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ALGORITHMS FOR LOCALIZING ROOTS
OF A POLYNOMIAL AND THE PISOT
VIJAYARAGHAVAN NUMBERS

R. J. DUFFIN

Pisot and Vijayaraghavan studied numbers whose mth
power is nearly an integer in the sense that the discrepancy
vanishes as m becomes infinite. One plus square root two
is an example. Algebraic numbers of this type are charact-
erized as algebraic integers whose conjugate roots each have

. absolute value less than one. This note develops a test for
this property. An algorithm is given which determines-
‘whether or not one root of a polynomial has absolute vaiue
greater than one and all the other roots have absolute value
less than one. If 7 is the degree of the polynomial, this
algorithm involves only 7 rational steps.

1. Introduction. In a previous paper [2] the writer formulated
a simple algorithm for testing a polynomial to see if all of its roots
were in the interior of the unit circle. Polynomials of this type
were termed Schur polynomials. The importance of such polynomials
rests on the fact that a linear difference equation with constant
coefficients is stable if and only if the characteristic polynomial is of
Schur type. The test given in [2] follows.

Algorithm A,. Let f be the polynomial
flz) =¢c, +e¢2 + €22+ +-- 4 ¢,2"

where ¢, # 0 and n = 1. Let Rf be a polynomial of reduced degiee
defined with ¢} the complex conjugate of c; as

Rf(z) = (cke, — ceny) + (e, — CoCh_s)z + -+« 4 (che, — ced)z™ " .

Then f is a Schur polynomial if and only if:
(1) e > led,
(ii) Rf 1s a Schur polymomial.

In a series of papers John Miller |4, 5] has extended this
algorithmic test for Schur polynomials. Miller’s tests determine the
“type” of a polynomial, that is, the number of roots inside, on, and
outside the unit circle.

The present note was prompted by the works of Pisot and
Vijayaraghavan about what may be termed powerful numbers
[1, 6, 7]. A number greater than one is powerful if its mth power
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is nearly an integer in the sense that the discrepancy vanishes as m
becomes infinite. Common examples are 1+ 1”2 and (14 1/5)/2.
Pisot and Vijayaraghavan showed that an algebraic number «a is
powerful if and only if @ is an algebraic integer whose conjugate
roots have absolute value less than one. Thus @ must satisfy an
equation

(1) fla) =b,+ ba+ -or + by @ +a*=0.

where by, b, -+, b,_, are rational integers.

This note develops an algorithm to test a polynomial of degree
n for the Pisot Vijayaraghavan property. The method is to first
apply a reduction operation which removes one root exterior to the
unit cirele. Then Algorithm A, is applied to the reduced polynomial
to see if it has » — 1 roots interior to the unit circle. Only integer
arithmetic 1s used.

The writer is indebted to Paul Bateman and David Cantor for
discussions about the Pisot Vijayaraghavan theory. One part of §4
to follow employs a technique developed by John Miller. An alterna-
tive procedure equivalent to §2 is given by Peter Henrici [3, p. 494].
No confusion should arise with the terminology of S. W. Golomb,
who defined a “powerful integer” as an integer divisible by the
square of each of its prime divisors [Amer. Math. Mon. 77 (1970)
pp. 848-855].

2. Two root localizing algorithms. Passing to a more general
problem we shall say that a polynomial is of type (4, k) if:

(a) 4 roots are in the interior of the unit cirele,

(b) mno roots are on the unit circle,

(e) k roots are in the exterior of the unit circle.
First Algorithm A, is generalized to

Algorithm A. Let f be the polynomial
flR)=¢c,+¢2+ -+ + 2", nzl, ¢, #0,

and let Rf be a polynomial of reduced degree defined as
(2) Rf(z) = (cxe, — cn-y) + (Chc, — eCro)z + -+ + (cke, — ced)z" ™.
If le,| > le)| then f s of type (2, k) if and only if Rf is of type
(t—1, k).

Proof. Given the polynomial f of degree n» let

Jz)=c¢ct + etz + -+« +etz" =z2"f*(z™).

The operation J depends, of course, on the stated value of n because
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a polynomial of degree % is also of degree n + 1. Then operation B
may be defined as

(3) 2Rf(z) = cif(z) — e, Jf(2) .

First suppose that f is of type (4,%k). Then for m =14+ %k and
l2 =1

(4) lexf(2)] > les (=) = lenf *(2%)| = e, Jf(2)] .

The strict inequality here is justified by the fact that f does not
vanish on the circle. Inequality (4) permits application of Rouche’s
theorem. Thus zRf and c¢}f have the same number of roots for
|| < 1; moreover zRf has no roots for |2/ = 1. Hence Rf has ¢+ —1
roots for |z| < 1.

Since e,| > l¢,| it is seen from (2) that the leading coefficient of
Rf does not vanish. Thus Rf has a total of » — 1 roots. But ¢ +
k= mn so Rf is of type (+ — 1, k).

Conversely suppose Rf is of type (+ — 1, k). If f(2)) =0 at a
point 2’ on the unit circle then Jf(z') = 0 because |f(z)| = |Jf(z)| on
the unit circle. Then (3) would demand that Rf(2’) = 0. This con-
tradiction shows that f can not vanish on the unit circle. Thus the
inequality (4) again holds and it again follows from Rouche’s theorem
that f and 2Rf are both of type (4, k). This is seen to complete the
proof.

Algorithm B. Let f be the polynomial
f&)=¢, + ez + o+ +c2", n=>1
and let Sf be o polynomial of reduced degree defined as
(5) Sf(z) = (caex —cFcy) + (CuChy — ez + « -+ + (eu6f — efe, )2 .

If le,l > lea] > 0 then f is of type (i, k) +f and only if Sf is of type
(¢, k') where © + k' is the minimum degree of Sf.

Proof. This is a corollary of Algorithm A. To see this let
F = Jf. Then F is of the form '

Fz)=C,+ Cz + --- + Coz*, |G| >G> 0.

Moreover the zeros of f and F' are inverse points relative to the
unit circle. Thus f is of type (¢, k) if and only if F is of type
(k, ). Applying Algorithm A to F shows that f is of type (3, k) if
and only if RF is of type (k — 1,4). Inspection of (2) and (5) shows
that JRF = SF. Hence RF is of type (k — 1, ¢) if and only if SF is
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of type (¢, k'). Of course ¥ =k — 1 if ¢,¢} — ¢¥ec,_, # 0. Otherwise
k' <k — 1, and the proof is seen to be complete.

3. Searching for powerful numbers. Now of concern is the
special case of polynomials of type (n — 1, 1). Algorithm B specializes
to the following form

Algorithm B,. If le)| > le.| > 0 then f is of type (nw —1,1) iof
and only i+f Sf is of type (n — 1, 0).

Of course a polynomial of type (n — 1, 0) is a Schur polynomial.
Hence if f passes the test of Algorithm B, the next step is apply
Algorithm A, to Sf ete.

There follows an example of the use of these algorithms to
show that a polynomial f is of type (3, 1).

f=24+2—22— 422 + 2,

Sf=—-83—6z+2 +9°,
RSf = —51 — 9z + 722*,
RRSf = —1107 + 2583z .

Thus RRSf is of type (1, 0), RSf is of type (2, 0), and Sf is of type
(8,0). Thus f has three roots inside the unit circle and one root
outside. Also f(1) < 0 so it is apparent that f has a positive root
a« > 1. Hence « is a powerful number.

To give a numerical evaluation of @ and its powers it is relevant
to introduce the Newton sequence {S,} defined as

S, =a™+ a" + ar + ar

where @,, @, and «, are the conjugate roots of @. As Newton
showed:

—8, = by,

—8, = 8,b; + 2b, ,

—8; = 8;b, + 8,b, + 3b, ,

—8, = 830, + 8,0, + 8,0, + 4b, .

Moreover for larger values of m the Newton sequence satisfies the
difference equation

—Smis = SpysDs T Spmysbe + Smpib + 840, .
Thus for m=1,2, ---
{s.} = 4, 18, 73, 298, 1239, 5145, 21375, 88810, --- .
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It is clear that @ = lims,.,/s, so a = 4.154869708. Moreover a'~
298, a® ~ 1239, etc.

4, A special algorithm. Algorithms A and B assume either
lea] > || or |e,| > |c,]. Here we assume |¢)| = |¢,] and develop a special
algorithm to test powerful polynomials.

LEMMA 1. If ¢ = le.) >0 and f is of type (n —1,1) with
n > 2 then c,cf — cic,_, #= 0.

Proof. Let fyoz) = f(62) so
fo(2) = ¢y + ¢,0z + -+ + ¢, 02" .

By continuity it follows that if ¢ is a sufficiently small positive
number and ¢ is in the range 1 — e < 6 <1 then f, is also of the
type (n — 1,1). However Algorithm B, applies to f;. Thus Sf; has
all » — 1 roots interior to the unit circle. As #—1 we see that
Sfs— Sf. By a well known lemma of Hurwitz it follows that the
roots of Sf, approach the roots of Sf. Thus Sf has at least n — 1
roots in the closed circle |z| < 1.
Conceivably Sf = 0 but from (5) it is seen that

Sf= —cif+ ¢, Jf .

Hence if f(z') = 0 we have f(z”') = 0 where 2’ and z” are inverse
points. But there is only one root for |z| > 1 so there is only one
root for 0 < |2] < 1. However f(z) =0 for z=0or [2)=1 so f is
of degree 2. This contradiction shows that Sf does not vanish
identically and that Sf has n — 1 roots. Thus the leading coefficient
e.cf — cke,_, does not vanish.

Given a polynomial f of degree n let a polynomial Tf of degree
n -+ 1 be defined for a real constant £ as
Tf(z) = (z + B)f(2), Bl >1.

Then f is of type (» — 1, 1) if and only if Tf is of type (n — 1, 2).
Of course

Tf = Be, + (¢ + Be)z + =+« + (€,—y + Be,)z" + ¢,z
JTf = 2"tz + B)f*(z™) = A + B2)Jf.

Since Sf = —¢ff + ¢, Jf we see that

STf = —BeTf + ¢, JTf
= —Bec¥(z + B)f + e.(1 + B2)Jf
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= —B%f + ¢, Jf + Be(—cif + ¢, Jf)
= —B%f + c.Jf + BzSf .
Expressing the right side in powers of z gives

STf = (e.cx — Befe,) + +++ + (L — Beqctz”
+ Bl(c.cn — c¥e)z + -+ - + (cqef — cie,)2"] .

LEMMA 2. Suppose |¢,| = |e,| > 0 and that ¢,.c¥ — cfe,_, = 0. Let
Tf = (z + B)f where |8 > 1 is chosen so that

(6) c. = Ble,of — ee,,) + (L — Bheue # 0.
Then f is of type (n — 1, 1) if and only if STf is of type (n — 1, 1).

Proof. The constant coefficient of T'f is B¢, and the coefficient
of 2" is ¢,. Since |B¢,| > le,| Algorithm B is applicable to T'f. The
coefficient of 2" of STf is ¢, given by (6). But ¢, # 0 so STf has »
roots. Thus Tf is of type (n — 1, 2) if and only if STf is of type
(n — 1,1). This is seen to complete the proof.

Algorithm C. Let f be a polynomial of degree n > 2 and with
real coefficients such that |¢,| = |e,| > 0. Let THz) = (z + Bf(z) for
B chosen so that

(7) B—1>|8—1—p3d >0
where
d = (.6, — €oCuy)[CuCy .

Then f 1s of typwe (n — 1, 1) iof and only if:
( 1 ) CuC1 — CoCyp—1 7+ 0,
(ii) SSTf is of type (n — 1, 0).

Proof. If f is of type (n — 1,1) then Lemma 1 proves relation
(i). Since (i) holds it follows that d s 0. It is then obvious that 8
can be chosen to satisfy (7). Thus Lemma 2 applies because of
relation (i) and the fact that if B satisfies (7) then condition (6)
holds. Lemma 2 states that STf is of type (» — 1,1). The constant
coefficient of STYf is

(8) € = €46, — Beiy = (1 — B¢ .
To apply Algorithm B, to STf we must have
(9) leol > len] > 0.
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In other words
(B8 — L)es > |B(Cat, — €Cuy) + (L — B%)eucol > 0.

Dividing by |e,.c,| gives the equivalent relation (7). Thus Algorithm
B, applies and shows that SSTf is of type (n — 1, 0).

Conversely suppose (i) holds and that SSTf is of type (n — 1, 0)
for some B which satisfies (7). Then (9) holds and Algorithm B,
shows that STf is of type (» — 1,1). Lemma 2 then proves f is of
type (n — 1, 1).

5. An example of a powerful unit. In the search for power-
ful numbers attention can be restricted to the case |¢c,| = |¢c,| because
¢, = 1l and ¢, is an integer. If |¢,| > |e,| we have seen that Algorithm
B, applies. The case |¢,| = |¢,| =1 is now to be treated. An algebraic
integer is said to be a wunit if its reciprocal is also an integer. It
is seen therefore that we are searching for a powerful number
which is a unit.

To apply Algorithm C it is necessary to choose 8 so as to satisfy
(7). Since the coefficients are integers it is seen that d is an integer.
It is convenient then to choose 2 an integer according to the follow-
ing rule.

Rule. Choose B of the same sign as d. If |d| =3 let |8 =
|d| + 1, otherwise let |B| = |d| — 1.

It may be checked that this rule insures that inequality (7) is
satisfied. Various other rules are also feasible.
As an example consider the polynomial

f=1+2—22—82*+ 2.

To apply Algorithm C first note that d = ¢,/¢, — ¢i/e, = 4. So choose
B=38and Tf= (z + 3)f so
Tf=3+ 42 — 22° — 102° + 0 + 2°
JTf=1+ 0— 102 — 22° + 42* + 32°
STf=—2—3z — 24+ T8 + 2*, +4
JSTf =1+ Tz — 2 — 3z2® + 2z
S*Tf = —8 + z — 32 + 112°
JSTf =11 — 3z + 2* — 32°
RS:*Tf =1 — 15z + 562%, =2
JRS*TSf = 56 — 15z + 2*
R*S*Tf = —825 + 3135z type (1, 0).
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This application of Algorithms C and A, shows that f has a root «
which is a powerful unit.
The difference equation associated with the polynomial f is

—8uis = —88uis — Smiz T Smir T S,

Newton’s formulas give:

—8 = —3

—8 = —3s, — 2

—8 = —3s, — 8 + 3

—8, = —388 —8,+8 +4.
Thus Newton’s series is for m =1, 2, ---,

{s.} = 3, 11, 33, 103,"328, 1043, 3321, 10575, ---.

Then « = lim s,,../s,, = 3.184446857 and «* ~ 103, &’ ~ 328, a®~ 1043

ete.

6. Crude algorithms. The tests for polynomial type just given
are both necessary and sufficient but always require » steps. The
next algorithm gives a sufficient condition for a polynomial to be of
type (7, k). In many cases this test requires only one or two steps.
(This test, presumably, is not new, but it serves to complete the

picture.)

Algorithm D. Let f be the polynomial
fR)=¢, +ez+ «ee +e2", ¢ #0.
Then f 1s of type (1, n — 1) &f
() 2le — 3 el > 0.

Proof. Write f = f, + f, where f, = ¢;2* and f, = f — ¢,2°. Thus
condition (11) shows that |f,| > |f.] on the unit circle. It follows
from Rouche’s theorem that f has the same number of roots in the
interior of the unit circle as f,.

Algorithm D'. Again [ is of type (3, n — 2) ©of
(12) 2le] — ile = 0

provided f # 0 on the unit circle.
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Proof. Equality (12) can be treated as a limit of inequality (11).
By the lemma of Hurwitz it follows that the limit polynomial f has
¢ roots for |z| < 1 because f does not vanish for [2| = 1.

COROLLARY 1. The polynomial f = —1 — b2""' + 2" has a power-
ful root if b is an integer =2.

Proof. Note that f(1) < 0 and that f(x) > 0 for large positive
2. Thus f has a root >1. If b > 2 this corollary follows directly
from Algorithm D. If b =2 and |z| = 1 then |2" — 22"} = 1 implies
z=1 but f(1) = —2. Hence f(z)+#0 so Algorithm D’ applies to com-
plete the proof.

It is of interest to consider whether Corollary 1 holds for b = 1.
Thus if » = 2 then f = —1 — 2 + 2* has the powerful root

L+V'5 _ 4 618033989 .

Of course this is the golden ratio and is the smallest quadratic
powerful number. This suggests f = —1 — 2z + 2%, and Cardan’s
formula gives the powerful root

1\ (69)1/2]”3 [ 1 (69>1/2]113
= — — 32 | = 1.324T17957 .
[2 + 18 * 2 18 8247 7

This is an analog of the golden ratio for the cubic domain. Presum-
ably it is the smallest cubic powerful number.

Next consider » =5 and f = —1 — 2* + 2°. To apply Algorithm
C we note that d =1 and 8 =2 so Tf = (2 + 2)f. Thus:

Tf= —2—2z—22 +2°+ 2°
STf=38+ 2+ 22 + 42° — 2°
SETf = 8 + Tz + 62° + 22° + 132
RS*Tf =5+ 2z — 22* + T2°, =15
RS Tf=1— 2+ 2%, =24, type (1,1).

It is thereby seen that f is of type (3, 2) so Corollary 1 is not
generally valid for b = 1.

COROLLARY 2. Ewvery rational integer =2 is a limit point of
powerful units.

Proof. Corollary 1 shows that there is a powerful unit «, such
that @, = b + 1/az™'. Thus b < «, and so

b<a,<b+ 1/0"".
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Allowing n — «~ we see that «, — b.

The short cut afforded by Algorithm D can be seen from the
calculations given for the example of §5. First note that Algorithm
D applies to S*Tf because —8 — 1 — 3 + 11 > 0 and relation (11) is
satisfied for ¢ = 8. Thus S2Tf is of type (3, 0) and further steps in
the calculation are not needed.

A still shorter solution is obtained by noting that for Tf rela-
tion (12) with +=3 is -3 —-4—-2+10—-0—1=0. Moreover it
is clear that T)f can not vanish if |2/ = 1. Thus Algorithm D’ applies
to show that Tf is of type (3, 2). Of course this means that f is
of type (3, 1).

It is also possible to give necessary conditions for a polynomial
to be of type (¢, k). One such test was given in [2].

Algorithm B. If f is of type (n,0) then
Icil<(§’:)]c'nl’ j=0,1,"',7’b—1.
Various other crude tests may be developed.
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