PACIFIC JOURNAL OF MATHEMATICS
Vol. 74, No. 1, 1978

THREE DIMENSIONAL HOMOGENEOUS ALGEBRAS

J. A. MAcDouGALL AND L. G. SWEET

An algebra A is homogeneous if its automorphism group
acts transitively on the set of one dimensional subspaces of
A. In this paper the structure of all three dimensional
homogeneous algebra is determined. These fall into three
classes: (1) truncated quaternion algebras over formally
real Pythagorean fields; (2) an algebra over GF(2) in which
=2 for all x in A, and (8) two algebras over GF(2)
which are generated by each of their nonzero elements.
The automorphism group is determined in each case.

All algebras considered are assumed to be finite dimentional but
not necessarily associative. If A is an algebra we denote its group
of algebra automorphisms by Aut (4). An algebra A is said to be
homogeneous if Aut (A) acts transitively on the set of one dimen-
sional subspaces of A. The reader is referred to a paper by one
of the authors [3] for a discussion of arbitrary homogeneous algebras
and a bibliography of the related literature. The purpose of this
paper is to determine the structure of all three dimensional homo-
geneous algebras.

Throughout this paper we assume that A is a nonzero three
dimensional homogeneous algebra. Such algebras can be divided into
four types in the following way. Let ¢ be any nonzero element of
o and let (a) denote the algebra generated by @. Then the four
types are as follows:

Tyve 1. a*=0

Type 2. & = \a, N a nonzero scalar
Type 8. dim{a) = 2

Type 4. dim<{a) = 3.

We now investigate each type separately.

Type 1. o* = 0.

Since «* = 0 the homogeneity condition implies that 2* = 0 for
all ze€ A and this implies that A is anti-commutative. Clearly A is
not a quasi division algebra and so it follows from the results of
Shult [1] and Gross [2] that the underlying field K must be infinite.

Let a be any nonzero element of A. Suppose we can find a
nonzero be A, b # na such that

ab = na + Nb .
153
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If »,=0 then tr L, = 0 (see [3]) implies that L, is nilpotent. But
then the homogeneity condition implies that L, and R, are nilpotent
for all # and so A is a special nil algebra. Since K is infinite we
may use Theorem 2 of [4] to conclude that A*= 0. If A, 0 then
extend {a, ab} to a basis for A. It is now easy to contradict the
fact that L, and L,, must be projectively similar. Hence ab never
depends on @ and b when ¢ and b are independent.
Now choose a basis a, b, ab for A. Then

0 0 7] - 0 0 B —-a, —B 0
La = 0 0 a2 Lb = O 0 182 Lab = _a2 —/32 0
01 0 -1 0 0 0 0 0

If necessary we can choose a new b to force @, =0 and then
tr L,, = 0 implies that 8, = 0. So we assume we have a basis a, b
and ab such that

00 0 0028 0 -8 0
L,=10 0 a| L,=| 00 0| L,=|-a 0 0
010 ~10 0 0 00

If @ = 0 then the fact that L, and L, are projectively similar
forces 8 =0 and then L, = 0 which is impossible. Hence a %0 and
similarly 8 # 0.

We now show that A is a homogeneous algebra under the
following conditions: :

(i) —a is a nonzero square in K.

(ii) B is a nonzero square in K.

(iii) K has the property that the sum of nonzero squares is
always a nonzero square (such a field is called a formally real
Pythagorean field).

Let 0 € Aut (A). By considering d(xy) = o(x)o(y) as © and y run
through the basis ab, a, b it is easy to show that

Cn - ,B/CK Czl /9013
g =|— af/B 021 022 - aC23
1/:8 Cm - 1/“ C:«n Caa

where C;; is the cofactor of the 7j entry. Conversely any invertible
matrix of this form represents an automorphism of A. It remains
to be shown under what conditions Aut (4) actually acts transitively
on the one dimensional subspaces of A. By considering compositions
of automorphisms it is easy to see that A is homogeneous if and
only if there exists a ¢ € Aut (4) such that g(a) = (M@ + NMbd + Nab)
~ for any nonzero triple (A, Ay, \;). If such an automorphism exists
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then oL, = YL;012,42,,:0 and this implies that
—a = T (—ar + BN — Ba)d) .

Since « # 0 this equation forces conditions (1), (2), and (3). On the
other hand suppose conditions (1), (2), and (8) are true. We wish to
construct an automorphism o of the form

TN, X X C, —BlaC, BC.s
o= |"™ % x|=|—a/BC, C —aCy
’7)13 x5 903 1/“ 031 - 1/“ 032 033

This gives us a homogeneous linear system of the form Bx = 0 where
& = (&, %y &1, 4 Ty, ) and

-1 0 0 Blavn, 0 — Bl Ty

0 1 B 0 — BTN, 0
B 0 7\ 1 0 0 —TN
ar, 0 0 1 —av, 0
0 7vax, 0 —7vjaxn 1 0
- M, 00— 0 0 1 -

and also another system of quadratic equations
TNy = X3l — X405

a
A, = ‘E(ﬂﬁxe — X,00;)
A = —1—(901004 — L) .
B

If A, =, = 0 then it can be checked that z, =0, z, = —B7\,,
w, =1, 2,=0, 2,=0, z, = 0 is a solution of both systems if we take
Y =1/Vu N Suppose A, and A, are not both zero. Let d=
V' —a)\ + BA\E. Then it can be checked that

O ¥ 2, = BTN
ad d d’ ad

&y

x, = 0, z, = d is a solution of both systems if we take

v = J —& .
—a\ + BN — af:

Hence A is homogeneous.
So if A is a three dimensional homogeneous algebra of Type 1
we can choose a basis a, b, ab so that the multiplication table

becomes
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a b ab

a 0 ab ab
b| —ab 0 Ba
ab| —ab —Ba 0

where

(i) —a is a nonzero square in K.

(ii) b is a nonzero square in K.

(iii) K is a formally real Pythagorean field.

These algebras are related to the so-called quaternion algebras.
Let K be any field and V be a 4-dimensional vector space over K
with basis 1, #,, #,, #;,. Now define a multiplication on V by using
the following table where @, B are any nonzero scalars

1 T, Xy 24
1|1 X, X, 2y
x, | %, al x, ax, .

Ly | X —x; Bl —pBux,
x|z, —ax, Bxr, —afl

Then V is called a quaternion algebra with parameters ¢ and £.
We can now define a 3-dimensional algebra over K by deleting the
top row, the left-most column and replacing the main diagonal of
the above table with zeros. The resulting algebra is called the
truncated algebra of pure quaternions.

We have shown that if 4 is a 3-dimensional homogeneous algebra
of Type 1 over a field K then A is a truncated quaternion algebra
with parameters @, — 8 where —a and B8 are nonzero squares and
K is formally real Pythagorean field. It is interesting to note that
all such algebras over a given field are actually isomorphic. In
particular consider A4,, the usual vector cross product with basis
i, 7, k where ij = —ji =k, th= —ki= —j, jbk= —kj=1, *= 5=
k* = 0. Suppose A, is a homogeneous algebra with ab = —ba = c,
ac = —ca = &b, bc = —cb = Ba, a® = b* = ¢ = 0 where — and B are
squares. Define a linear map o0:4,— A, by extending o(a) =
—v =at, 0(b) = V'Bj and o(c) = —V —aBk. Then it is easily checked
that o is an algebra isomorphism. So we have shown that a 3-
dimensional homogeneous algebra of Type 1 is isomorphic to the
usual vector cross product algebra over a formally real Pythagorean
field K.

Type 2. o = na, M a nonzero scalar.
In this case the homogeneity condition implies that x* = Ax for
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all x ¢ A where )\ is a nonzero scalar which may depend on . Clearly
A must be power associative. It was shown in [3] that K must be
GF(2). But Gross showed [1] that the only nonzero homogeneous
algebras over GF(2) are always commutative, quasi division algebras.

Choose a, b€ A with b = ¢. Then ab = a and ab = b. Also since
tr L, = 0 but det L, = 1 it follows that ab # a + b. Hence a, b, ab
form a basis for A. With respect to this basis we have

1 0 @, 0 0 ,81 a, :81 "
L,=(0 0 a, L,=10 1 B L,=|a §B 7y
01 1 1 0 1 1 1 a +8,

Since det L, = det L, = 1 we must have @, = B8, = 1. If necessary
replace b by a + b to force @, = 1. Since det L,, = 1 we must have
B, =0. Also det (L, + L,;) =1 forces 7, =0 and finally det (L, +
L,) =1 forces 7, = 0.

Hence A is of the form

| Q b ab
a a ab a—+ b+ ab
b ab b a+ ab
ab|a+b+ab a+ ab ab

It is easily checked that A is a homogeneous algebra. In fact Aut(A)
is the group generated by

0 10 0 01
1 1 1| and |1 1 1
0 01 0 11

Type 3. dim {a) = 2.

In this case {(a) is a 2-dimensional subalgebra for each nonzero
¢ in A. Fix a€ A — (0) and choose be A — {a). Then <{a) and {b)
are two distinct 2-dimensional subalgebras of the 3-dimensional sub-
algebra A and so {a) N {b) is a l-dimensional subalgebra {¢), con-

tradicting the first line of this paragraph. Hence there are no three
dimensional homogeneous algebras of Type 3.

Type 4. dim {a) = 3.

In this case we have {a) = A. We first assume that A is com-
mutative. The either «a, @2, aa® or a, a?, a’¢® must form a basis.
We consider the two cases separately.

(a) Suppose a, a?, aa® do not form a basis. Then aa® = 7,a + 7,a°
and @, a? a’¢® does form a basis. The homogeneity condition now
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implies that for any e K
(@ + Na?) @ + AP = 7(e + na?) + V(e + na?)* for some 7, T:€ K .

Simplifying and comparing coefficients with respect to the basis
a, &, a’a® we get the following system

Y+ V@AY = Y+ M27.7.) + M@, + 27 + A8,
TN+ ML+ 2\Y,) = Y, + M27Y, + 278 + Ne, + 27/7,) + AR,
YA =N+ N(—7, + 27,) + A(—7) .

Now solving the first two equations for 7, and comparing to the
third equation gives us

N+ N(2Y,) + A(—4Y) + M4, — @) VAR — B+ a) — AR =0
for all neK.
This implies that the field is finite and so we know that K = GF(2)

and A is a commutative quasi division algebra. Now with respect
to the basis @, a?, a’a®

01 « 1 0 B, a, B &
L, = 11 44 La,2 =10 B La2a2 =|a, B, &
0 0 1 01 1 1 1 a+8

Now the fact that L, and L, are similar implies that £, = 1.
Also det L,: = det (L, + L,2) = det (Li,2 + L,2,2) = 1 implies that 8, = 0,
a, = 0 and & = 1 respectively. Finally & = @, = 0 because L,z,: and
L, + Lg,: are similar to L,. It follows that A has a basis a, ¢’, ¢’¢’
with the following multiplication table:

aQ @ a’a?
a az a + aZ a2a2
| o+ al a’a’ a® + a*a’

a2a2 a2a2 aZ _+_ aZaZ a + a2a2
It is easily checked that A is indeed a homogeneous algebra. In fact
Aut (4) is a cyclic group of order seven generated by
0 01
=11 0 0
011
(b) Suppose a, a®, aa* do form a basis. If K is finite then

K = GF(2) and A must be a quasi division algebra. In fact it follows
from the papers of Gross [1] and Shult [2] that the characteristic
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polynomial of L, must be 2* + 1. Then with respect to our basis
a, &, aa® we have

0 01 0 B8 1 7 &
L,=|1 0 0| Le=|0 B 7| L,=10 7% & .
010 1 8 7 0 B, 14+,

Now the equations det (v,L,+ L,:)=det (8,L,+ L,,:) =det L,:=det L,,.=
det (Lg2+Lyg2) =1 imply that Bi=1+%=(8,="7)=(B,=&)=(Bs+&)=1
respectively. Since A is a homogeneous quasi division algebra
generated by each of its elements we know that each automorphism
(except the identity) is fixed point free. Consider the automorphism
o for which g(a) = @®. It is easily checked that this automorphism
has an eigenvalue if 8, =0. So we must have B, =1 and & = 0.
It follows that A has a basis a, a?, aa® with the multiplication table:

2

l a a aa
a a? ad’ a
o | e’ a+ @+ ad® o + ad’
ad’ | @ o+ aa® o+ ad’

It is easily checked that this is a homogeneous algebra. In fact
Aut (A4) is a cyelic group of order 7 generated by

010
=11 11
011

Now assume that K is infinite. Then with respect to the basis
a, o, ae® we have

0 0 @, 0 181 7 a, R &
La = 1 0 az LEZ = 0 BZ 72 Laaz = az '72 52 .
01 0 1 Bs - :32 0 - :82 —a,—7,

Suppose @, = 0. Then det (AL, + NoLi2 + NyL,,.2) = 0 for all A, Ny, \; € K.

But

det (WL, + NLgz + MLgge) = NAY, + MNNE, + AMAABY, + Bi8: + Bitty)
+ MAaMg(207, + Bi + Bi6) + MY, — Baby + @)
+ M@oY, + CoB18; + Bibs — Bafy) + Mai(@oB1Ys + @By + &Yy — 1)
+ M (Y, — Beg) + N(B, — BY) = 0.

Since K is infinite this implies that all the coefficients must be zero.
It follows that 7, = & = BB, + a@,) = B, = 0. If B, = 0 the equa-
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tion xy = @ has no solution which is impossible in a nonzero homo-
geneous algebra. Hence B, # 0 and 8, = —a,. If a, =0, then rank
L, = 2 but rank (L,,: — @,L,) < 2 which is impossible. We conclude
that a, # 0 and so A must be a quasi division algebra. Since (@) = 4
we know that no automorphism of A (except the identity) can have
and eigenvalue.

Now consider the automorphism ¢ for which od(a) = (e + Na?)
where \ is arbitrary and g may depend on . Then it can be checked
that

no NS, PEOMB+20) + N (B, +27,) + N (BB + BsT))
o= LPAFENB) OB+ 20,) +N(B, + Bty + 27,) -+ N(B3+ BsYs))
0 /"2(27\'+7\'2:82) #3(1 + 7\':83 - )"2/82 + )"3181)

Suppose char K = 2. If B, + 0 then letting » = —2/8; gives o an
eigenvalue which is impossible. Hence we must have 5, = 0. But
then consider the automorphism 7 for which z(a) = va®. It is easily
checked that 7 has an eigenvalue. Hence it follows that char K = 2.

We now consider o(a?a?) = g(a?)o(a?). This gives us a system of
3 equations which can be solved to get

1+ MBs + M(B.Bs + Bia, + B3) + NB(B: + BsY, + L)
+ N(B + B.B:Bs + BEY))
= 1 + N(BE + B, + Bs7.) + N8 + B3 + BB + BufS57s)
+ N(B3, + BByt + BiBsTy)]
or f= pg where f and g are polynomials A. Squaring we have
f*= pff¢®. But since o(a) = p(a + \a@’) we have a, = ¢’h where h =

a, + MB, + @, + Y, + B,) + NV, + B2 + BsY,) and so comparing we
have

9" = f°h
and so

(1 + W b N W) = (L My + W+ M 4 )
X (@ + MB, + @, + Y, + Boly) + N, + B+ BTy)) .

Since the field is infinite and )\ is arbitrary all the coefficients of
must be zero. Considering the coefficients of A, A%, and A\’ in that
order we conclude that

B+ a + 7+ B, =0
71"‘:8%"':83“2:0
a,=0.
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Now a, = 0 and since A is a quasi division algebra we may without
loss of generality assume that L, has an eigenvalue of 1. That is,
we may assume that @, = 1. But again since od(a) = p((a + M) we
conclude that

L= 21 + M7, + By) + NM(BiB: + B, + By) + N(B.Y, + B)
or
1= % .
From above we have f° = (f¢g* and so comparing we have
fk=g.
That is

(14 M8y + M+ MBS+ -+ - + M) L+ MY, + Bo) + MBS, + B, + )
+ )"3(3172 + ,8271)) =14 N 4 oo 4+ A%,

As before all the coefficients of A must be zero. Considering the
coefficients of A and A* we find that

71::82(61+1)=0'

Now if 8, =0 an above equation implies that 5,7, =0. If 8, =0
then ¢ has an eigenvalue which in impossible. If 7, =0 then
det L,: = 0 which is impossible. Hence we must have £, # 0 and
B, =1. But then 8, + 1 + 7, = 0 implies that 7, = 0 which again is
impossible. Hence no such algebra exists over an infinite field.

We have determined all commutative homogeneous algebras of
dimension 3 and Type 4. Now let A be any 3-dimensional homogene-
ous algebra of Type 4. Pass from A to A*. Then A" is a commu-
tative homogeneous algebra. Suppose A* £ 0. A* cannot be Type 1
since there are no nonzero commutative homogeneous algebras of
Type 1. If A" is of Type 2 we know that K = GF(2). A" cannot
be of Type 3 since there are no nonzero homogeneous algebras of
Type 3. If A* is of Type 4 we have just shown that K = GF(2).
So either A* is a zero algebra or K = GF(2). If A" is a zero algebra
then A is anti-commutative. But then we have 2q®> = 0 and since
o #= 0 this implies that char K = 2. But then A is commutative
and so again we have shown above that K = GF(2). Hence the only
nonzero homogeneous algebras of Type 4 exist gver K = GF(2). In
such cases we know that A is a commutative quasi division algebra
and so we have found all nonzero 3-dimensional homogeneous algebras
of Type 4. That is, if A is a nonzero 3-dimensional homogeneous
algebra of Type 4 then either A has a basis @, a? e’ such that



162 J. A. MACDOUGALL AND L. G. SWEET

a a® a’a?

a a? a+ af a’a’
at | o+ e a*a? a® + a’a’
a’a? a’e? o+ o’ a + o'’

or A has a basis ¢, @, aa® such that

a o’ aat
a a? aa’? a
a? ad? a+a*+ad® a+ aa?
a’a? a a + aa® a® + aa’
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