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A REMARK ON FUNCTIONS OF BOUNDED MEAN
OSCILLATION AND BOUNDED

HARMONIC FUNCTIONS

N. TH. VAROPOULOS

This note is an Addendum to [7]; it is written, however, in such
a way that it can be read independently.

We recall that μ a positive measure on the upper half space
R\+1 = {{x, y); x e Rn, y > 0} (the notations we use are those of [6])
is called a Carleson measure if

μ{x 6 /, 0 < y < h) ^ Ch*

for all I hypercube in Rn of side length equal to h (cf. [6] VII 44,
fl] [7]). In this note we shall prove the following

THEOREM 1. Let u be a real bounded harmonic function in JB++1

such that \\u\\oo^l then there exists veC°°(Rl+1) a real bounded
smooth function such that \Fv\d Vol is a Carleson measure in R++1

and such that | | w - - ΐ ; | | 0 0 < i l —ε 0 for some numerical constant ε0

(0 < ε0 < 1).

Fv denotes of course the gradient of v in R++1.

REMARK. Note that \Fu\d Vol is not in general a Carleson meas-
ure (cf. [5]).

THEOREM 2. Let feBMO(Rn) then there exists FeC°°(Rn

+

+ί) such
that

( i ) F(x,y)^f(x) xeR* p.p.

(ii) sup.x) I F(x, y) \ e L\oc(Rn; dx)
(iii) IPΊ̂ IcZVol is a Carleson measure in Rχ+1.

Conversely if feL\oc(Rn) is such that there exists some FeCl(Rl+1)
that satisfies (i), (ii), and (iii) then f is a BMO function.

(For the definition of BMO and background cf. [2].)

In functional terms the above theorem means that the space
BMO is the restriction space (i.e., quotient space) of an appropriate
space of C°° functions in the upper half space (cf. [3] for analogous
results).

Both the above theorems can be generalized in other contexts,

257



258 N. TH. VAROPOULOS

e.g., the complex ball or more generally strictly pseudoconvex domains
in Cn. Indeed it was in these contexts that theorems of the above
type turned out to be useful for the first time cf. [7].

We shall give the proof of both theorems when n — 1, the general
case is identical. The proof of theorem is based on a construction
that was introduced in [1] by L. Carleson and which has proved
to be, a very powerfull tool in the study of bounded harmonic
functions. A number of modifications of the above construction due
to D. Sarason and D. Marshall can be used to simplify matters.

Let u be a real bounded harmonic function in R% and let us
suppose that H ÎU ̂  1. Let us denote by S = {0 < x < 1, 0 < y < 1}
the unit square in R\.

A = {s 6 S; \u(s)\ <a)

B,=:{se S; u(s) > β}

B2 = {seS;u(s)< -β}

and B = Bt U B2, where 0 < a < β < 1 are two numbers that will be
chosen appropriately. We have then

LEMMA (L. Carleson and D. Marshall). For an appropriate choice
of a and β there exists Γ c S a closed subset which is the union of
countably many horizontal and vertical linear segments in S that
satisfies the following two conditions:

(i) Γ separates A from B in S i.e., if σ: [0, 1]—>S is a con-
tinuous curve s.t. σ(0) e A and σ(ΐ) e B then 3 0 ^ t <̂  1 s.t. σ(t) e Γ.

(ii) The measure μΓ induced by the arc length of Γ is a
Carleson measure. (μΓ is defined by μΓ(Ω) = total length of the in-
tersection of the linear segments of Γ with Ω, where Ω is an arbi-
trary open set of S.)

The above lemma is explicitely proved in [4], therefore no proof
will be given here. (The proof is far from easy however, it essen-
tially contains the hard part of the Corona theorem!). The best
reference (i.e., the most elementary approach) for the above lemma
is to be found in D. Marshall's thesis UCLA (1976). In that reference
he avoids the use of Hall's lemma.

Proof of Theorem 1. Let S\Γ = U^=i Sn be the decomposition
of S\Γ into its connected components, and let us define F a func-
tion on S\Γ as following

F(x) = 1 Vx G Sn n ^ l if Sn Π B, Φ 0

F(x)=-lVxeSn n ^ l if Snf]B2Φ0

F(x) = 0 VxeSn n ^ l if SnPι B= 0 .
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It is then clear from the lemma that F is well defined and that
\FF\ taken in the sense of distribution theory is a Carleson measure.
It is also evident from the definition that \\u — F\\oo ^ max [1 — β, β]
in S. To obtain the required function in S it suffices to smooth out
appropriately the above function. The passage to the whole of R%
is obvious. Observe also that in Theorem 1 the function v can be
chosen such that lim v(x, y) as y —»0 exists for almost all x.

Proof of Theorem 2. Using a very simple argument that involves
Banach spaces and a geometric series (which anyone who has seen
a proof of the closed graph theorem can supply) we see that Theo-
rem 1 implies the first part of Theorem 2 if feLco(Rn). The general
case follows then from Theorem 1.1.1 of [7]. The inverse is con-
tained in [7] pt. 1.

One question (of mild interest) that remains open is whether ε0

in Theorem 1 can be chosen to be an arbitrary positive number such
that 0 < ε0 < 1. Added in proof: J. Garnett has found a way to
do that.
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