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TRIGONOMETRIC APPROXIMATION THEORY IN
COMPACT TOTALLY DISCONNECTED GROUPS

GEORGE BENKE

We study some aspects of the problem of approximating
functions on a compact totally disconnected group by trigo-
nometric polynomials. In the classical case, approximation
is connected with smoothness properties. By appropriately
defining smoothness, one obtains this connection in the
totally disconnected case also, and there are analogues of
the classical results.

In particular it is shown that the Lipschitz class to which a
function belongs can be identified by the best approximation chara-
cteristics of the function by trigonometric polynomials (Theorems
2 and 3), and that functions which are easily approximated by
trigonometric polynomials have absolutely convergent Fourier series
(Theorems 1 and 4).

Let G be a compact group. Let σ be an equivalence class of
continuous irreducible unitary representations of G. The set of all
such σ is called the dual object of G and is denoted by Σ. For
each σ e Σ fix a U{a)eσ and let Hσ be the Hubert space in which
U{σ) acts. The dimension of Hσ is denoted by dσ. This notation is
consistant with the notation in the book of Hewitt and Ross [5].
Any unexplained notation may be found there. We now restrict
our attention to infinite compact totally disconnected groups whose
dual objects are countable or equivalently, which have a countable
neighborhood base G — GQ ID GX ZD at the identity e consisting of
open (hence closed) normal subgroups [7, p. 132]. Since these sub-
groups are open, they have positive Haar measure, and since each
coset of a given subgroup has the same Haar measure, it follows
that the index of Gn+1 in Gn is m(Gn)/m(Gn+1), where m denotes the
normalized Haar measure on G. We say that a bounded function is
in the Lipschitz class of order a > 0 (with respect to a neighbor-
hood system {Gn}) if

sup I!/(*•) -/(OIU^CmCG,)"
xeGk

where C is some constant independent of k.
This definition involved left translation. That right translation

gives the same class of functions can be seen as follows. We have
\f(%y) — f(v)\ = \f{yy~ι%y) — f(y)\, and since Gk is a normal subgroup,
y~ιxy runs through Gk as x runs through Gk.

The Lipschitz class of order a will be denoted by Lipα(G) and
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is a closed subspace of the continuous functions C{G) when endowed
with the norm

||/||L l P β ( f f ) = sup[sup||/(*.) _/(.)iUm(G,r«] + | |/|U .
k xeGk

The space Lipα(G) is nontrivial for all a > 0. For example,

where σneA(Σ,Gn)\A(Σ,Gn_1) and χσ = tr U{σ) is the character of
the representation σ, belongs to Lipα(G). This may be seen as
follows. Let xeGk, yeG, then

\f(xy)-Λv)\ ^ tm(Gn^γd-:\χσn(xy) - χσn(y)\ .t
However, χσ(xy) = χa{y) for σ e A(Σ, Gk), so that in the above sum,
the terms for which n ^ k vanish. Since |]χJU = dσ we find that

Moreover, since m(Gn+1)/m(Gn) < 1/2 it follows that |/(&2/) — f(y)\ ^
G{m{Gk))a where C depends on a but not on k.

It is customary to express Lipschitz conditions in terms of
metrics. This is possible here by defining a metric on G by

(m(GJ, if xy-yGn\Gn+1d(χ, y) =
{ 0 , if x̂ / x — e .

Let ί7 be a finite subset of 21, and let / be a continuous func-
tion on G. Define

where the infimum is taken over all trigonometric polynomials T
with spectrum in F. In this paper we restrict our attention to
the case where F = A(Σ, Gn) for some n. We will then simply
write En(f) instead of EMΣtQ%)(f). The infimum is actually attained
since the space of trigonometric polynomials with spectrum in
A{Σ, Gn) is finite dimensional.

PROPOSITION 1. Given n, suppose there is KeL\G) such that
K(σ) = Idσ for all σ e A(Σ, Gn). Then

for any feC(G).
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Proof. W r i t e f=T + R w h e r e | | / - T \ U = \\R\U = En{f). S i n c e
K*T = T, we have

/ - K*f = (T + R) - (K*T + K*R) = R - K*R .

Hence

\\f-κ*f\U ^ \\R\\- + \\K\l \\R\U = (1 + ll*Ίli)JW)

and the proposition is proven.
The next result is the analogue of Jackson's theorem [6] which

has been studied in the abelian case be Bloom [2, 3].

THEOREM 1. Let /eLipα(G), then there is a constant C such
that

Ek{f) ^ Gm{GkY

for all k = 0, 1, 2, .

Proof. Let Pk(x) — m(Gk)~1lGk where 1̂  denotes the indicator
function of the set A. It follows that Pk(σ) = Idσ for σ e A(Σ, Gk),

and Pk(σ) = 0 for all other σeΣ. In particular I Pk(x)dx = 1. Since

Pfc*/ has spectrum in A(Σ, Gk),

- sup I ί Pk{y)(f{y~ιx) - f(x))dy\
xeO JG

5ϊ sup m(^)- 1 ί IΛy-'x) - f{%) \ dy
xeG JGk

^ m{Gky
ι[ Cm(Gk)

ady = Cm{Gk)
a

which proves the theorem.
This rate of decay for Ek(f) as k goes to infinity cannot be

improved. Consider the function

f{x) = Σ m(Gn^)adaXn(x)

where σneA(Σ, Gn)\A(Σ, Gn_ι). It was noted earlier that/eLipα((τ).
By using Proposition 1 and observing that χOn(e) = dσ% it follows
that

I Σ
n=k+l

= Σ miG^y ^ Cm(Gk)
a

k l
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The next theorem is the analogue of Bernstein's theorem [1]
which characterizes the Lipschitz classes in terms of the behavior
of the best approximations.

THEOREM 2. Suppose there is a constant C such that

for all k = 0, 1, 2, . . . Then fe Lipα(G).

Proof. There exists a sequence {ϊ\}fc=0 with spectrum of Tk in
A(Σ, Gk) which converges uniformly to /. Thus we can write

oo

k=l

the series converging uniformly and absolutely. Put uk= Tk— Tk_19

and g — TQ — f. As To is a constant, it suffices to show that g e
Lipα((?). Suppose xeGk and yeG9 then

oo

I gixy) — g(y) I ̂  Σ I ^n( ̂ 2/) — ̂ »(l/) I

Since the spectrum of w% is contained in A(Σ9 Gn) it follows that
un(xy) — un(y) for n ̂  k. Hence

\g\χy) g\y)\ = ΣΛ \un\^y) unyy)\ .
n=k+l

But Halloo ̂  11/- Γ»IU + 11/- Γn-ilU ^ 2Cm(Gn_1)" by hypothesis.
It follows that

lflr(*V) - ff(tf)l ^ 2C Σ ^ ( G ^ ) " ^ Gfm(GkY .

For the remainder of this paper we will consider how the order
of approximation affects a function's membership in the Fourier
algebra

LEMMA 1. Let H be an open normal subgroup of a compact
group G. Then

Σ dl = m(HΓ.
σeA(Σ,H)

Proof. Since the dual object of the finite group G/H can (and
will) be identified with A(Σ, H) the Peter-Weyl theorem says

Σ dl = dim 12(G/H) = card (G/H) = m(Hyι .
σeA(Σ.H)
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The next theorem is the totally disconnected version of another
theorem of Bernstein [4].

THEOREM 3. If

thenfe®(G).

Proof. Let / satisfy the hypothesis, and denote by Kn the set
A(Σ, Gn)\A(Σ, (?_,)• Then

= Σ Σ d.\tτ?(σ)\

^ Σ [ Σ <C]1Λ[ Σ datr(f(σ)f(σr)Γ

By Proposition 1

[ Σ d. tr (JV)/(<7)~)]1/2 ̂  | | P . * / - /|U ^ 2®.(/) .

By Lemma 1

Σ « ^ Σ dα = mCGJ"1 .
σeZ w σeA(Σ,Gn)

Applying these last two inequalities to the estimate for \\f\UG) gives
the result.

COROLLARY. Lipα(G) c Λ(G) for a > 1/2.

Proof. By Theorem 1 En(f) ^ Cm(Gn)
a and m(GΛ) ̂  2~%. This

is the totally disconnected version of the classical Bernstein theorem
which has been treated for abelian groups by Walker [8, 9].

The summation condition in the previous theorem can be weak-
ened by imposing an additional assumption on the variation of the
function. This is analogous to the result of Zygmund [10]. We
define the variation of a function / by

sup \f(x)-f(y)\
x,yeθ

and say that / is of bounded variation if V(f) < oo and denote the
set all such functions by BV(G).

THEOREM 4. Let f be of bounded variation and satisfy
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Then fe$t(G).
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l

Proof. Put Λ r=m(GJ" 1, and let xu •• ,xir be representatives
from the cosets of Gn. Then for all xeG we have

Σ
1

But

^ sup ifiV'XiX) -f(xtx)\ .
vzGn

Hence

Σ \Pn*f(XiX) - /(^)l 2 ^ En(f)V(f).
ί=l

Integrating both sides of this inequality over G gives

N\\Pn*f-f\\l^Eκ(f)V(f).

From the proof of Theorem 3 we find that

,Yψ> HP.*/ -
ί l = l

^ Σ « G . Γ - m(G._1)-irtm(G.r\

which proves the theorem.

COROLLARY. Lipα(G) Π BV(G)cz®(G) for all a > 0.

The converse of Theorem 3 is not true. There exist functions
feSt(G) for which the series in the hypothesis of Theorem 3 is
infinite. An example of such a function is

where σn e A(Σ, Gn)\A(Σ, Gn_^. By the method in the remark follow-
ing Theorem 1, En(f) ̂  Cn'1 so that the series in the hypothesis of
Theorem 3 is infinite, but ||/|U(G) = Σ*- 2 < °°

We next want to show that it is not possible to improve Theo-
rem 3, at least when the sequence {m(Gn)} satisfies certain conditions.
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For this result we need some lemmas.

LEMMA 2. Given {Elf , Ek) c i?2, there exist complex numbers
#i> •••> θk of modulus 1 swcfc that

Proof. Let

^ - IL

where ^{Hσ) is the group of unitary operators on H,. Let

where π, is the canonical projection of gf onto ^{Hσ). This series
converges in L 2 (^). By [1, p. 391]

] ^ \Ft{U)\dU .

Adding these inequalities gives

Hence there exists a £7e2^ and complex numbers 0lf •••, ̂  |of
modulus 1 so that

Σ ll^ll, ^ 21/2 Σ | ^ ( ί 7 ) | = 21'2 Σ β

tr[jr.J7[ Σ ^ 4

where Ϊ7 is now regarded as an element of if^. Since ||DΊ|oo =
the lemma is proven.

LEMMA 3. Given n = 0, 1, 2, •••, ίfcβre exists a trigonometric
polynomial P with the following properties.

( a ) | | P | U = 1
( b ) | | P | | t α M ^ 2-1/2rn(GJ1/2/m(G%_1)
(c ) P(σ) = 0 /or αZZ a $ A(Σ, Gn)\A(Σ} G^).

Proof. Given k, let lk denote the indicator function of Gk.

Then ϊk(σ) = m(Gk)Idσ for σeA(Σ, Gk) and ϊk(σ) = 0 for σ$A(Σ, Gk).

Put
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Note that ψ satisfies (a) and (c). Let j=m{Gn_))~1 and let ψ19 , ψό

denote the translates of ψ to the cosets of Gn^. From Lemma 2
there exist complex numbers θ19 •••, θά of modulus 1 such that

Put P = Σί=i ^ Then for each i

Therefore

which establishes (b). That \\P\\oo = 1 follows from the fact that
α̂ i have disjoint supports and that II^IU = ||ψ\||oo='l. Finally, (c)
follows from the fact that ψ satisfies (c) and the ψt are translates
of φ.

LEMMA 4. Given a sequence {bn}n=i of real numbers converging
to zero, there exists a positive sequence {αJ^U with the following
properties.

( a ) an ^ bn for all n
(b) {an}n=i is decreasing and converges to zero
(c) (an — an+1)/an is decreasing and converges to zero.

Proof. Without loss of generality assume 0 < bn ̂  1 for all n.
Let βn = log bn. Let iV"0 = 1, let N, be so large that βk ^ - 1 for
all k ̂  Ni. For n — 2, 3, define i\ζ by taking it so large that
βk^ - n for k^Nn and JVn - Nn_x > Nn_, - Nn_2. Define for w=
1, 2, , aNn = 1 — n. Define α,. by αx > (1 — JVΊ)/(-NΊ — ̂ 2) and define
α* by linear interpolation for the other indices k. By construction
{αJSU is convex and converges to — oo. Let αΛ = exp (αj , then
{α%}̂ =1 has the required properties.

THEOREM 5. Suppose that the sequence {m(Gn)/m(Gn+1)}n=o is
bounded. Let {bn}n=i be a sequence of real numbers which converges
to zero. Then there exists a function f such that

but f$$t(G).

Proof. Let {αj~=1 be the sequence from Lemma 4. Put
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eκ = m(GJ'\an - a%+1)/a. .

Then

(1) Σ m ( G J - 1 / 2 α A = α 1 < - .

But

( 2 ) Σ»(5Λ= -

which can be seen as follows. For arbitrary N, there exists a K
such that

N+K N+K

= 1 - aN+κ+ι/aN > 1/2 .

Since both of the sequences {m(GJ1/2}~=0 and {(αft — an+ί)/an}n=ι are
decreasing and converge to zero, it follows that {en}n=1 is also
decreasing and converges to zero. Now put

/ = Σ (β-x - β.)P.

where Pw is from Lemma 3. Then

oo

^ Σ (e*-i - eft) - eΛ .
fc = Λ + l

Combining this with (1) proves the first half of the conclusion of
the theorem. It remains to show that fg&(G).

Using the fact that m(GJ"1/2 ^ 2(m(G%Γ1/2 - m{G^Yut) and
summation by parts gives the following:

C Σ (w(G.Γ1'* - m(G._t)-ι/*)β._ι
n=i

Σ (m(GJ-1 / 2 - m(G0)-^2)(eM_1 - β.)
»=i

= C I !

Now suppose feSt(G), then by Lemma 3 and the boundedness of
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= Σ(β._χ-e.)||P.||,tβ)

^ Σ (e_i - en)m(Gn)-^C' .
Λ = l

Hence

m(GN)~1/2eN - m(GNyί/2 Σ (β-i - <U
Λ = iV + l

^ Σ mCG.)-1 .̂-! - O ̂  ||/ιu, < - .
Λ = iV+l

Using these two estimates in (3) gives that

Σ w(GJ"1/a βn < oo
71 = 1

contrary to (2).
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