A REMARK ABOUT GROUPS OF CHARACTERISTIC 2-TYPE AND p-TYPE

Robert L. Griess, Jr.

Abstract

In the work of Klinger and Mason on groups of characteristic 2 -type and p-type, a configuration for $p=5$ emerges as a possibility in the conclusion to one of their theorems. In this note, we eliminate this possibility. Thus, the evidence that the only simple groups of characteristic 2 -type and p type are $G_{2}(3), P \operatorname{Sp}(4,3)$ and $U_{4}(3)$ is strengthened.

Introduction. We consider the following recent theorem of Klinger and Mason [2]:

Theorem D. Let G be a finite group, p an odd prime, $P \in \operatorname{Syl}_{p}(G)$. Assume $И(P ; 2)=\{1\}$, all 2-locals are 2-constrained with trivial core and all p-locals are p-constrained. Let A be an elementary abelian p-subgroup of G of maximal rank subject to $И(A ; 2) \neq\{1\}$. Assume $m(A) \geqq 2$. Then $m(A)=2$ and one of the following holds.
(a) A contains every element of order p in $C_{G}(A)$.
(b) $p=3$ and we can choose A and $T \in И^{*}(A ; 2)$ so that T is the central product of A-invariant quaternion subgroups Q_{1}, \cdots, Q_{w}, $w=2,3,4$.
(c) $p=5$ and for every $T \in И^{*}(A ; 2), T$ is the central product of five copies of Q_{8} and five copies of D_{8}.

It has been suspected that (c) never occurs. In fact, a conjecture of Gorenstein asserts that if G is a simple group, simultaneously of characteristic 2-type and p-type for some odd p (see [2] for definitions of these terms), then $p=3$ and $G \cong G_{2}(3), P \operatorname{Sp}(4,3)$ or $U_{4}(3)$. It is the purpose of this paper to eliminate (c).

For terminology and notation used in this paper, see [2]. The reader is referred to [1] or [5] for basic material about groups or Lie type. See [3] for further results on groups of characteristic 2 -type and 3 -type.

In this paper, we consider the following hypothesis.
Hypothesis (KM). (1) G is a finite simple group, all of whose 2-local subgroups are 2-constrained.
(2) A is a noncyclic elementary abelian 5 -group of maximal rank lying in a 2 -local subgroup.
(3) $A \cong \boldsymbol{Z}_{5} \times \boldsymbol{Z}_{5}$.
(4) $T \in И^{*}(A ; 2)$ and T is an extraspecial 2-group of order 2^{21},
type -, i.e., T is the central product of 5 quaternion groups and 5 dihedral groups. Also, $T=O_{2}\left(C_{G}(Z(T))\right)$ and $N_{G}(T)$ is corefree and 2-constrained.
(5) Let $A_{i}, 0 \leqq i \leqq 5$, be all the subgroups of order 5 in A. Set $T_{i}=C_{T}\left(A_{i}\right)$ for $0 \leqq i \leqq 5$. Then $T_{0}=\langle z\rangle=Z(T)$ and $T_{i} \cong D_{8} \circ Q_{8}$, for $1 \leqq i \leqq 5$. Also, $C_{G}\left(A_{i}\right)$ is 5-constrained, $0 \leqq i \leqq 5$.
(6) $И(R ; 2)=\{1\}$ for $R \in \operatorname{Syl}_{5}(G)$.
(7) A is contained in an elementary abelian subgroup of order 5^{3} in G.
(8) $\left|O_{5^{\prime}}\left(C_{G}\left(A_{i}\right)\right)\right|$ is odd for $0 \leqq i \leqq 5$.

We observe that this hypothesis holds whenever the hypotheses and conclusion (c) but not conclusion (a) of Theorem D holds. This is clear, except possibly for (5), for which we refer to the proof of Lemma 3.8 of [2].

We now state our main result, which eliminates conclusion (c) of Theorem D.

Theorem. No finite group exists satisfying hypothesis (KM).
The proof proceeds by contradiction. Let G be a counterexample to our theorem. First some notation.

Notation. $C=C_{G}\left(A_{1}\right), N=N_{G}\left(A_{1}\right), \bar{N}=N / 0_{5^{\prime}}(N), P$ a Sylow 5group of $O_{5^{\prime}, 5}(N)$ normalized by T_{1}.

For simplicity, we have singled out A_{1} and T_{1}. It will be obvious that the following results apply to $A_{i}, T_{i}, C_{G}\left(A_{i}\right)$, etc. for $1 \leqq i \leqq 5$.
(1) For every $x \in T_{1}^{\#}, C_{\bar{P}}(x)$ has rank at most 2.

Proof. (KM.2)
(2) z inverts \bar{P} / \bar{A}_{1} and $\bar{P} / \bar{A}_{1} \neq 1$.

Proof. $C_{C}(z)$ contains A. Let $R=C_{\bar{P}}(z)$ and assume $R>\bar{A}_{1}$. Then there is $U \leqq P A_{0}|U|=p^{3}, A \leqq U, A_{1} \leqq Z(U)$ and $[U, z]=1$. By (KM.4), $T=O_{2}\left(C_{G}(z)\right)$ and U acts faithfully on T. Since $A \triangleleft U$ and A_{0} is the unique A_{i} with $C_{T}\left(A_{i}\right)=\langle z\rangle$, we get $A \leqq Z(U)$ and so U is abelian. Since U acts faithfully on T and leaves invariant each T_{i}, U is elementary of rank 3 , against (KM.2). Therefore $R=\bar{A}_{1}$, which proves that z inverts \bar{P} / \bar{A}_{1}. If $\bar{P}=\bar{A}_{1}$, then $T_{1} \leqq 0_{5^{\prime}}(C)$. A Frattini argument and (KM.7) then contradicts (KM.2).
(3) \bar{P} is extraspecial of order $5^{1+4 m}$, some $m \geqq 1$.

Proof. Let R be a characteristic elementary abelian subgroup of P and suppose $|R|>5$. Since z inverts $R / A_{1}, T_{1}$ acts faithfully on R / A_{1}, whence $\left|R / A_{1}\right|=5^{m}, m \equiv 0(\bmod 4)$. But then, if $x \in T_{1}$, $|x|=2,\left|C_{R}(x)\right| \geqq 5^{3}$, against (KM.2). So, $|R|=5$. Thus \bar{P} is of symplectic type, $P=P_{0} P_{1}, P_{0}$ cyclic, P_{1} trivial or extraspecial. Since $P_{0}=Z(P), z$ normalizes P_{0}. Since z centralizes A_{1}, (2) implies that $P_{0}=A_{1}$. Since $P>A_{1}, P=P_{1}$ is extraspecial as required. Since T_{1} operates faithfully on $\bar{P},|\bar{P}|=5^{1+2 k}$ where k is even, because $T_{1} \cong D_{8} \circ Q_{8}$.
(4) $|\bar{P}|=5^{5}, \exp (P)=5$.

Proof. By (3) and the fact that z inverts $\bar{P} / \bar{A}_{1}, \exp (P)=5$. Let $|\bar{P}|=5^{1+4 m}, m$ an integer. By (KM.5), $m \geqq 1$. Suppose $m \geqq 2$. Let $x \in T_{1}-\langle z\rangle, \quad|x|=2$. Then $\left|C_{\bar{P}}(x)\right|=5^{1+2 m}$ and $C_{\bar{P}}(x)$ is extraspecial.

Since $C_{\bar{P}}(x)$ has exponent $5, C_{\bar{P}}(x)$ contains an elementary group of rank $m+1 \geqq 3$, against (KM.2). Thus $m=1$.
(5) \bar{P} is an indecomposable module for A_{0}. Thus P is the unique group of its isomorphism type in $P A_{0}$. Also, $\operatorname{Scn}_{3}\left(P A_{0}\right)$ has one member.

Proof. The first statement follows from the fact that $T_{1} A_{0}$ acts faithfully on \bar{P}. The second follows from $A_{1}=Z\left(P A_{0}\right)$ and the fact that P / A_{1} is the unique maximal abelian subgroup of $P A_{0} / A_{1}$. The third statement is obvious.
(6) Let $B>A_{1}$ satisfy $B / A=C_{P / A_{1}}\left(A_{0}\right)$. Then $B A_{0}$ is abelian of $\operatorname{rank} 3$ and $\left|\left[B A_{0}, z\right]\right|=5$.

Proof. Suppose $B A_{0}$ were nonabelian. A Lie ring analysis of the action of z on $B A_{0}$ gives a contradiction. Thus, $B A_{0}$ is abelian and, furthermore, must be elementary because of the way z acts.
(7) Let p be an odd prime and let $S=\operatorname{Sp}(4, p)$. Let $L \leqq S$ and $R \in \operatorname{Syl}_{p}(L)$. Assume $|R| \geqq p^{2}$. Let M be the standard 4-dimensional module for $F_{p} S$. Then one of the following holds: (i) L contains a transvection on M; (ii) $|R|=p^{2}$ and every element of R^{*} has quadratic minimal polynomial on M.

Proof, Let $\{a, b\}$ be a set of fundamental roots for a root, system Σ of type C_{2} with a short, b long (see [1] or [5] for the basic machinery about groups of Lie typa). For $r \in \Sigma$, let X_{r} be the usual
one-parameter subgroup. On the standard 4-dimensional module M, elements of X_{r}, for r long, act as transvections.

We assume that L contains no transvection, then obtain (ii). Let $R \in \operatorname{Syl}_{p}(L)$ and embed R in U, the standard Sylow p-group, $U=\left\langle X_{r}\right| r \in \Sigma, r$ positive \rangle. Let $s=2 a+b$ be the root of maximal height and let $K=N_{G}\left(X_{s}\right)$ be the parabolic subgroup associated with the set $\{a\}$ of fundamental roots. Then $O_{p}(K)$ is extraspecial of order p^{3}, exponent p, and $K^{\prime} / O_{p}(K) \cong \mathrm{SL}(2, p)$. Now, $R_{1}=R \cap$ $O_{p}(K) \neq 1$, as $|R| \geqq p^{2}$, so that $R_{1} \cap X_{s}=1,\left|R_{1}\right|=p$ and $|R|=p^{2}$. Since K is transitive on the nonidentity elements of $O_{p}(K) / X_{s} \cong$ $\boldsymbol{Z}_{p} \times \mathbf{Z}_{p}$, we may assume $R_{1}=X_{a+b},(a+b$ is a short root). Then $N_{S}\left(R_{1}\right)=\left(X_{b} X_{a+b} X_{2 a+b}\right) H$, where H is the standard Cartan subgroup, so that $R \leqq U_{1}=X_{b} X_{a+b} X_{2 a+b}$. But, $U_{1}=O_{p}\left(K_{1}\right)$, where K_{1} is the parabolic subgroup of S which stabilizes a maximal totally isotropic subspace, say N (i.e., K_{1} is associated with the set $\{b\}$ of fundamental roots). Since $K_{1}^{\prime} / U_{1} \cong \mathrm{SL}(2, p)$ is faithful on N and on $M / N, U_{1}$ stabilizes the chain: $M>N>0$. Thus, (ii) holds, as required.
(8) $|G|_{5}=5^{6}, P A_{0} \in \operatorname{Syl}_{5}(G), A_{i}$ is G-conjugate to A_{1} and lies in the center of a Sylow 5 -group, $1 \leqq i \leqq 5$.

Proof. By (KM.5) and (3), A_{1} is a Sylow 5-center. Since all of the preceeding analysis could be applied to $N_{G}\left(A_{i}\right), 1 \leqq i \leqq 5$, we are done once we show $|N|_{5}=5^{6}$, i.e., $|\bar{N} / \bar{P}|_{5}=5$. Firstly, $|\bar{N} / \bar{C}|$ divides 4 and \bar{C} / \bar{P} is isomorphic to a subgroup of $\operatorname{Sp}(4,5)$. If $|\bar{C} / \bar{P}|_{5}=5$, we have $|N|_{5}=5^{6}$, as required. So, we may assume $|\bar{C} / \bar{P}|_{5} \geqq 5^{2}$. Let $C^{*}=C / O_{5^{\prime}, 5}(C)$. Suppose first that C^{*} contains a transvection in its action on $M=\bar{P} / \bar{A}_{1}$. Let L be the subgroup of C^{*} generated by elements inducing transvections on M. Then T_{1}^{*} normalizes L and the structure of $S=\operatorname{Sp}(4,5)$ implies that L is not a 5 -group. Therefore, $L \cong \operatorname{SL}(2,5)$ or $\operatorname{Sp}(4,5)$, by [4] and the structure of S. If $L \cong \operatorname{SL}(2,5)$, the fact that $\left(T_{1} A_{0}\right)^{*}$ normalizes L forces $\left[T_{1}^{*}, L\right]=1$, which is absurd since T_{1}^{*} is irreducible on M. So, $L \cong \mathrm{Sp}(4,5)$. Therefore, $C_{C}(Z)$ contains T_{1} as a nonnormal subgroup, whereas $T_{1} \leqq O_{2}\left(C_{G}(Z)\right)=T$, by (KM.4) and (KM.5), contradiction.

We have that C^{*} contains no transvections. Therefore, (7) tells us that a Sylow 5-group of C^{*} consists of elements operating trivially or quadratically on M. This contradicts (5), since A_{0} has minimal polynomial of degree 4. Therefore, we have $|N|_{5}=5^{6}$, as reguired.
(9) Let $W=B A_{0}$, as in (6). Then $W \in \operatorname{Syl}_{5}\left(C_{G}(W)\right)$. For each $i=1, \cdots, 5, A_{G}(W)$ contains a transvection t_{i} centralizing A_{i}. Also,
$1 \neq\left[A, t_{1}\right] \leqq B$ but $A_{1} \nsubseteq\left[A, t_{1}\right]$. If V is a conjugate of W for which $\left|N_{P A_{0}}(V)\right| \geqq 5^{5}$, then $V \leqq P$. Moreover, if $V \triangleleft P$, then $\{V\}=$ $\operatorname{Scn}_{3}\left(P A_{0}\right)$.

Proof. Choose $g \in G$ so that $V=W^{g} \leqq P A_{0}$. If $V \leqq P$, then $[V, P]=A_{1}$ and $V=C_{P A}(V)$ by (5). Say $|V \cap P|=5^{2}$. Then $V_{0}=$ $V \cap P$ is centralized by $b \in P A_{0}-P$. By (5), $V_{1}=C_{P}\left(V_{0}\right)$ has index 5 in P and $V=C_{P_{0}}(V)$.

Recall that an extremal conjugate of a subgroup S_{1} of a p Sylow group S of G is a G-conjugate S_{2} of S_{1} for which $N_{S}\left(S_{2}\right) \in$ $\operatorname{Syl}_{p}\left(N_{G}\left(S_{2}\right)\right)$. If we now take V to be an extremal conjugate of W in $P A_{0}$, we see from the previous paragraph that $V=C_{P A_{0}}(V)$, whence $W \in \operatorname{Syl}_{5}\left(C_{G}(W)\right)$. The existence of t_{i} follows from embedding W in a Sylow 5 -group of $C_{G}\left(A_{i}\right)$. The further properties $1 \neq$ $\left[A_{1}, t_{1}\right] \leqq B$ and $A_{1} \nsubseteq\left[A, t_{1}\right]$ are forced if we take $t_{1} \in N_{P A_{0}}(W)$. The final statement follows from $V=C_{P A_{0}}(V)$ and (5).
(10) Let X be the subgroup of $A_{G}(W)$ generated by transvections. Then one of the following holds
(i) X is a 5 -group and $|X| \geqq 5^{2}$.
(ii) $X / O_{5}(X) \cong \operatorname{SL}(2,5)$.
(iii) $X \cong \mathrm{SL}(3,5)$.

Proof. This follows from the classification of groups in odd characteristic generated by transvections [4]. To get $|X| \geqq 5^{2}$ in Case (i), use (9).
(11) X is not isomorphic to $\operatorname{SL}(2,5)$.

Proof. Suppose false. Then $X \triangleleft A_{G}(W)$ implies that $A_{G}(W)$ is isomorphic to a subgroup of $\mathbf{Z}_{4} \times \mathrm{GL}(2,5)$ and that W is extremal in $P A_{0}$. Write $W=W_{0} \oplus W_{1}$ where $W_{0}=C_{W}(X), \quad W_{1}=[W, X]$. Now, $A \cap W_{1} \neq 1$. Suppose $A_{i} \leqq W_{i}$ for some i. Then, for a Sylow 5 -group R of $N_{G}(W), A_{i}=[W, R]$. If $i \neq 0$, this contradicts (9) and the action of $N_{P}(W)$ on W. Therefore, $[W, R]=A \cap W_{1}=A_{0}$ and every group of order 5 in W_{1} is fused in $N_{G}(W)$ to A_{0}. The orbits of X on the 25 subgroups of order 5 in W which meet W_{1} trivially have lengths 1 and 24. By (8), they lie in the G-conjugacy class of A_{1}. On the other hand, the action of P on B implies that every group of order 5 in B distinct from A_{1} is fused to the one in $B \cap W_{1} \cong \mathbf{Z}_{5}$. Therefore all subgroups of order 5 in W are fused in G to A_{1}. Now embed R in a Sylow 5 -group of $C_{G}\left(A_{0}\right)$. Since $R^{\prime}=A_{0}$, the proof of (9) shows that $W \leqq O_{5^{\prime}, 5}\left(C_{G}\left(A_{0}\right)\right)$. Since P is extraspecial, we get $\left|N_{G}(W)\right|_{5} \geqq 5^{5}$, a contradiction to our first remark.
(12) $|X|_{5}=5^{3}$ and the unique extremal conjugate V of W in $P A_{0}$ lies in P.

Proof. By (11), $|X|_{5} \geqq 5^{2}$, so by (9) any extremal conjugate V of W in $P A_{0}$ lies in P. Suppose $|X|_{5} \leqq 5^{2}$. Then (10.i) holds and we have $|X|_{5}=5^{2}$. Thus W is not extremal in $P A_{0}$. The action of P on V and t_{1} on W show that $|X|_{5}=5^{3}$, a contradiction.
(13) X is not a 5 -group and $C_{W}(X)=1$. Thus $X \cong \operatorname{SL}(3,5)$ or X stabilizes a unique hyperplane W_{1} of W, in which case $X / O_{5}(X) \cong$ SL $(2,5)$ acts faithfully on W_{1}.

Proof. By embedding W in a Sylow 5-group of $N_{G}(D)$, where $D \leqq W, D \sim_{G} A_{1}$, we see that some Sylow 5 -group of X centralizes D. Since $\left|C_{W}(R)\right|=5$ for $R \in \operatorname{Syl}_{5}\left(N_{G}(W)\right)$, we take $D=A_{i}$, $i=1,2,3,4,5$ to get the first statement. The second statement now follows, using (10) and (12).
(14) $A=W_{1}$ in case $X \not \equiv \operatorname{SL}(3,5)$. Thus each group of order 5 in A is central in some Sylow 5-group of $N_{G}(W)$.

Proof. Suppose X normalizes the hyperplane W_{1}. Then W_{1} contains the center of every Sylow 5-group of $N_{G}(W)$. Therefore, using (9), $W_{1} \geqq A_{1} A_{2}=A$, as required.
(15) $\quad X \cong \operatorname{SL}(3,5)$.

Proof. Suppose not. By (14), W is normal in a Sylow 5-group of C, so we may assume $W \leqq P$. However, again by (14), $W \geqq$ $A_{0} \nsubseteq P$, contradiction.
(16) $\quad X \not \equiv \operatorname{SL}(3,5)$.

Proof. Suppose $X \cong \operatorname{SL}(3,5)$. The action of z on W has determinant -1 (see (6)). So, there is $u \in N_{G}(W)$ inducing -1 on W. In fact $|u|=2$, by (KM.6). Thus, $N=O_{5^{\prime}, 5}(N) \cdot C_{N}(u)$, by the Frattini argument. It follows that V is complemented in $P A_{0}$ by $C_{P A_{0}}\left(u^{\prime}\right)$, for an appropriate involution u^{\prime}. But then there are two Jordan blocks of degree 2 for the action of an element of order 5 in $C_{P A_{0}}(u)-P$ on P / A_{1}. This contradicts (5).

Since evidently (15) and (16) are in conflict, the proof of our theorem is complete.

References

1. R. Carter, Simple Groups of Lie Type, Wiley-Interscience, London, New York, 1972.
2. K. Klinger and G. Mason, Centralizers of p-groups of characteristic 2, p-type, J. Algebra, 37 (1975), 362-375.
3. G. Mason, Two theorems on groups of characteristic 2-type, Pacific J. Math., 57 (1975), 233-253.
4. J. McLaughlin, Some groups generated by transvection, Arch. Math. (Basel), 18 (1967), 364-368.
5. R. Steinberg, Lectures on Chevalley Groups, Yale University Notes, New Haven, Conn., 1967.

Received April 12, 1976 and in revised form July 20, 1977.
University of Michigan
Ann Arbor, MI 48109

