1. Now either there is yeΓ, such that (δ, y) e
Cs — Ks, or, if F is the conjugacy class of δ, then π(Y) intersects
each coset of π(Cs) at most once. In the first case (δ, ya)eC — K
for some α, and then ^(5) is eventually zero as before. Otherwise,
we may pick an infinite sequence {g^J^ of elements of Y, such that,
if g. = δhj, then hthjιeHt — S Ί . Construct α as in Proposition 3,
using ΘΊ instead of φ. Then we have 0 <; ίz(α*α) = 1 + |^(δ) | 2 (-^ +
Σt*i 0ι(^Γ% )) Choosing ϊ sufficiently large, we may conclude, by
induction, that 16^7%) \ ̂  l/2n2, so | ̂ ,(δ) |2 ^ 2/w. This establishes
the claim.

Now suppose S £ M(Γ'f Γ), Ijf- e S, and {/̂ JJLi C S converges to
Zo1. Suppose C and K as constructed above are the same for all
subsequences. (If {Ii}7=ι does not satisfy this condition, we may
find a subsequence which does.) Then χ(7< ) converges to %{U) on C.
Let d £ C be the subgroup on which %{It) is constant for i suf-
ficiently large. Then K Q C19 and conversely, K contains Cί Π K(U).
If δeC — Clf then χ(Jί ) is a nonconstant sequence converging to
χ(J0

1)(δ) and so, by our assumption on {ft}7=i, X(H-)(δ) Φ 1, for i large.
It follows that the χt satisfy the condition discussed above, and so
θi(δ) —* 0 for δ ί Cs. We conclude immediately that {11} converges to
all dual ideals JL such that Θ{JL)W = θ(I0

L)ιc.
Now we notice that the topology of Δ(Γ', Γ) is given by the

quotient of the weak *topology by the action of Ad* Γ on the posi-
tive definite functions of U = log Γr. Using this fact, we may
repeat the above analysis, substituting flζOJ's for θ{Ity&. Then we
see the topologies are indeed the same by virtue of the identity of
0(0) and 0(α(O)).

This concludes Theorem 2.

REMARKS, (a) Perhaps the best way to think of the above
analysis is to regard it as establishing the equality of the topologies
of both Δ{Γ\ Γ) and M(Γ', Γ) with Effros' simplex topology [5] on
the extremal traces of Γ, which are identified via exp with the
Ad* Γ invariant states on L\

(b) Theorem 2 implies that the orbits in Δ(Γ\ Γ) have a fairly
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simple structure. 0 is a finite union of cosets of the subtorus of
If which annihilates C(0)s.

(c) One way of looking at Theorem 2 is as a duality theorem.
If G is an extension of Γ by logΓ, for example, the semidirect
product, and G', the included extension of Γ' by logΓ', then Theo-
rem 2 says M(log Γ', G) and M(G'/log Γ', G) are naturally isomorphic.
The significance of this interpretation is unclear.

VI* Application to finite groups* Let Γ be e.e., and A C Γ
a normal e.e. subgroup. Put L = logΓ, Lx = log/V We will say
Γί is e.e. embedded if [L, LJ QklLlf where, as usual, Γ is λ -step
nilpotent. If ΓtQ Γ is e.e. embedded, C. H. shows immediately,
that for δ 6 Γ, log δΓx = log δ + Lγ. Hence functions on L, constant
on cosets of L19 can be interpreted as functions on Γ/Γ^ In par-
ticular, the annihilator of Lx in L defines an orthogonal basis for

exp: L~+Γ can also be factored to a map exp:

LEMMA 15. If p is a prime, and p > k, and Γ1Q Γ is normal,
and #(ΓT/JΓ1) = pm, me Z, then Γx is e.e. embedded in Γ.

Proof. Let Lx be the lattice generated by log Γx. Then cer-
tainly Li £ L — logΓ, and also pmL £ logΓx S Lx. Also, Proposition
0 gives kl2 Lx £ logΓ lβ Therefore, as p and k\ are relatively prime
by assumption, Lx = logΓ^ C. H. now shows [L, LJ Q (k — l ) ! " 1 ^ ,
or kϊ(k - 1)! {k\~\L, L^QL,. But as k\-\L, L,]QL, we have also
pm{k\~\L, LJ) £ Llβ Hence [L, LJ S fclLi. A fortiori Lx is e.e. and
so is e.e. embedded.

Now let P be a p-group, which is (p — l)-step nilpotent. Then
if pί9 , pn generate P, the natural map π from ί7, the free group
on p19 •••, pn, onto P, factors to a map π on Γ = F/F{p), which is
known [13], to be a discrete, finitely generated, torsion-free, (p — 1)-
step nilpotent group. Let Γ' £ Γ be the kernel of π. By Proposi-
tion 0, there is a normal e.e. subgroup Γx of Γ, such that if δ e Γ,
(P26Γχ Now 7Γ restricts to a map π: Λ/Λ ( Ί Γ ' ^ P , which we see
is onto, since kl2 and p are relatively prime. Therefore, Lemma 14
shows H = Γx Π Γ' is e.e. embedded in Γx. Therefore, we have the
following result.

THEOREM 3. Let P be a (p — l)-step nilpotent p-group. Then
there is an abelian group L9 which also has the structure of a
(p — l)step nilpotent lie algebra, and a bisection exp:L—>P, satis-
fying the Campbell-Hausdorff formula. Inner automorphisms of P
induce an action by automorphisms of P on L, denoted Ad. The
dual action on L is denoted Ad*. Via exp, the elements of L may
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be viewed as a multiplicative group of functions on P, which are
permuted by inner automorphism, and are an orthogonal basis for
12(P). The irreducible representations of P are in one-to-one corre-
spondence with the Ad* P orbits in L. If 0 and Uo correspond,
then dim Z70 = #(0)1/2. The character, ξu of U is given by ξu —
$(O)~1/2Σφeoφ- UQ may be realized as an induced representation
as follows: take any f eθ, and any Q £ P, a subgroup such that
ψlQ is a one dimensional character, and #(Q) is maximal with re-
spect to this property. Then UQ = U^>Q.

We have also these results on induced representations and tensor
products.

COROLLARY 1. If P and Pr are as in the theorem, Pr Q P, U
and L, the associated groups, and r: L—>L' the natural map; and
if Or is an orbit in U, and 0 an orbit in L; then the multiplicity
of UQ in the representation induced from UQ> is #(0 Π r~\W)) #(0')~1/2

#(0Γ1/2.

If 0ίf 02 are two orbits in L, then the multiplicity of orbit 03

in 0i + 02 is the number of distinct ways some given <ψ\> e 03 can be
represented in the form ψ3 — ψyf2, with ^ e 0<β

COROLLARY 2. if k is the multiplicity of 03 in 0ί 02, then the
multiplicity of Uθ3 in UOl (g) Uθ2 is k #(03)

1/2 #(0x)-1/2 #(02)~1/2.

APPENDIX. Proposition 0.

Proposition 0 essentially involves inverting the Campbell-Hausdorff
formula. That [logΓ**, log/7**] Q (k - ΐ)ΓιlogΓ** is a simple
calculation. The longer part is to show kl2 log/7** Q log/7. We
begin with two observations crucial to the purpose.

(1) We recall the definition of the order of a commutator in a
lie algebra N. Any x e N is a first order commutator. The bracket
of an ifh order with a jth. order commutator is an i + i th order
commutator. Then, if N is fc-step nilpotent, C. H. for N takes the
form log (Π?=i e χ P $<) = Σi^oi!""2^-, where Ss is an integral sum of
jth order commutators in the xt'&.

(2) If C(Xi) is a commutator in the x/s, then C(exp^), the
parallel commutator in the exp xt

9s is gotten from Cfa) by replacing
xt by expect and each bracket by a like oriented parenthesis. If
C(xt) is of jth order, then C. H. gives log C(exp xt) = C(xt) + (l/2)Sj+1 +
Σkι=j+2H~2Sι, where St is again an integral sum of commutators in
the x/s.
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Now with Γ as always, logΓ £ N, we want to show kl2Σxte
log Γ. We consider log (Π?=i e χ P &xt) = aΣxt + Σ5U aJJl ~~2Sj, and
seek to modify it successively by elements from logΓ in order to
eliminate the higher order terms. Suppose at some point in this
process, we have an expression E = aΣxt + C S = i βjjl~2Sj. Assume
CβιlΓ2 is integral and write CβιlΓ2 = C'βfl, where C" is not divisible
by dι for any d e Z. Suppose St = ΣrjCJfaύ, where the Cm are
commutators, and rm are integers. Then multiply exp E by
77Cm(exp β'xt)-0'** = exp F. Then C. H. shows that log (exp E exp F) =
Er = α̂ aUi + CΣi=z+ii8'J;/!-2Ty, where the Γ5 are new integral sums
of ith order commutators in the x/s. The problem now becomes
computing a so that this process may be carried through the kth
step. Factoring a into primes, we see we may compute the neces-
sary power of each prime separately. First take p > 2. If I —
Σ?=<>β<PS t h e n V appears in j \ to the power v(l) = (I — r(l))(p — I)"1

times, where r(l) = Σ?=o «i. If, at the Ith step, the power of p in
Cβι is p\pd)\ and 6 < 2v(i), so that is necessary to withdraw a
power of p from 2/ in order to proceed, we will call this process
"dropping an exponent." So suppose we are at the ίth place, with
p appearing to the power b + dl — 2v(l) and we must drop an ex-
ponent. Doing so, we see from the form of v(l), that we may
proceed to the I + ((p — l)/2)th the stage without dropping an ex-
ponent. There the power of p will be b + g~1(Σ?=J W + i) — ϋ) +
(d — l)(ϊ + q) — 2v(l + q), where q = {p — l)/2. Here again we will
probably (but not always) have to drop another exponent.

Let us start at I = ap\ and proceed, dropping an exponent every
gth step, until we are come to m = (a + l)pι — 1. If our initial
power of p is b + dap1 — 2v(api), we shall arrive to find the power
σ + m(d — ϊ " 1 ^ — 1) — 2v(m)), where 0", the accumulated surplus, is
given by σ = g - ^ m - 1) - S(ί - 1) - (p* - ΐ)(q - 1)) + 6. Here
S(n) = Σ?=ir(^) If w e calculate this, we find σ > 2v(m), so we may
proceed t o m + 1 without dropping an exponent, and then carry on.
Beginning from zero, we see that we need at most 2v(k) powers of
p to carry through the kth step. For p = 2, the same argument
works if we drop two exponents at each step, except just before
powers of 2. Putting this together, we see a = k\2 is indeed suf-
ficient to begin with to carry through the whole procedure to the
kth step.

From this, the existence of Γ1 as stated in Proposition 0 is im-
mediate. To construct Γ2 is independent of the argument above.
Put Lt = N{i) n (log Γ**), and log Γ2 = Σ?=ί W (* - U ))"%• This
will work.
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