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SUPER TRIANGULATIONS

R. H. BING AND MICHAEL STARBIRD

This paper concerns itself with continuous families of
linear embeddings of triangulated complexes into E2. In [2]
Cairns showed that if / and g are two linear embeddings of
a triangulated complex (C, T) into E2 so that there is an
orientation preserving homeomorphism k of E2 with kof=g,
then there is a continuous family of linear embeddings ht:
(C, T) -> Ez(t e [[0, 1]) so that h0 = / and h, = g. In this paper
we prove various relative versions of this result when C is
an arc, a 0-curve, or a disk.

Introduction* To appreciate where the results in this paper fit
into the literature, it is useful to be aware of the following ex-
amples which were described in [1, Example 4.1].

EXAMPLE 1. This example is a triangulated 1-complex (C, S)
linearly embedded in E2 consisting of a simple closed curve J with
two disjoint spanning arcs in its interior. The complex C is homeo-
morphic to φ. There is a homeomorphism g:E2-*E2 fixed on J such
that / = g\C is linear with respect to S but there is no linear isotopy
ht: (C, S) -> E\t 6 [0,1]) with h0 = id and h, = / which keeps J fixed.

EXAMPLE 2. Example 1 can be modified by incorporating (C, S)
into the 1-skeleton of a triangulated disk (P, T) with boundary J to
produce an example of a disk with properties similar to those of
(C, S). Namely, the triangulated disk (P, T) is linearly embedded in
E2 and admits a linear homoemorphism k fixed on BdP for which
there is no linear isotopy ht:(P, T) —> E\t e [0, 1]) with h0 — id and
hi — k which leaves the boundary fixed throughout.

It is known that no such example can be found where P is convex
[1, Corollary 4.4] nor could P be star-like if T has no spanning edge
[1, Theorem 4.1].

In this paper it is shown (Theorem 2.4) that no 1-complex homeo-
morphic to a #-eurve can have the properties of Example 1. Then
in Theorem 4.2 it is proved that Example 2 can not retain its proper-
ties under all subdivisions. In fact each triangulation T of a disk P
has a subdivision T which is a super triangulation of P. A super
triangulation T of a disk P is one which is as flexible as possible.
Namely, any linear embedding of Bd P into E2 extends to a linear
embedding of (P, Tf) and for any two linear homeomorphisms /, g
of (P, T) into E2 with /1 Bd P = g \ Bd P, there is a linear isotopy
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ht: (P, T) -> E\t e [0, 1]) with h0 = / and hL = g which agrees with
/ and g on BdP throughout. (The formal definition of super trian-
gulation appears in §3.)

DEFINITION. Let (C, T) be a finite complex C with triangulation
T. A linear embedding of C (or (C, ϊ7)) into JE"* is an embedding
which is linear on each simplex of T. A linear isotopy ht: (C, T) —>
2ί7*(ί 6 [0,1]) is a continuous family of linear embeddings of (C, Γ)
into J57Λ. A simple push is a linear isotopy which is fixed except on
the open star of one vertex. A push is a sequence of simple pushes
each one performed after the preceding one.

2* Linear isotopies of arcs and ^-curves* This section begins
with a theorem which states that two triangulated arcs linearly
embedded in E2 with the same endpoints can be linearly isotoped to
a common arc in E2 keeping the endpoints fixed where the movement
takes place only in the closure of the unbounded component of the
complement of the union of the two arcs.

THEOREM 2.1. Let (A, TA) and (B, TB) be two triangulated ares
linearly embedded in E2 which share common endpoints v and w.
Then there are linear isotopies gt: (A, TA)—*E\t e [0,1]) and ht: (B, TB)~+
E\t 6 [0, 1]) such that

( 1 ) g0 = id and hQ — id,

( 2 ) g,{A) = h,(B) as subsets of E2,
( 3 ) for all t e [0, 1] both ht and gt leave both v and w fixed,and
( 4 ) for 0 ^ s ^ u ^ 1, gu(A) U hu(B) misses the unbounded com-

ponent of E2 - (g£A) U hs(B)).

The proof of Theorem 2.1 uses the following lemma to reduce
bends.

LEMMA 2.2. Let (A, TA) be a triangulated arc linearly embedded
in E2 from v to w, a be a vertex of A, and x be another point of
A such that

(1) the segment ax meets A only at its ends and
(2) the disk Dax bounded by ax U Aax (where Aax denotes the

subarc of A from a to x) contains neither v nor w in its interior.
Then there is a push ht: (A, TA) —> E\t e [0, 1]) so that

(1) λ = id,
(2) each ht is fixed on each of a, v, and w,
( 3 ) for 0 ^ s < u ^ 1, hu(A) a (A- Aax) U Ds

ax where D8

ax is the
disk bounded by ax U hs(A)ax, and

(4) UA) = (A - Aax) U ax.
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Proof of lemma. Hypotheses 1 and 2 imply that Dax Π A=Aax. If
Aax contains only one vertex a5 of A other than a, push ad straight
to x, shortening the edge of A containing x. If x were a vertex
of A and the open arc (Aax) contains only one vertex aj9 a3- could
be pushed to the center of ax. If the open arc (Aax) contains more
than one vertex of A, triangulate Dax without adding interior vertices.
Find a shelling of the triangulation which leaves the 2-simplex con-
taining ax until last. Let the shelling guide a desired push of A.

The proof of Theorem 2.1 uses the following lemma to reduce
the number of components of A f] B.

LEMMA 2.3. Suppose that {A, TA) and (B, TB) are triangulated
arcs linearly embedded in E2 from v to w such that each of v and
w is accessible from the unbounded component of E2 — (A U B). Then
there is a linear isotopy ht: (A, TΛ)—*E*(te[0, 1]) such that

( 1 ) K = id,
( 2 ) each ht is fixed on v and w,
( 8 ) for 0 ^ s <: w <; 1, hu(A) misses the unbounded component of

E2 - (B U ha(A)), and
( 4 ) for each edge bjbj+ί of B, bβbj+ι Π ht(A) is either empty,

connected, or consists of exactly two points x and y so that x and
y are interior points of two consecutive edges of A.

Proof of lemma. Let bόbό+ι be an edge of B.

Case 1. If bjbj+ι Π A contains a vertex of A, then by repeated
applications of Lemma 2.2, A can be pushed to make bόbj+ι Π A con-
nected.

Case 2. Suppose that (bjbj+ι f] A) = {xlf x2, - , xr) where each xt

is an interior point of an edge of A and xγ < x2 < xz < < xr on

If, for some i, Ax.x.+1 contains two or more vertices of A, trian-
gulate Dx.x.^ without adding interior vertices. As in the proof of
Lemma 2.2, follow a shelling that leaves the 2-simplex containing
xtxi+1 until last to push A to (A — Ax.x.+1) U a?tα?i+1. Now apply
Case 1.

Suppose each AX.X.Y1 contains one vertex of A and bάbj+ι(\A
contains at least three points x19 x2, and xB. Let at and ai+ί be respec-
tively the vertex of A between xγ and x2 and the vertex of A between
x2 and #3. By moving at toward x1 and ai+1 toward x3, pivoting about
x29 at and ai+1 can be linearly isotoped down to xι and x3 respectively
and Case 1 can again be applied to make the image of A intersect
bjbj+1 in a connected set.



310 R. H. BING AND MICHAEL STARBIRD

The movements we used did not complicate the intersection of
the image of A and the other edges of B so we can finish Lemma
2.3 by considering the edges of B one at a time.

EXAMPLE 6.1. We note that Lemma 2.3 cannot be strengthened
to require a push rather than a linear isotopy as demonstrated by
Figure 2.1.

a24

FIGURE 2.1

Note that no interior vertex of A or B can be pushed at all without
moving Aov B partially into the unbounded component of E2 — (A U B).

Proof of Theorem 2.1. The proof uses induction on n, the sum
of the number of bends in A and the number in B. If n = 0, A
and B coincide already.

We assume the theorem for k less than n and suppose that the
sum of the bends in A and B is n. Let {αJJLo and {&JjU be vertices
of A and B in order so that a0 = b0 = v, am = bp = w, and (m - 1) +
(p - 1) = n.

Case 1. Suppose v or w (say v) is not accessible from the un-
bounded component of E2 - (A Π B). In this case find a point x on
A or £ (say A) such that vx n αxα2 = 0, w ΓΊ &A = 0, and ra meets
A[) B only at its ends.

If w 0 Int ί)M, apply Lemma 2.2 to push A onto vx (J AXM; thereby
reducing the number of bends in A.

If w 6 Int A*, find a point y on Bd A* so that w?/ Π w = 0 and
W0 n αw-2α«-i = 0 . Let #' be the nearest point of w# n Avam_2 to w.
Since (AxwΌwy')c:Dvx, then D w r is a subset of Dvx and hence does not
intersect vx. Since w is not in Int Dwy, either, apply Lemma 2.2 to
push A to (A - Ay,w) U /w and thereby reduce the number of bends
in A. One can use the facts that the movement occurs in Dwy,,
D'wy, c Dvx, and Dvx misses the unbounded component of E2 - (Aυx U B)
to show that Condition 4 of Theorem 2.1 is satisfied.

Case 2. Suppose v and w are both accessible from the unbounded
component of E2 - A (J B. By isotoping A according to Lemma 2.3
and then changing the roles of A and B and isotoping B according
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to the lemma, we can linearly isotope A and B to a position where
the conclusion of Lemma 2.3 is satisfied by both A and B. If this
adjustment reduced the number of bends in A U B, then Theorem
2.1 follows by induction. We assume that it did not and proceed to
consider five subcases of Case 2.

Subcase 2a. Suppose aι — bι. We apply induction to the two
arcs AHW and BHw.

Subcase 2b. Suppose va1 c vbx and aLaz Π B = {αj. Then push aL

toward blf pivoting on α2, until the moved aλa2 hits a point of Aa3W U
BHω. Let a[ be the position of aL at that moment. If a[a2 Π AazW

contains a vertex a,, push A to vc^ U a^j U Aα i w by an application
of Lemma 2.2 and thereby reduce the number of bends in A.

If αία2 contains a vertex bό of BHw, push I? to w&x U afij U i?δ i w.
This push moves the vertex δx to the point aι and, therefore, throws
us into Subcase 2a which was already considered.

If a[ = b1 and α(α2 Π (Aα3W U 1?62 J = 0 , then push α, to bλ which
puts us into Subcase 2a.

Subcase 2c. Suppose va1czvb1 and αxα2 Π B Φ {αj. By Lemma
2.3, ev^ Π 5 = {αj U {y} where y is an interior point of bfi2.

Several things could happen. First, if bfi2 intersects A in a point
z other than y, then z is an interior point of a2a3 by conclusion 4 of
Lemma 2.3. Furthermore z e yb2. This is true because Aa%w cannot
intersect the triangle afijW since such an intersection would violate
either Lemma 2.3 or the fact that w is accessible from the unbounded
component of E2 — (A\JB). We move a1 to bx and a2 to z, pivoting
about y. This procedure takes us to Subcase 2a which has already
been considered.

Second, if bj)2 misses Aa2W, it may be that the segment bj)2 can
be extended slightly beyond b2 without meeting the unbounded domain
of E2 — (A U B). In this case, we let x be the first point at which
this extension of bfi2 intersects Al) B. If x e B, apply Lemma 2.2
to push B to (B — Bhx) U b2x and thereby reduce the bends in B.
If x is a vertex of A push A to (A — Ayx) U yx and then to (A — Aυy) U
vb± U bγy to reduce the number of bends in A. If x is not a vertex
of A but x e a2a3, move a2 to # and αx to δj while pivoting about y.
This puts us in Subcase 2a. If x e AazW, triangulate disk bounded by
Ayx U yx without adding interior vertices. As in the proof of Lemma
2.2, find a shelling of this disk which leaves the 2-simplex containing
yx until last. Let this shelling guide a linear isotopy of A onto the
set vaί U axy U yx U Axw. Now aι can be moved to 63 putting us in
Case 2a.
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Third, and last, if bjb2 Π AazW = 0 and bj)2 cannot be extended
beyond b2 without intersecting the unbounded component of E2 —
(A U B) then move b2 toward b5 as you move br toward a19 pivoting
about y. If the pivoting segment bj>2 never meets a point of Aa,oV}

nor BHw while bL is moved onto alf then this linear isotopy puts us in
Subcase 2a. If not, then the first moment at which bj)2 meets Att3W

or BHw locates a vertex a3- or bά(j ^ 3) such that the segment ya3

or ybj satisfies the hypotheses of Lemma 2.2. An application of
Lemma 2.2 would then reduce the bends in A or B.

Subcase 2d. Suppose vb^ava^ This case is identical to Subcase
2b and 2c with the roles of A and B exchanged.

Subcase 2e. Suppose vaλ Π B = v,

Perhaps the segment from v through ax can be extended beyond
at without going into the unbounded domain of E2 — (A \J B). If it
can, extend it until the extension hits a point x of A U B. If x 6 A,
use Lemma 2.2 to push A to vx U AXWJ reducing the number of bends
in A. If x 6 B9 use Lemma 2.2 to push B to vx U Bxw. This either
reduces the number of bends in B or carries us to a previous case.

If vax cannot be extended as considered in the last paragraph,
examine the segment vx as x moves from aγ to a2 and find the first
x0 at which vx0 meets B U AazW in a point other than v.

If ra0 meets Aa2W, let αy be the point of vx0 Π AHW nearest v.
Lemma 2.2 implies that A can be pushed to va3-[j AajW9 thereby
reducing the number of bends in A.

If vx0 misses AaiW9 use Lemma 2.2 to push A to vx0 U AXQW. The
first edge vx0 of vx0 U AXQW contains a point of B other than v and
we are in a previous subcase.

The following theorem is used in the proof of Theorem 4.2.

THEOREM 2.4. Let ( J U A, T) be a triangulated θ-curve linearly
embedded in E2 so that A is a spanning arc of the disk bounded by
the simple closed curve J. Let k be a homeomorphism of E2 such
that k\J= id and k\A is a linear embedding of (A, T\A). Then
there is a linear isotopy ht: (J j j A, Γ)—* E2(te[0, 1]) such that h0 =
id, hγ — kI/U A, and for each t in [0, 1], ht\J = id.

Proof. Let (A, T\A) and (&(A), k{T\A)) be the two arcs in
the hypothesis of Theorem 2.1. Let //: (A, Γ| A) — #*(£ e [0,1]) and
grt: (k(A), k(T\A)) ->E2(te[0, 1]) be linear isotopies satisfying the
conclusion of Theorem 2.1. Each of these linear isotopies can be
extended to J by the identity. We do so and abuse the notation
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slightly by letting // and gt now denote those linear isotopies of
(/U A,T) and (fc(JU A), k{T)) respectively.

Now //(A) = gx ° k(A) as sets; however, it may not be the case
that fl\A equals gxok\A. (See Figure 2.2.) In order to rectify this
situation find a linear isotopy f":(JUAr T)~-+E2(te[Q, 1]) such that
flr=flffι

r\A = g1ok\Af and for each t in [0, 1], / / ' | J = id. The
linear isotopy //' simply moves the vertices of //(A) until they are
in the position to which they are mapped by k°gx. Note that for
any ε > 0 f" can be chosen so that for each t in [0,1], //'(A) lies in
the ε-neighborhood of //(A); however, as illustrated in Figure 2.2,
it may not be possible to have //'(A) = //(A) for each t.

A linear isotopy ht satisfying the conclusion of Theorem 2.4 can
now be obtained by performing three linear isotopies in succession.
First perform f&t e [0,1]), second perform ft'(t e [0,1]), and finally
perform g%_t ° k(t e [0,1]).

Note that for any e > 0, ht could be chosen so that for t, ht(A)
almost misses the unbounded component C of E2 — (A (J k(A)) where
"almost" means that ht(A) misses C except for an ε-neighborhood of
//(A).

FIGURE 2.2

3* Super triangulations* A triangulation T of a disk P is super
if and only if it has the following three properties.

(1) Every linear embedding of Bd P in E2 can be extended to
a linear embedding of (P, T).

(2) If / and g are two linear embeddings of (P, T) which
agree on Bd P, then there is a linear isotopy ht: (P, T) ~* E\t e [0,1])
such that Λ0 = /,fei = ^ and for all t e[0, 1], ^ | B d P = / | B d P =
<7|BdP.

(3) If hQ and hλ are two linear embeddings of (P, T) into E2

and ft is a linear isotopy of Bd P into E% from h01 Bd P to /̂  | Bd P,
then /< can be extended to a linear isotopy of P from Λo to hx.

It may be noted that Properties 1 and 2 imply Property 3. To
see that this is true one could use Property 1 and the compactness of
[0, 1] to cover [0, 1] with subintervals [t0, ί j , [tlf ί2], , [tn-1, tn] such
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that for each i there is a linear isotopy hi: (P, T) —>E2,te [tif ti+ι] with
Aί|BdP = /ί|BdP. Although h*i+ί and h*^ need not agree on interior
vertices of T, Property 2 can be used to adjust them so they do.

In this section we produce (in Theorem 3.4) for each integer
n(n ^ 3) a super triangulation Tn of a disk Pn which has n 1-simplexes
on the boundary. For n = 3, Ts could be chosen to be a single 2-
simplex. For n = 4 or 5, Tn could be chosen to be obtained by
coning from an interior point to BdPn. This Tn is super since any
linear embedding of Bd Pn(n = 4, 5) would bound a star-like disk.
To produce TG, we add an annulus A to P5 so that A has five 1-
simplexes in the boundary component which is BdP5, but six in the
other. This annulus is given a specific, simple triangulation. It is
shown in Theorem 3.3 that if one begins with a super triangulation
of a disk with n sides and enlarges the disk and triangulation by
the addition of an annulus which is triangulated as specified in Theorem
3.3, then the new triangulation of t£e new disk is also super. Thus
to produce TΊ another annulus is added on to P6. This process is
continued to produce triangulations Tn where each Tn has a bull's-eye
pattern.

Theorems 3.1 and 3.2 have the same general form as Theorem
3.3 except where different triangulations of the added annulus are
considered. They are included in this section because their proofs
contain techniques used in the proof of Theorem 3.3. They are used
explicitly in the next section.

DEFINITION. Let J be a PL simple closed curve in E2. A point
x in Int J can see J if and only if for each point y in J the segment
xy meets J only at y.

THEOREM 3.1. Suppose (P, T) is a triangulated disk, A is a
subcomplex of T which is an annulus containing BdP, the closure
of P — A is a disk D, and A has the following triangulation.
Namely, A is the union of n 4-sided disks ViV^w^w^i = 1, 2, , n,
counting is mod n) where for each i, vt 6 Bd P and w^BάD and the
2-simplexes of T in A are precisely those of the form ViWtVi+1 or
WiVi+iWi+i Then T super if T is restricted to D is super.

Proof. Let h be a linear embedding of Bd P in E2 with h(vt) = v't.
To show that (P, T) has Property 1 we can pick the image of wt to
be w[, a point in Int Λ,(Bd P) near v\ on the bisection of angle vLi^ί+i
This linearly embeds A. The fact that T restricted to D is super
ensures that the embedding can be extended.

Next, we show that (P, T) has Property 2. For convenience we
suppose that / is the identity and g(wt) = w\ is as described in the
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preceding paragraph. Our plan is to push each wt to w\ and use
the fact that D has Property 3 to show that (P, T) has Property 2.

Special Case. If ViVi+1wi+1Wi is convex we could push wt to a
point near vt along WtVt and then push it to a point near vt so that
if w" is the new wit both Vt^ViWΪWi^ and /vΐ

/vί+1wi+i
/M;ί' are convex.

Similarly, wt^ can be pushed to w '-i, a point near v ^ so that both
Vi-tVi-iWΪ-tfjΰi-2 a n d Vi-iViW'i'w'i-i are convex. Continuing back through

the Wifs (and counting mod ri) each wt can be pushed to w" a point
near vt so that each quadrilateral VjVj+1w"+iw" is convex. Now we
can push each w" onto the bisector of vi_1vitfi+1 and then to w\.

General Case. Finally we show that some wi+1 can be pushed
to wϊ+i so that the resulting Vitfi+1w"+iW4 is convex. To do this, we
pick an i so that w<wi+2 is a spanning arc of D. (If n = 3 there is
no spanning arc and we use wxwz for wtwi+2.) We note that wi+ι can
see Bd vi+1vi+2wi+2wt so it can be pushed in a straight line to a point
wl+i near the side wtvi+1 so that w'/^ can see Bd ViVi+ιvi+2wi+2Wi. The
resulting Vî +iWĵ Wi is convex and we proceed as in the Special Case.

THEOREM 3.2. Suppose (P, T) is a triangulated disk and A is
a subcomplex of (P, T) such that A is an annulus containing Bd P,
the closure of P — A is a disk D, and A has the following trian-
gulation. Namely, A is the union of n 4-sided disks ViVi+1wi+1Wi
(i = 1, 2, , n, counting is mod n) where for each j , vs 6 Bd P and
Wj 6 Bd D, and T restricted to A is determined by coning over the
boundary of each of these 4-sided disks from an interior point. (See
Figure 3.1.) Then T is super if T restricted to D is super.

FIGURE 3.1

Proof. To show that (P, T) has Property 1 we let h be a linear
embedding of Bd P in the plane and place the image of Wi near h(vt)
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in IntA(BdP) and on the bisector of angle h(vi-.L)h(vi)h(yi+1). The
linear embedding of P can be completed since T restricted to D is
super.

To show that (P, T) has Property 2 we suppose that / is the
identity and g(wt) = w\ is near vt and on the bisector of angle ^-Λ^+i
We wish to push wt to w\.

Let Xt be an interior diagonal of the disk ViVi+lwi+1Wi. If the
disk is convex, there are two choices of Xiy but if it is concave,
there is only one choice.

If the X*8 can be chosen so that some ws is not the end of any
X, push this Wj along WjV, to a point near vά. Then push it to a
point w'l near v3- so that Vj^VjW'jw^ and VjVj+ίwj+ίw" are convex.
Now their diagonals can be chosen in two ways. We pick them to
contain w'l and find that there is another wk with no X containing
it. It in turn is moved into a position w'i analogous to w'l above.
Continuing, we find that if we can get started and can move one
wt to a good position, the others can be pushed into position also.
Once each w3- has been moved to a point w'l near v3 so that each
quadrilateral v3vj+1w'l+1w

fl is convex, each w'l is pushed to a point
on the bisector of angle v3-ίv3Vj+\. Finally, each w3- is moved along
the bisector to w'3 . As the boundary of each quadrilateral disk
ViVi+ιwi+1Vi is moved it is a minor matter to move the vertex that
is on the interior of the quadrilateral.

If the X's are chosen so that each ws is the end of an X then
each w3 is the end of precisely one X since there are the same
number of X's as w's. By considering a new triangulation Tr of A
whose 2-simplexes are those into which the X's divide the quadrila-
terals, we note that the new triangulation of A makes it satisfy
the hypothesis of Theorem 3.1. The result then follows from Theorem
3.1.

The next theorem is a generalization of Theorem 3.2 in which
we allow the annulus to have a slightly different triangulation.

THEOREM 3.3. Suppose (P, T), A, D, are as in Theorem 3.2
except that Bd P has an extra vertex v%+19 counting is mod n in
subscripting the w's but mod n + 1 in subscripting the v'β and T
restricted to A has an additional 2-simplex vft+1v1w1. Then T is
super if T restricted to D is super.

Figure 3.2 gives a schematic view of the quadrilaterals in A. It
does not show the vertices of T in the interiors of these quad-
rilaterals since these interior vertices can be dragged along as the
boundaries of the quadrilaterals are moved.
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FIGURE 3.2

Proof that (P, T) has Property 1. Let H be a linear embedding
of BdP in i?2. For convenience we denote h(vt) by v, and the disk
bounded by h(BdP) by P. We cannot hope to put the images of
the w's near the corresponding v's if vnvL is not a spanning arc
of P.

Let k be the largest of 1, 2, , n + 1 for which ^-i^+i is a
spanning arc of P. The image of wt is denoted by w\ and is located
as follows: w[ is in Int P near v4 and on the bisector of angle Vt-Λ^+i
if i = 1, 2, •••, fc — 1; w- is near vi+ί and on the bisector of angle
VtVi+1vi+i if i = k, >-,n.

Proof that (P, T) has Property 2. We suppose / is the identity
map and g(Wi) = wί is as described in the preceding paragraph. The
cases where n = 3, 4 need a slightly different approach so we do not
include them.

We start by retriangulating A as was done in the proof of
Theorem 3.2. This is done by removing the vertex inside each
quadrilateral v<v<+iWi+iWi and using a diagonal Xt to divide the quadrila-
teral into two 2-simplexes. If the quadrilateral is convex there two
choices for X but if it is concave there is only one choice. Note
that with the new triangulation T of A, the sum of the orders of
the vertices on Bd Ώ is An + 1.

The proof is now broken into steps with Steps a, 6, and c being
used to push certain w's near their corresponding v's, Steps d and
e to push all w's near Bd P, and Step f to push the w's to the w"s.

Step a. Pushing one w. If some wi(iι Φ 1) is not on any X, it
is of order 3 in T and we push wt along wtvt to a point near vt and
then to a point w" near vt so that both Vi^ViW'-w^ and ViVi+ίwi+1w'/
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are convex. We do not claim that w'\ is near w\ since w\ may be
near vi+1 rather than near vt.

If no Wi is of order 3, then one w is of order 5 and the others
are of order 4. In this case we pick a Wj of order 4 such that
Wj-χWj+1. is a spanning arc of D. Figure 3.3 shows one possibility
where j Φ 1 and dotted

FIGURE 3.3

X's lean one way. For any spanning segment {ws+ιvs) of a 5-sided
planar disk (Wj^Wj^Vj^VjVj^) one end or the other is in the closure
of the points which can see the whole boundary. Let a; be a point
which can see the boundaries of both Wj^Wj^VjVj^ and WJ^WJ^VJ^VJVJ^

and push w$ to x. For convenience suppose that x — w$. Note that
WjWj+1v3'+1Vj is convex and its triangulation can be changed by re-
placing Xj by the other diagonal. This makes Wj of order 5 in the
new triangulation and causes some other wt to be of order 3. While
the above argument is based on Figure 3.3 the argument is similar
if the X's lean the other way or if j = 1.

Since the new triangulation made wt of order 3, it can be pushed
near vt as previously described. We say that wt was crushed. Since
each of the quadrilaterals containing this crushed wt is convex, we
suppose that the triangulation of the adjusted A is such that the
crushed wt is of order 5.

Step b. Pushing another w. By considering another spanning
segment WiWi+2 of D, it can be shown that we can move other w's
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(leaving the one fixed considered in Step a) and get a new triangulation
of the resulting A such that another w3- is of order 3 in the new
triangulation. This ws is pushed to a point w'f near vό so that the
quadrilaterals of A containing w' are both convex.

Step c. Pushing a string of w's. We continue pushing the
w/s (i Φ 1) to points near their corresponding vt'& as long as this can
be done. It can be shown that if both Wt and ws have been crushed
with i Φ j then all w's between them have been crushed. Hence a
string of adjacent w's have been crushed and the string has at least
two crushed w's. Figure 3.4 shows the situation. The diagonals in
the quadrilaterals with a crushed vertex are not shown since they
are convex and the X's can lean either way. The quadrilaterals
which do not have a crushed vertex are concave and have their X's
as drawn. (Figure 3.4 is schematic and shows them as convex rather
than as concave.) Let wf and wt be the first and last w's respectively
that are crushed.

Jf-ι

FIGURE 3.4 (Schematic)

Step d. Leaning w's. Let Wj^Wj+1 be a spanning segment of
JD. Since wό can be adjusted and the triangulation adjusted to make
Wj of order 5, we note that j e {/ — 1, /, , I, I + 1}. We suppose
j was selected to be minimal. It is not I or 1 + 1.

If j = / — 1, we consider the 5-sided disk W/^W/V/Vf^V/^ and
note that wf^ can either be pushed to a point near wf or to a point
near /y/_1. Since we are assuming that Vf^Wf^Wf^Vf^ is not convex,
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we know that wf_x cannot be pushed to a point near vf^. Therefore
we push w/_! to a point near wf and say that wf^ leans forward.

After w/_! is moved to a point near wf, wf is moved to a point
near vf+lf wf+1 to a point near v/+29 •••, wn to a point near vn+19 w1

to a point near vw , and W/_2 to a point near vf_2. In this case
we have pushed all the w'& near the v'& but not necessarily to the
corresponding v"s.

Similarly, if j = / + 1, , i — 1 we can lean certain w's forward
and send others near their corresponding v's.

If j = ft we are faced with a different situation. See Figure
3.5. Although wf^xwf+x is a spanning arc of D, Vf^vf+1 need not be
a spanning arc of P. However, we push wf along wfwf+1 to a point

FIGURE 3.5

FIGURE 3.6
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near wf+], which is close to vf+1. This move may destroy the convexity
of VfWfWf-jVf-i. However we push wf+1 to a point near vf+2, •••, wn

to a point near vn+lf w1 to a point near v19 , and wf_2 to a point
near vf_2. Figure 3.6 shows the difficulty of proceeding to push wf_γ

down to a point near vf^.

Step e. Pushing the last w close to Bd P. If W/W/^V/^Vf were
convex we could push wf^ to a point near vf_lf but if it is concave,
vf may block the edge Wf_xwf. We suppose this is the case and push
w/_i toward vf^ but stop before wf^wf hits vf. Now there is a
point x on wf^wf very close to vf so that x can see i;/^ and vf+1.

Let wό_λWj+ι be a spanning arc of the new D such that j \ Φ f — 2
or / — 1. If i = /, consider Wf+1Vf+1VfWf^ and push wf to as. Now
W/ is near vf and /M;/_1 can be pushed along Wf_xVf_x until it is near

If j — f + i9 " , n, we push te^ to a point near v3 , then w ^ to
a point near v^19 , wf to a point near vf and w/_! to a point near
^/-i If i = 1, 2, , / — 3 we push wd to a point near wJ+lf then
Wy+1 to a point near vi+2, , and finally w/^ to a point near v/#

It is to be noted that each wt is now near either v% or vi+1, that a
string (perhaps null) of w's lean forward and the rest are near their
corresponding v's.

Step f. The final moves. We recall that k is the largest of
1, 2, , n + 1 for which vk_γvk is a spanning arc of P. Hence it is
not 1 or 2.

If there is no w near vkf the w's are now in their standard
position.

Suppose some w is near vk. This w is either w ^ or wk. We
let vr be the v with no w near it.

We now show that wk is not near vk. If it were, wlf w2, — ,wk

would be near v19 v2, , vk respectively and r = k + 1, k + 2, , or
w + 1. But then there would be a spanning arc vr_iVr of P and this
violates the definition of k.

If Wfc..! is near vk9 we push wk_x to a point near vk_ly wk_2 to a
point near vk-t, •••, and ^ r to a point near v r. Each w is now near
the correct v and only a small adjustment is necessary to move each
vertex w to standard position.

THEOREM 3.4. For each integer n ^ 3, there is a triangulated
disk (Pn9 Tn) such that Pn has n sides and Tn is super.

Proof. For n — 4 or 5 we can produce Tn by coning over BάPn.
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Once a (Pn-lt- Γ»-i) is obtained, one can construct a (P*, Tn) by putting
an annulus A as described in Theorem 3.3 about P n - 1 .

Question 3.1. It may be noted that for w > 4, the ΓΛ we described
has 2nn — n — 40 2-simplexes. How low could one go?

Question 3.2. Let T be a triangulation of a disk which satisfies
Property 1 of a super triangulation. Is T super?

4* Super subdivisions* In this section we prove (Theorem 4.2)
that every triangulation of a disk has a subdivision which is super
and does not subdivide the boundary. Theorem 4.1 is the principal
tool used in the proof of Theorem 4.2 and is of the same type as
Theorems 3.1, 3.2, and 3.3.

THEOREM 4.1. Suppose (P, T) is a triangulated disk and A is
a subcomplex of (P, T) such that A is an annulus containing Bd P,
the closure of P — A is a disk D, and A has the following trian-
gulation. Namely, A is the union of n 4-sided disks vtvi+ίwi+ltlwitkt

(i = 1, 2, , n, counting is mod n, and for each j and k, v$ 6 Bd P
and wj>k e Bd D) together with 2-simplexes vtwitSwitj+1 (i = 1, 2, ,
hi — 1) where T restricted to A contains the 2-simplexes ViWttίwitί+1

together with those determined by coning over the boundary of each
4-sided disk from an interior point. (See Figure 4.1.)

Then T is super if T restricted to D is super.

FIGURE 4.1

Proof Theorem 3.2 is a special case of this theorem and is
actually the most difficult case.
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The proof that (P, T) has Property 1 is essentially identical to
that in Theorem 3.2 so we do not do it.

If kt = 1 for each i, then (P, T) satisfies the hypotheses of
Theorem 3.2 and, therefore, T is super.

We assume that there is a j for which ks Φ 1 and proceed to
prove that T has Property 2. We assume that / is the identity and
that for each i and j , g(witj) is a point near vt and near the bisector
of angle v<_1i;<v<+1.

For each j where 1 < j < ki9 push wifj straight along vtwu to
a point near vt.

In each quadrilateral ViVί+1wi+Uίwi>ki draw a diagonal Xt. We
have added % diagonals. Since for some j , kά Φ 1, there is a vertex
wiΛ or wiιfc< which is not met by any X. Suppose wui is not met.
(The other case is analogous.) That vertex wiΛ can be pushed straight
along vtwitί to a point near vt and then to a point w'ίtl so that
Vi-iViWi^w^k.^ is convex. Replace its diagonal by the one that
contains w'ttl. This change guarantees the existence of another vertex
wStl or wj)kj which is not met by any diagonal. This vertex can now
be pushed toward vd as was done before. Continuing in this fashion,
all the vertices witi can be pushed near their corresponding vertices
vt. An additional slight adjustment will bring each witj to the
desired location g(wtJ).

THEOREM 4.2. Every triangulation T of a disk P has a super
subdivision which does not subdivide the boundary.

Proof. The proof is by induction on nf the number of interior
vertices of T.

Case n = 0. Suppose T is a triangulation of a disk P which
contains no interior vertices. Suppose Bd P has k sides.

Let {AJίΓi be the 1-simplexes of T which hit IntP. Subdivide
each At by adding k interior vertices. The super subdivision T of
T is now obtained by examining each 2-simplex σ of T, noting that
Bd σ has been subdivided and giving σ a super triangulation without
further subdivision of Bdα using Theorem 3.4.

We now claim that T' is super. First notice that any linear
embedding of BdP can be extended to a linear embedding of the
At's since they each have so many bends that they can be laid along
the embedded BdP. Since each subdisk has a super triangulation,
this embedding of Bd P U (Uϊ=i At) can be extended over each subdisk
into which the A/s divide P.

Next we show that T has Property 2. Suppose g, h: (P, T) -> E2

are two linear embeddings which agree on Bd P. The plan is to push
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both g(Ai) and h{At) to a common arc for each i and then use the
properties of the super triangulations of each subdisk of P into which
the A/s divide P to complete the proof.

Suppose A1 = vLv3 is a 1-simplex of T belonging to a shellable
2-simplex vxvzvz of T. Use Theorem 2.4 to push g{At) to an arc g\Aγ)
with a push that leaves #(Bd P U (Uϊ=l Ά<)) fiχed and makes sr'CΛ) lie
smoothly near g(vxvt U tf2t?8) so that gr(A,) Π Hv^Vs) = g(v,) U ff^).

Next use Theorem 2.4 to push A(At) to the arc h\Ax) with a push
that leaves k(BάPϋ (U*=Mi)) fixed and makes fcXAJ = g\Ax). Fol-
lowing a shelling of T and repeating the above process of moving
g(Ai) first and then moving h(A%) to agree, the giAJ's can be made
to agree with the h(At)'8.

Using the fact that each subdisk into which the A/s divide P
has a super triangulation, these pushes of arcs can be extended to
make the pushed g agree with the pushed h.

The inductive step. Suppose T has n interior vertices and the
theorem is true for triangulations with fewer than n interior vertices.

Let w be an interior vertex of T so that Lk (w) Π Bd P contains
a vertex v. Let A be a tight annular neighborhood of BdP which
contains no interior vertices of P. Let D — Gl (P — A). Let z =
vw Π Bd D. Let zf and 2" be two points on Bd D on either side of
z and very close to z. Let A+ be the larger annulus whose inner
boundary component contains zrw and z"w rather than z'z and z"z.
Find a triangulation T(A+) of A+ which is a subdivision of T and
makes A+ into an annulus as described in Theorem 4.1. Now
Cl (P - A+) can be given a triangulation Γ(C1 (P - A+)) which is a
subdivision of T, which has no additional interior vertices, and so that
T(A+) I Bd (Cl (P - A+)) is a subcomplex. By induction Γ(C1 (P - A+))
has a super subdivision T" which does not subdivide Bd(Cl(P — A+)).
By Theorem 4.1, T U T(A+) is a super triangulation of P.

The following result is an immediate corollary of Theorem 4.2.
It appears with a different proof in [1, Theorem 5.2].

COROLLARY 4.3. Let f be a PL homeomorphism of a PL disk P
in E2 which is fixed on Bd P. Then there is a triangulation T of
P and a push of (P, T) which takes the identity to f and leaves
Bd P fixed throughout.

Question 4.1. Let T be a super triangulation of a disk P. Is
every subdivision of T which does not subdivide Bd P also super?

Note. Example 2 in the introduction can be constructed with
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only three interior vertices. No such example could have only one
interior vertex. In a preprint of this paper we posed the question
of whether such an example could be constructed with only two
interior vertices. C. W. Ho has recently answered this question in
the negative by proving that the space of all linear homeomorphisms
of an %-cell (C, T) which agree on Bd C and where T has only two
interior vertices is a contractible space given the compact-open
topology [3, p. 2].

REFERENCES

1. R. H. Bing and M. Starbird, Linear isotopίes in E2, (to appear in Trans. Amer.
Math. Soc).
2. S. S. Cairns, Isotopic deformations of geodesic complexes on the 2-sphere and plane,
Ann. of Math., 45 (1944), 207-217.
3. C. W. Ho, On the space of the linear homeomorphisms of an n-cell with two interior
vertices, (preprint).

Received April 13, 1977. This work was supported by NSF Grant MCS 76-07242.

UNIVERSITY OF TEXAS

AUSTIN, TX 78712






