REPRESENTATIONS OF WITT GROUPS

John Brendan Sullivan

Abstract

This paper gives a tensor product theorem for the coordinate rings of the finite-dimensional Witt groups. This theorem leads to a demonstration of the equivalence of the representation theory of the Witt groups with that of certain truncated polynomial rings.

Introduction. The Steinberg tensor product theorem [1, Ch. A, §7] for a simply connected, semisimple algebraic group G in characteristic p displays irreducible G-modules as tensor products of Frobenius powers of infinitesimally irreducible G-modules (modules which are irreducible for the kernel G^{1} of the Frobenius morphism of G).

A goal of modular representation theory is the expression of the coordinate ring of G in terms of tensor products of Frobenius powers of G-modules which are suitably elementary for G^{1}. In this paper, we give a tensor product theorem for the finite-dimensional Witt groups. We produce a subcoalgebra C of the coordinate ring A of the m-dimensional Witt group W_{m} which is isomorphic to the coordinate ring of the kernel W_{m}^{1} of the Frobenius morphism. A is the inductive limit of tensor products of Frobenius powers of C [§3, Theorem].

One can see some things about the representations of W_{m}. First, every finite-dimensional representation of W_{m}^{1} extends to a representation of W_{m} on the same representation space [§5]. Second, a representation of W_{m} on a finite-dimensional vector space V is determined by a family $\left\{f_{1}, \cdots, f_{n}\right\}$ of commuting endomorphisms of V such that $f_{i}^{p^{m}}=0$. In other words, the representations of W_{m} on V may be studied via the representations of the algebras $\left\{k\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{p^{m}}, \cdots, x_{n}^{p^{m}}\right)\right\}_{n}$ on V [Theorem, §4]. In particular, the representations of W_{m} which correspond to the representations of $k\left[x_{1}\right] /\left(x_{1}^{p^{m}}\right)$ give canonical extensions for the representations of W_{m}^{1}.

This linear formulation of the representation theory of W_{m} leaves one with the apparently difficult problem of determining the representation theory of $k\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{p^{m}}, \cdots, x_{n}^{p^{m}}\right)$.

For the definition of the Witt groups, see [2, Ch. 5, §1].

Notation. Let A denote the coordinate ring of the m-dimensional Witt group W_{m}, as a reduced, connected group scheme over the prime field $k=F_{p}$. For any subcoalgebra C of A which contains k, let $C^{\left(p^{i}\right)}$ be the image of C under the i th-power of the Frobenius
morphism of A. We may form the inductive family of coalgebras $\left\{C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)_{n}^{\infty}}\right\}_{n=0}^{\infty}$, where $C \otimes \cdots \otimes C^{\left(p^{n}\right)} \hookrightarrow C \otimes \cdots \otimes C^{\left(p^{n)}\right)} \otimes$ $C^{\left(p^{n+1)}\right.}$ is the canonical morphism onto $C \otimes \cdots \otimes C^{\left(p^{n)}\right)} \otimes k$. Let $\xrightarrow[n]{\lim } C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)}$ be the coalgebra inductive limit of the family.

Let $\Pi: A \rightarrow A / M^{(p)} A$ be the quotient morphism, where $M^{(p)}$ is the image of the augmentation ideal M under the Frobenius morphism. We show in §3 that there is a coalgebra splitting $s: A / M^{(p)} A \rightarrow A$ of Π such that A, as a coalgebra, is isomorphic to $\xrightarrow[n]{\lim } C \otimes C^{(p)} \otimes$ $\cdots \otimes C^{\left(p^{n)}\right.}$ where $C=$ image s.
o. We require some facts from [3, Def. 6] of K. Newman. Let W_{m+1} be the $(m+1)$-dimensional Witt group over $k=F_{p}$, with coordinate ring A_{m+1}. As an algebra, A_{m+1} is the polynomial ring $k\left[X_{1}, X_{p}, X_{p^{2}}, \cdots, X_{p^{m}}\right]$ on $(m+1)$-variables. Grade A_{m+1} by letting $X_{p^{i}}$ have degree p^{i}. The coproduct Δ of A_{m+1} is the following: $\Delta X_{p^{i}}=\sum_{j=0}^{p i} Q_{j} \otimes Q_{p^{i-j}}$, where Q_{j} is a homogeneous (relative to the grading) polynomial of degree j. In particular, $Q_{0}=1, Q_{p^{i}}=X_{p^{i}}$ and $\left\{Q_{j}\right\}_{j=0}^{m}$ is a sequence of divided powers.

Since degree $Q_{j}=j, Q_{j}$ lies in $k\left[X_{1}, X_{p}, \cdots, X_{p^{m-1}}\right]$ for $j<p^{m}$. The coordinate ring A of W_{m} may be identified with the sub-Hopf algebra $k\left[X_{1}, X_{p}, \cdots, X_{p^{m-1}}\right]$ of A_{m+1}.

1. The coalgebra splitting of $\Pi . \quad M=\left(X_{1}, X_{p}, \cdots, X_{p^{m-1}}\right)$ is the augmentation ideal of A. Let C be the k-span of $\left\{Q_{j}\right\}_{j=0}^{m-1}$. C is an irreducible coalgebra of dimension p^{m}, with $k \cdot X_{1}$ as its space of primitive elements. Since the coalgebra map $f: C \hookrightarrow A \xrightarrow{\Pi} A / M^{(p)} A$ has an injective restriction to $k \cdot X_{1}, f$ is injective [5, Lemma 11.0.1]. Since $\left(A / M^{(p)} A\right)^{*}$ is the restricted universal enveloping algebra of $\left(M / M^{2}\right)^{*}[3,13.2 .3], \operatorname{dim}_{k}\left(A / M^{(p)} A\right)^{*}=p^{\mathrm{dim}_{k}\left(M / / M^{2}\right)^{*}}=p^{m}$. Therefore, $\operatorname{dim}_{k}\left(A / M^{(p)} A\right)=p^{m}$ and f is an isomorphism. $s=f^{-1}$ is the coalgebra splitting of Π that we use.
2. The value of Π at Q_{j}. Let $0 \leqq j<p^{m}$. Write $j=\sum_{i=0}^{m-1} a_{i} p^{i}$ where $0 \leqq a_{i}<p$.

Lemma. $\Pi\left(Q_{j}\right)$ is a nonzero scalar multiple of $\Pi\left(X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p m=1}^{a_{m}=1}\right)$.
Proof. Q_{j} is a linear combination of elements $X_{1}^{b_{0}} X_{p}^{b_{1}} \cdots X_{p m}^{b_{m} m_{1}}$ where $\sum b_{i} p^{i}=j$ by $\S 0$. If $\left\{b_{i}\right\}_{i} \neq\left\{a_{i}\right\}_{i}$, then $b_{i} \geqq p$ for some i, and $\Pi\left(X_{1}^{b_{0}} X_{p}^{b_{1}} \cdots X_{p m}^{b_{m}=\frac{1}{-1}}\right)=0$. Therefore, $\Pi\left(Q_{j}\right) \in k \cdot \Pi\left(X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p m=1}^{a_{m}=1}\right)$, where the coefficient of $\Pi\left(X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p m-1}^{a_{m}-1}\right)$ is nonzero since the map
f of $\S 1$ is injective.
3. The coalgebra structure of the coordinate ring. Give the set of monomials in A the reverse lexicographic total order: $X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p_{m=1}}^{a_{m=1}}>X_{1}^{b_{0}} X_{p}^{b_{1}} \cdots X_{p^{m-1}}^{b_{m-1}}$ if there is an index k such that $a_{k}>b_{k}$ and $a_{i}=b_{i}$ for $i>k$.

Let $\left\{a_{i}\right\}_{0}^{m-1}$ be a sequence where $0 \leqq a_{i}<p$, and let $\left\{b_{i}\right\}_{0}^{m-1}$ be a different sequence, where $0 \leqq b_{i}$.

Lemma. If $\quad \sum_{i=0}^{m-1} a_{i} p^{i}=\sum_{i=0}^{m-1} b_{i} p^{i}$, then $\quad X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p_{m-1}}^{a_{m-1}}>$ $X_{1}^{b_{0}} X_{p}^{b_{1}} \cdots X_{p m-1}^{b_{m-1}}$.

Proof. Let k be the maximal index such that $a_{k} \neq b_{k}$. If $b_{k}>a_{k}$, then $\sum_{i=0}^{m-1} b_{i} p^{i}>\sum_{i=0}^{m-1} a_{i} p^{i}$ since $a_{i}<p$. Therefore, we must have $a_{k}>b_{k}$ and $X_{1}^{a_{0}} \cdots X_{p_{m-1}}^{a_{m-1}}>X_{1}^{b_{0}} \cdots X_{p_{m-1}}^{b_{m-1}}$.

Let C be the coalgebra formed in $\S 1$.
THEOREM. The $\operatorname{map} \xrightarrow[n]{\lim } C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \rightarrow A$, induced by multiplication; $C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \rightarrow A$, is an isomorphism of coalgebras.

Proof. Denote the map by g.
Surjectivity of g. Suppose that monomials $X_{1}^{b_{0}} X_{p}^{b_{1}} \cdots X_{p m-1}^{b_{m-1}}$ less than $X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p^{m-1}}^{a_{m-1}}$ in the ordering lie in the image of g. We show that $X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p m-1}^{a_{m-1}}$ also lies there.

Write $a_{i}=\sum_{j} a_{i j} p^{j}$, where $0 \leqq a_{i j}<p$. Let $t_{k}=\sum_{i=0}^{m-1} a_{i k} p^{i} . \quad$ By the lemmas of $\S 2$ and $\S 3$,

$$
Q_{t_{k}}=U_{k} \cdot X_{1}^{a_{0 k}} X_{p}^{a_{1} k} \cdots X_{p m-1}^{a_{m-1}, k}+Y_{k},
$$

where Y_{k} is a linear combination of monomials of degree t_{k} and less than $X_{1}^{a_{0 k}} \cdots X_{p m-1}^{a_{m-1}}$ in the ordering, and where U_{k} is a nonzero scalar. Therefore,

$$
\prod_{k=0}^{m=1} Q_{t_{k}}^{p^{k}}=\prod_{k=0}^{m-1} U_{k}^{p k} \cdot X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p^{m-1}}^{a_{m-1}}+Y
$$

where Y is a linear combination of monomials which are less than $X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p m-1}^{a_{m-1}}$. Since $\prod_{k=0}^{m-1} Q_{t_{k}}^{p k}$ and Y lie in the image of g, so does $X_{1}^{a_{0}} X_{p}^{a_{1}} \cdots X_{p^{m-1}}^{a_{m-1}}$.

Injectivity of g. Since g is surjective, so is $\Pi \circ g: \xrightarrow[n]{\lim } C \otimes$ $C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \xrightarrow{g} A \xrightarrow{[\boldsymbol{I I}!} A / M^{\left(p^{t}\right)} A$ for any t; at the same time,,$^{n} C^{\left(p^{j}\right)} \hookrightarrow$ $A \xrightarrow{\Pi} A / M^{\left(p^{t}\right)} A$ has image $=k$ if $j \geqq t$. Therefore, $C \otimes C^{(p)} \otimes \cdots \otimes$ $C^{\left(p^{t-1)}\right)} \xrightarrow{\text { mult. }} A \xrightarrow{\Pi} A / M^{\left(p^{t}\right)} A$ is surjective. Since $\operatorname{dim}_{k}\left(A / M^{\left(p^{t}\right)} A\right)=p^{m t}$
by [4] or by inspection, and $\operatorname{dim}_{k}\left(C \otimes C^{(p)} \otimes \cdots \otimes C^{(p t-1)}\right)=p^{m t}$, $\Pi \circ$ mult. is an isomorphism of coalgebras. In particular, $C \otimes$ $C^{(p)} \otimes \cdots \otimes C^{\left(p^{t-1}\right)} \xrightarrow{\text { mult. }} A$ is injective. Hence, g is injective.
4. Representation theory of W_{m}. The dual algebra $U=$ $\left(A / M^{(p)} A\right)^{*}$ is the restricted universal enveloping algebra of the abelian p-Lie algebra $L=\left(M / M^{2}\right)^{*}[5,13.2 .3]$.

Lemma. There is a k-basis f_{0}, \cdots, f_{m-1} for L, where $f_{i}^{p}=f_{i+1}$ for $i<m-1$ and $f_{m-1}^{p}=0$.

Proof. Define f_{j} on the k-basis $X_{1}, X_{p}, \cdots, X_{p^{m-1}}$ for M / M^{2} by $f_{j}\left(X_{p i}\right)=\delta_{i j}$. We have the following to complete the proof.
(1) If $i \neq j+1$, then $f_{j}^{p}\left(X_{p^{i}}\right)=\left(\boldsymbol{\otimes}^{p} f_{j}\right)\left(\Delta^{p-1} X_{p^{i}}\right)$ is 0 , since $\Delta^{p-1} X_{p^{i}}$ is homogeneous of degree p^{i} under the grading of $\boldsymbol{\otimes}^{p} A$ induced from the grading of A, while $\boldsymbol{\otimes}^{p} f_{j}$ can be nonzero only at monomials in $\boldsymbol{\theta}^{p} A$ of degree p^{j+1}.
(2) One may check that $f_{j}^{p}\left(X_{p^{j+1}}\right)=1$.

To proof is complete.
By this lemma, the algebra map from the polynomial ring $k[f]$ to U mapping f to f_{1} induces an isomorphism of k-algebras $k[f] /\left(f^{p^{m}}\right) \cong U$.

Denote by R_{n} the set of isomorphism classes of finite-dimensional representations of W_{m} whose coefficients lie in $C \otimes C^{(p)} \otimes \cdots \otimes$ $C^{\left(p^{n}\right)} \hookrightarrow A$. The canonical map $C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \hookrightarrow C \otimes C^{(p)} \otimes \cdots \otimes$
 isomorphism classes of finite-dimensional representations of W_{m}.

Let B denote the quotient of the polynomial ring $F_{p}\left[X_{0}, \cdots, X_{n}, \cdots\right]$ on generators $\left\{X_{i}\right\}_{i=0}^{\infty}$ by the ideal ($X_{0}^{p m}, \cdots, X_{n}^{p^{m}}, \cdots$). Denote by \hat{B} the set of isomorphism classes among those finite-dimensional representations of B in which all but a finite number of the X_{i} act as the zero endomorphism. Denote by \widehat{B}_{n} the set of isomorphism classes of finite-dimensional representations of $k\left[X_{0}, \cdots, X_{n}\right] /\left(X_{0}^{p m}, \cdots, X_{n}^{p^{m}}\right)$. The $\operatorname{map} k\left[X_{0}, \cdots, X_{n}, \cdots\right] /\left(X_{0}^{p^{m}}, \cdots, X_{n}^{p^{m}}, \cdots\right) \rightarrow k\left[X_{0}, \cdots, X_{n}\right] /\left(X_{0}^{p m}, \cdots, X_{n}^{p^{m}}\right)$, $X_{i} \mapsto X_{i}$ for $i \leqq n$ and $X_{i} \mapsto 0$ for $i>n$, induces $\hat{B}_{n} \hookrightarrow \hat{B}$, and $\hat{B}=$ $\mathbf{U}_{n} \hat{B}_{n}$.

Theorem. There is a canonical bijection $R \rightarrow \hat{B}$, under which R_{n} and \widehat{B}_{n} correspond.

Proof. Since $C \cong A / M^{(p)} A$ as coalgebras, $C^{*} \cong U$ as algebras. Since A is reduced, the Frobenius morphism on A is injective, and $C \cong C^{\left(p^{i}\right)}$. Therefore,
(1) $\left(C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)}\right)^{*} \cong \boldsymbol{\otimes}^{n+1} U \cong k\left[X_{0}, \cdots, X_{n}\right] /\left(X_{0}^{p^{m}}, \cdots, X_{n}^{p m}\right)$. The first isomorphism is induced by the maps $U \rightarrow\left(C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)}\right)^{*}$ which are dual to the maps $C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \xrightarrow{\varepsilon_{0} \otimes \cdots \otimes \varepsilon_{i-1} \otimes I \otimes \varepsilon_{i+1} \otimes \cdots \otimes \varepsilon_{n}}$ $C^{\left(p^{i}\right)}$, where ε_{j} is the counit of $C^{\left(p^{j}\right)}$; the second isomorphism is induced by $X_{i} \mapsto 1_{0} \otimes \cdots \otimes 1_{i-1} \otimes f_{1} \otimes 1_{i+1} \otimes \cdots \otimes 1_{n}$, where 1_{j} is the identity of U_{j}. Here u_{j} is the j th copy of u in $\otimes^{n+1} u$. Moreover,
(2) under dualization, the canonical map $C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)} \hookrightarrow$ $C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n+1}\right)}$ yields the map $k\left[f_{0}, \cdots, f_{n+1}\right] /\left(f_{0}^{p^{m}}, \cdots, f_{n+1}^{p m}\right) \rightarrow$ $k\left[X_{0}, \cdots, X_{n}\right] /\left(X_{0}^{p^{m}}, \cdots, X_{n}^{p^{m}}\right)$ where $X_{i} \mapsto X_{i}$ for $i \leqq n$ and $X_{n+1} \mapsto 0$.

The isomorphism $\left(C \otimes C^{(p)} \otimes \cdots \otimes C^{\left(p^{n}\right)}\right)^{*} \cong k\left[X_{0}, \cdots, X_{n}\right] /\left(X_{0}^{p^{m}}, \cdots, X_{n}^{p^{m}}\right)$
of (1) induces a bijection $R_{n} \rightarrow \hat{B}_{n}$ such that $\begin{aligned} R_{n} & \rightarrow B_{n} \\ \wp_{n+1} & \rightarrow \boldsymbol{B}_{n+1}\end{aligned}$ commutes by (2). Therefore, $R \xrightarrow{\sim} \widehat{B}$.
5. Representations of W_{m}^{1}. The coalgebra C constructed in $\S 1$ is isomorphic to the coordinate ring $A / M^{(p)} A$ of W_{m}^{1} under the mapping $\pi: A \rightarrow A / M^{(p)} A$ restricted to C. Therefore, the representations of W_{m} with coefficients in C correspond to the representations of W_{m}^{1} via the isomorphism between the coefficient coalgebras C and $A / M^{(p)} A$, and very finite-dimensional representation of W_{m}^{1} extends to a representation of W_{m} on the same representation space.

References

1. A. Borel, et al., Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, 131, Springer-Verlag, 1970.
2. M. Demazure and P. Gabriel, Groups Algebriques, Masson et Cie, Paris; North Holland, Amsterdam, 1970.
3. K. Newman, Constructing sequences of divided powers, Proc. Amer. Math. Soc., 31 (1972), 32-38.
4. J. Sullivan, Representations of the hyperalgebra of an algebraic group, Amer. J. Math., 100 (1978).
5. M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Received May 7, 1977. Supported in part by a National Science Foundation Grant.
University of Washington
Seattle, WA 98195

