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THE SCHUR GROUP OF A FIELD OF
CHARACTERISTIC ZERO

R. MOLLIN

We determine when a class in the Schur subgroup S(K)
of the Brauer group B(K) of a field K of characteristic zero
contains an algebra which is isomorphic to a simple summand
A of the group algebra FG for some finite group G, where
F is a subfield of K. We then investigate A ®F K which
is the direct sum of simple algebras with center K, and
determine exactly when these are ϋΓ-isomorphie. Finally we
refine existing examples in the theory of the Schur group,
and obtain a decomposition theorem for the related group
of algebras with uniformly distributed invariants.

In the introduction to [6] Janusz notes that: For a finite abelian
extension K of the rationale Q, S(K) the Schur subgroup of the
Brauer group B{K) consists of all classes [A] consisting of an alge-
bra A which is isomorphic to a simple summand of the group alge-
bra QG for some finite group G. Our first result in this paper is
that for an arbitrary field K of characteristic zero the above is false.

In Mollin [8-13] we develop the concept of the uniform distribu-
tion group U{K) for an algebraic number field K. If epa denotes a
primitive path root of unity and εpa is the highest p-power root of
unity in K we have from Mollin [8] that when p does not divide
\K:Q(epa)\ then:

( * ) U{K)P = S(K)P = K® S(Q(epa))p

where Gp denotes the p-primary part of a group G. In Janusz [7]
it is shown that if p does not divide \Q(en): K\ when Q(eH) is the
smallest root of unity field containing K then:

(**) S(K)p = K0S(Q(epa))p.

C. Ford and G. Janusz [5] give for each prime p, examples of
fields K for which (**) does not hold. In this paper we present,
for each prime p, fields K for which the second equality of (*) does
not hold but for which the first equality does hold. Finally, we
obtain a decomposition theorem for U(K).

2. Notation and preliminaries* Let K be a field of charac-
teristic zero. The Schur group S(K) may be described as consisting
of those equivalence classes in B(K) which contain a simple com-
ponent of the group algebra KG for some finite group G. By
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Yamada [16, Cor. 3.11, p. 33] this is equivalent to S(K) being the
subgroup of B(K) consisting of those equivalence classes which contain
a cyclotomic algebra; i.e., a crossed product of the form (K(s)/K, a)
where ε is a root of unity and a is a factor set whose values are
roots of unity in K(έ).

In general we denote a crossed product by (L/K, β) which is the
central simple if-algebra having L-basis uτ, τ e G(L/K), the Galois
group of L/K, subject to:

uTur — β(τ, Ί)uτ7 , uτx = τ(x)uτ

for x e L.
For further information on crossed products the reader is re-

ferred to Reiner's book [14].
Now, if G is a finite group and X is an irreducible character

of G we shall denote the simple component of KG corresponding to
X as A(X, K). By Yamada [16, Prop. 1.1, p. 4], A(X, K) = KGa(X)
with a(X) = Σ <Xτ) where the sum ranges over τ e G(K{X)/K).
a(X) is a primitive central idempotent of KG, and K{X) is the
center of A(X, K).

3* The Schur group* We let if be a field of characteristic
zero throughout this section.

DEFINITION 3.1. Let K/L be cyclotomic, i.e., there is a root of
unity ε such that L £ K Q L(ε). The Schur subgroup SL(K) of K
relative to L is the subgroup of S(K) consisting of those classes
that contain an algebra which is isomorphic to a simple summand of
LG for some finite group G.

We note here that, in fact, SL(K) is nonempty if and only if
K/L is cyclotomic. Now we ask whether or not SL(K) is a proper
subgroup of S(K). The answer is the content of the next theorem.

THEOREM 3.2. If K/L is cyclotomic then S(K) = SL(K).

Proof. Let [A]eS(K). By Yamada [16, Cor. 3.11, p. 33] we
may assume that A = (K(έ)/K, β). But, by hypothesis JRΓ£ L(ε') for
some root of unity ε'. Thus, using the inflation map of cohomology
theory we get [A] = [B] where

where the direct sum ranges over all τ e Sf = G(L(εε')/K).
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Now, the values of β and εε' generate a cyclic group <ε"> in
L*(εε'), the multiplicative group of L(εs'). Moreover, S^ can be
regarded as an automorphism group of <ε"> where the values of β
belong to <ε">. Therefore, by the theory of group extensions (e.g.,
Zassenhaus [17, III, §6]) we have the exact sequence

1 > <ε"> > G > gf > 1

where G is the multiplicative subgroup of 5 * generated by ε" and
the elements uσ(σe^). In other words, G is an extension of <ε">
by *&. Since G spans B with coefficients in L then there is an L-
algebra homomorphism of LG onto B. Hence B is isomorphic to a
simple summand of LG.

The following is immediate.

COROLLARY 3.3. // K/L is cyclotomic and L £ T £ K then
S(K) = ST(K).

THEOREM 3.4, If K/L is cyclotomic then

J

where Lo ranges through cyclotomic extensions of Q such that
= K.

Proof. It suffices to prove SL(K) £ [JLo SQ(L0) ® X o K. Let [A] e
SL(K) with A = A(X,L), say. Thus ϊ s L ( I ) , by Dornhoff [3,
Lemma 24.7, p. 124]. Now:

QG = A(XQ, Q) 0 A(Xly Q) 0 . . . 0 A(Xn, Q) .

For simplicity we set A(Xif Q) — Aif i = 0, 1, 2, , n; XQ = X,
= Lo and A(X, Q) = Ao. Thus:

LG =ί QG ® ρ L s AQ ® ρ L 0 . 0 An ®Q L

and

L = (Ao ® Z o Lo) ® e L

L(X)θ

where the latter summands correspond to X°, σ 6 G((Q(X) f] L)jQ).
We note that by Yamada [16, Prop. 1.5, p. 8] we have Ao = A(X, Lo).
Thus [Ao] e SQ(L0). We have shown that:
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A — A(X> L) = AQ(& LQK as required .
LQ

As mentioned in the introduction we do not have in general that
SQ(K) = S(K). The following example illustrates this assertion, and
we thereafter determine exactly when SQ(K) = S(JBL)

If K= Q( VΎ, ε3) where Ψ2 is a real root of fix) = xz - 2,
L = Q( ¥2) and [A] eS(K), then by Theorem 3.2 we have [A] eSL(K).
If K were cyclotomic over Q then K £ Q(e) for some root of unity
ε. However, this means that K/Q is abelian, which is a contradic-
tion. In fact, by the Kronecker-Weber theorem (e.g., see Ribenboim
[15, p. 233]) an algebraic number field K is cyclotomic over Q if
and only if K/Q is abelian. In this case we could use the Kronecker-
Weber theorem and the method of proof of Theorem 3.2 to show
that SQ(K) = S(K).

Now we let [A] e SL(K) and G(K/L) = {σt = 1, σ2, . , σn), then
A(X, L)®LK2Z A(X\ K) 0 0 A(X", K). Since A{X°\ K) =
KGe{Xσ*), e(X*ή = X(l) \G\-'ΣXai(cΓι)9 then A{X, K) is L-isomor-
phic to A{X°\ K) for i — 1, 2, •••, n. We ask: Are these algebras
jβΓ-isomorphic? To illustrate that in general the answer is negative
we give the following example.

We let K = Q(e8) then L = Q and GGK/Q) = <σ> where σ(ε3) =
εs"1. If the index of A(X, K) is 3 then [A(X, K)] Φ [A{X% K)] in
B(K). Hence A(X, K) and A(Zσ, JK") are not iΓ-isomorphic.

The following tells us exactly when A(Xσ, K) and A = A(X, K)
are if-isomorphic.

THEOREM 3.5. Let [A(X, K)] e SL(K) and let σ e G(K/L) then
[A{X, K)\ = [A(Xσ, K)] if and only if σ fixes εm where m is the
exponent of A.

Proof. By Yamada [16, p. 14] we may assume [A] =
[(K(e)fK, β)] where (K(ε)/K, β) = Σt K(ε)uτ with the direct sum ranging
over all τ e G(K(ε)/K).

Now, σ can be extended to G(K(e)/L) and we maintain the nota-
tion a for this automorphism.

Put:

β\τ, 7) = (β(τ, Ύ))σ for τ, 7 eG(K(e)/K) ,

then βσ is a factor set of K(ε)/K because G(K(ε)/K) is central in
G(K(ε)/L).

We let:

where vγvτ = ^σ(7, τ)t?rr; Ύ,τeG(K(ε)/K).
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Now, if the values of β generate a group (εn) of nth roots of
unity then:

[A(β)f -

Thus m divides n. If σ(εn) = ε*n then σ(em) — s«. But then we
have [A(βσ)] = [A(β)]'. Hence [A(/9σ)] = [A(β)] if and only if σ fixes
εw. But [A(Xσ, K)] = [A(/Sσ)] Thus [A(X°, K)] = [A(X, K)] if and
only if σ fixes εm.

Maintaining the above notation we get:

COROLLARY 3.6. If σe Aut (K) then [A(X, K)] = [A{X% K)] if
and only if σ extends to Aut (A).

Proof. In Mollin [13] we proved that σ extends to Aut (A) if
and only if σ fixes εm.

4* Uniform distribution and S(K). We let K/L be a finite
Galois extension of number fields. A central simple algebra A over
K is said to have uniformly distributed Hasse invariants relative
to L if the following are satisfied:

(4.1) If the index of A is m then εm is in K, and:
(4.2) If ^ is a if-prime above the L-prime 0> and τ e G(K/L)

with eσ

m — eb

m then the ^-invariant of A satisfies:

(A) = b inv^σ (A) (mod 1) .

Now let & and & be iΓ-primes above some L-prime & and
let K& denote the completion of K at ^*. For an algebra A with
uniformly distributed invariants we have that A®K&> and A(x)iΓ^
have the same index (see Mollin [12]). We denote the common value
of the indices of A (x) K& for all lί-primes & above & by ind^ A,
called the έ^-local index of A. The uniform distribution group
for K relative to L is the subgroup of B(K) consisting of classes
having an algebra with uniformly distributed invariants relative to
L. If L = Q we let UQ(K) — U{K) and refer to this group as the
absolute uniform distribution group for K.

The above is a generalization of Benard and Schacher [1, Th. 1,
p. 280], (see also [16, Th. 6.1, p. 89]). In fact S(K) is a subgroup
of UL(K), (see Mollin [12]). In Mollin [8-13] the relationship be-
tween S(K) and U(K) for K/Q finite abelian is examined.

For a rational prime p let S(K)P denote the p-primary part of
S(K). We let K/Q be finite abelian and Q(epa) QKQQ(en) where pa

is the highest power of p dividing n. G. Janusz [7, Cor. 1, p. 350]
shows that if p does not divide \Q(εJ: K\ then:
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(4.3)

where the tensor product is taken over Q(εpa).
In Mollin [8] it is shown that if p does not divide \K:Q(epa)\

then:

(4.4) U(K)P = S(K)P = K® S(Q(εpa))p .

That is, every element in U{K)P is in fact an element of S{K)P

and is of the form [iΓ(x)A] where [A]eS(Q(epa))p.
C. Ford and G. Janusz [5] give, for each prime p, examples of

fields K for which (4.3) does not hold. Following Ford and Janusz
we present, for each prime p, fields K for which the second equality
of (4.4) does not hold but for which the first equality does hold.

We let m — p s where p and s are odd rational primes with
s = 1 (modp) and L = Q(εJ with <τ> •=• G(L/Q(ep)). We let K be
the fixed field of <σ> where σ = τ

{s~1)/p.

THEOREM 4.5. (1) If s = 1 (mod p2) then A, where [A] e S(K)P,
is not similar to K 0 B for all [B] e S(Q(εp))p = U(Q(εp))p. In par-
ticular:

S(K)pΦK®S(Q(εp))p.

Moreover: U(K)P = S(K)P.
( 2 ) If s =£ 1 (mod p2) then

U(K)P = S(K)P = ίΓ<g) SCQte,)), .

Proof. (1) First we show that U(K)P = S(JBL ),. By Mollin,
[8], if [A] e U(K)P with indg (A) > 1 for some prime q then g = 1
(mod p) and conversely, given a prime g = 1 (mod p) there exists
[A] e U(K)P with indg (A) = 2> and indί (A) = 1 for all primes t Φ q.
We note that the latter does not necessarily hold for p — 2. Now,
that [A] is in fact in S(J5L)P follows from Janusz [4, Th. 3, p. 267],
and since the list of notation needed to state the aforementioned
theorem is longer than the proof we do not reproduce it here, but
rather leave the reader to verify the technical details.

Thus we have U(K), - S(K)P. Now we show S(K)P Φ K®S(Q(εp))p.
Assume S(K)P - K® S(Q(εp))p. Since [A]eS(K)p then [A] =

[K(g)B] where [B]eS(Q(ep))p. Now let & be a iί-prime above the
Q(εp)-prime ? which lies over q. Then:

inv^ (A) == IK*: Qq(εp) \ inv^ B (mod 1)

(see Deuring [3]).
However, p\\Kά: Qq(εp)\ and ind^. B £ p (see Mollin [7]). Thus
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A == 0, a contradiction. Hence

S(K)pΦK®S(Q(εp))p.

(2) g ^ l (mod p2) then p does not divide | K: Q(βp) | then by
Mollin [6] U(K)P = S(K)P = S(Q(ep))p <g) JKΓ.

To find examples for the case p = 2 we invoke Yamada [16,
Th. 7.8, p. 107] from which it follows that if K = QCi/lί) is a real
quadratic field with c£ not divisible by a prime congruent to 3 modulo
4 then U(K) = S(K) Φ S(Q) (x) K. We have U(K) = U{K\ and
S(K) = S(K)2 by (4.1). We now have fields K such that U(K\ =
S(K\ Φ S(Q) (x) K. If d is divisible by a prime congruent to 3
modulo 4 then U(K)2 Φ S(K)2 = S(Q) (8) ϋΓ, thus completing our task.

5* The decomposition theorem*

DEFINITION 5.1. Let S(K, q)p, (respectively U(K, q)p) denote the
subgroup of S(K)P consisting of all elements having ί-local index 1
for t Φ q.

Janusz [6, p. 254] notes that one would like (for neatness sake)
to assert that S(K)P is the direct sum of groups S(K, q)p as q ranges
over all primes. This, however, he proves is not in general true.
We prove that for p odd we get:

THEOREM 5.2. U(K)V is the direct sum of groups U(K, q)p as q
ranges over all primes.

Proof. By Mollin [8] there exists [A(q)] e U(K)P with indq A(q) =
pa and indj A(q) = 1 for all primes t Φ q where pa is the highest
p-power root of unity in K. Thus, it follows that any [A] e U(K)P

has the form A — πA(q)c<*.
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