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INVARIANTS OF INTEGRAL REPRESENTATIONS

IRVING REINER

Let ZG be the integral group ring of a finite group G.
A ZG-lattice is a left G-module with a finite free Z-basis.
In order to classify ZG-lattices, one seeks a full set of
isomorphism invariants of a ZG-lattice M. Such invariants
are obtained here for the special case where G is cyclic of
order p?, where p is prime. This yields a complete classifi-
cation of the integral representations of G. There are also
several results on extensions of lattices, which are of
independent interest and apply to more general situations.

Two ZG-lattices M and N are placed in the same genus
if their p-adic completions M, and N, are Z,G-isomorphic.
One first gives a full set of genus invariants of a ZG-lattice.
There is then the remaining problem, considerably more
difficult in this case, of finding additional invariants which
distinguish the isomorphism classes within a genus. Generally
speaking, such additional invariants are some sort of ideal
classes. In the present case, these invariants will be a
pair of ideal classes in rings of cyclotomic integers, to-
gether with two new types of invariants: an element in
some factor group of the group of units of some finite ring,
and a quadratic residue character (mod D).

For arbitrary finite groups G, the classification of ZG-lattices
has been carried out in relatively few cases. The problem has been
solved for G of prime order p or dihedral of order 2p. It was also
solved for the case of an elementary abelian (2, 2)-group, and for
the alternating group A4, (see [10a] for references).

The main results of the present article deal with the case where
G is cyclic of order p*, where p is prime. In Theorem 7.3 below,
there is a full list of all indecomposable ZG-lattices, up to isomor-
phism. Theorem 7.8 then gives a full set of invariants for the
isomorphism class of a finite direct sum of indecomposable lattices.

Sections 1 and 2 contain preliminary remarks about extensions
of lattices over orders. Sections 3 and 5 consider the following
problem: given two lattices M and N over some order, find a full
set of isomorphism invariants for a direct sum of extensions of
lattices in the genus of N by lattices in the genus of M. The
results of these sections are applied in §§4 and 6 to the special case
of ZG-lattices, where G is any cyclic p-group, » prime. Finally,
§7 is devoted to detailed calculations for the case where G is cyeclic
of order p*.

Throughout the article, B will denote a Dedekind ring whose
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quotient field K is an algebraic number field, and 4 will be an R-
order in a finite dimensional semisimple K-algebra A. For P a
maximal ideal of R, the subscript P in R,, K,, 4, etc., denotes
P-adic completion. Let S(4) be a finite nonempty set of P’s, such
that 4, is a maximal R -order in A, for each P¢ S(4); such a set
can always be chosen. (In the special case where 4 = RG, S(4)
need only be picked so as to include all prime ideal divisors of the
order of G.) A A-lattice is a left A-module, finitely generated and
torsionfree (hence projective) over R. Two A-lattices M, N are in
the same genwus if M, = N, as A,-modules for all P (or equivalently,
for all PeS(4)). For M a A-lattice, End (M) denotes its endomor-
phism ring, and M™ the external direct sum of » copies of M. Let
IIM; denote the external direct sum of a collection of modules {i}.

1. Generalities about extensions of modules, We briefly review
some known facts about extensions (see, for example, [3] and [16]).
Let 4 be an arbitrary ring, and let M, N be left A-modules. We
shall write Ext(N, M) instead of Exty(N, M) for brevity, when there
is no danger of confusion. Let

I' = End,(M), 4 = Endy(N) ,

and view Ext(N, M) as a (I, 4)-bimodule. For later use, we need
to know explicitly how I" and 4 act on Ext(N, M).
Consider a A-exact sequence

£0— M2 X255 N—50, EcExt(N,M).

For each veI', we may form the pushout ,X of the pair of maps
vM-—-M, p: M — X, so

X = (X @ M)/{(pm, —vm): meM}.

Then we obtain a commutative diagram with exact rows:

g£0— ML X2 N—50

R

7€:0 M X N 0,

and the bottom row corresponds to the extension class v¢ € Ext(N, M).
Applying the Snake Lemma to the above (see [11, Exercise 2.8]), we
obtain

1.2) kerv = kerp, cokv = cokop.

Analogously, given any 6 € 4, let



INVARIANTS OF INTEGRAL REPRESENTATIONS 469

X, ={x, n)eXP N:yvx = on},

the pullback of the pair of maps v: X — N, 6: N— N. Then we
obtain a commutative diagram with exact rows:

£0 Mt x- 25N 0

R

£:0—> M —> X,— N— 0,

and the bottom now gives the extension class &6. By the Snake
Lemma,

kery = kerd, cok+ = cokd.

Formules such as (v7')& = v(v'é) are easily verified, and yield 4-
isomorphisms

X=X if yeAut(M), X, =X if 6cAut(N),

where Aut means Aut,.
For later use, an alternative description of the action 4 on
Ext(N, M) is important. Consider a A-exact sequence

1

0 L P N 0

in which P is A-projective. Applying Hom,(-, M), we obtain an
exact sequence of additive groups

0—— Hom(N, M)—> Hom(P, M) —— Hom(L, M) — Ext}(N, M)——0,
and thus
Ext(N, M) = Hom(L, M)/im 4* .

Each £¢ Ext(N, M) is thus of the form f, where fc Hom(L, M) and
where f denotes its image in cok i*. Now let € 4; we can lift &
to a map 4, € End(P), and 4, then induces a map d, € End(L) for which
the following diagram commutes:

0 L >»P—— N 0

R

0 L P— N 0.

Of course End L acts from the right on Hom (L, M), and for &£ =71
as above, we have & = 79, in Ext (N, M).

PROPOSITION 1.3. For 7 =1,2, let M, and N, be A-modules,
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and let & e Exty(N,, M, determine a A-module X,. Assume that
Hom/ (M, N,) = 0. Then X, = X, +f and only if

(1.4) 7€, = &0 for some A-isomorphisms v: M,=M,, 6: N,=N;, .

Proof. Let @ € Hom (X, X,), and consider the diagram

£:0— M, -5 x, -2 N, 0
7|
£:0 M, -2 x,- 2 N, 0.

Since Hom (M,, N,) = 0 by hypothesis, we have y,ptt, = 0. Therefore
(M) Cim p,, so ¢ induces maps v, making the following dia-
gram commute:

B 0

1

0 M2 Xz Nz 0 .

But this means that v¢, = £,0 in Ext (N,, M,). Furthermore, by the
Snake Lemma, ¢ is an isomorphism if and only if both v and o
are isomorphisms. Hence (1.4) holds if X, = X,.

Conversely, assume that (1.4) is true; since v&, = &,0, there exists
a commutative diagram

0— M,— X, —> N,— 0
7 &1 11

0—M,— Y,—> N,— 0
1 de 11

0—— M, — Y, — N,—— 0
1 s al

0 —> M, — X, — N;}—0 .

But v and ¢ are isomorphisms, whence so is each +,. Thus X,=X,,
as desired. (This part of the argument does not require the hy-
pothesis that Hom (M,, N,) = 0.)

COROLLARY 1.5. Let M, N be A-modules such that Hom (M, N)=
0. Let & cExt(N, M) determine a A-module X;,, 1 =1,2. Then
X, =2 X, of and only if

(1.6) vE, = £,0 for some v e Aut (M), 6 € Aut (N).
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We shall call & and &, strongly equivalent (notation: & ~ &)
whenever condition (1.6) is satisfied.

2. Extensions of lattices. Keeping the notation used in the
introduction, let 4 be an R-order in the semisimple K-algebra A.
Choose a nonempty set S(4) of maximal ideals P of R, such that
for each P¢ S(4), the P-adic completion 4, is a maximal R,-order
in A,. Now let M and N be A-lattices, so M, and N, are A,-lattices.
For P¢ S(4), the maximal order 4, is hereditary, and so the
4p-lattice Np is Ap-projective (see [11, (21.5)]); thus Ext, (N, M;)=0
for each P¢ S(4).

Now consider Ext4y(N, M), which we will denote for brevity by
Ext (N, M) when there is no danger of confusion. Then Ext (N, M)
is a finitely generated torsion R-module, with no torsion at the
maximal ideals P¢.S(4). As in [4, (75.22)], we have
2.1) Exty(N, M) = H(A)ExtQP(NP, M) .

PeS

The following analogue of Schanuel’s Lemma will be useful:

LEMMA 2.2. Let X, X', Y, Y’ be A-lattices, and let T be an R-
torsion A-module such that T, = 0 for each Pe S(A). Suppose that
there exist a pair of A-exact sequences

S

0 X X T 0, 0 Yy’ vy-2. 1 0.

Then there is a A-isomorphism
XpY =X'6Y.
Proof. Let W be the pullback of the pair of maps f, g. Then

we obtain a commutative diagram of A-modules, with exact rows
and columns:

0 0
Lo,
XI XI
Lol
0 Y’ > W » X 0
1l Lol
0 Y’ Y T 0.
!
0

At each PeS(4), we have T, =0 by hypothesis. However, the
process of forming P-adic completions preserves commutativity and
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exactness, since R, is R-flat. Hence both of the /A-exact sequences

23) 0 X’ w Y 0, 0 Y’ w X 0,

are split at each P€ S(4). On the other hand, for P¢ S(4) we know
that 4, is a maximal order, so the A.-lattices X,, Y, are A,-projec-
tive. Hence the sequences (2.3) are also split at each Pe¢ S(4).
Therefore they split at every P, and hence split globally (see [11,
(3.20)]). This gives

wW=z=XeY, W=XpY',

and proves the result. This result is due to Roiter [15].
We shall apply this lemma to the following situation. Each &ée
Ext (N, M) determines a A-exact sequence

& 00— M—X—>N—0,

with X unique up to isomorphism. The sequence is R-split since
N is R-projective, and so X = M@ N as R-modules. Thus X is
itself a A-lattice, called an extemsion of N by M. There is an
embedding M — K ®z M, given by m — 1@ m for m e M; we shall
always identify M with its image 1 Q@ M, so that K ®, M may be
written as KM. We shall set

I' =End (M), 4=Endy(N).

Then KI' = End(KM), and I" is an R-order in the semisimple K-
algebra KI'. Likewise K4 = End,(KN), and 4 is an R-order in the
semisimple K-algebra K4. For each vel', €4, we may form the
A-lattices ;X and X; as in §1. We now prove

(2.4) EXCHANGE FORMULA. Let X and Y be a pair of extensions
of N by M, and let v<€End (M) satisfy the condition

(2.5) v»€ Aut (M;) for each Pe S(A) .
Then there ts a A-isomorphism
(2.6) XP,Y=,XpY.
Proof. For each PeS(4), we have
(ker 7)p = ker (v5) =0, (cokv), = cok(vp) =0.

Now ker v is an R-submodule of the 4-lattice M, and thus ker 7 is
itself an R-lattice. Since (kerv), = 0 for at least one P (namely,
for any Pe S(4)), it follows that ker v = 0.

From (1.1) and (1.2) we obtain /4-exact sequences
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0 X X coky——0, 0 Y Y coky — 0,

where cok v = M/v(M). But (cokv), =0 for each Pe S(4), so we
may apply Lemma 2.2 to the above sequences. This gives the
isomorphism in (2.6), and completes the proof.

In the same manner, we obtain

(2.7) ABSORPTION FORMULA. Let X be an extension of N by M,
and let ve End (M) satisfy condition (2.5). Then

XOM=.X®M.

Proof. Apply Lemma 2.2 to the pair of exact sequences

0 X X coky —0, 0 M-LlsM cok Y —— 0.

i

REMARK 2.8. There are obvious analogues of (2.6) and (2.7), in
which we start with an element 6 € End (N) such that 6, ¢ Aut (Np)
for each Pe S(4).

Now let M, N be A-lattices, and let M'\VM, N'VVN. It is clear
from (2.1) that Ext(N’, M’) = Ext (N, M). In fact, by Roiter’s
Lemma (see [11, (27.1)]), we can find 4-exact sequences

2.9) 0 — M-2 M T—0,0— N -2 N—U—0,

in which 7, =0 and U, =0 for all PeS(4). The pair (g, ') in-
duces an isomorphism

(2.10) t: Bxt (N, M) = Ext (N', M") ,

(hereafter called a standard isomorphism), which may be described
explicitly as follows: if e Ext (N, M), then #(&) = ¢&4’ (in the nota-
tion of §1). Thus, if & determines the A-lattice X (up to isomor-
phism), then ¢(£) determines the A-lattice ,X)y, which lies in the
same genus as X.

LemMmA 2.11. The inverse of a standard isomorphism is also a
standard tsomorphism.

Proof. We may choose a nonzero proper ideal a of R, all of
whose prime ideal factors lie in S(4), such that a-Ext (N, M) = 0.
If #cEnd (M) is such that ¢ — 1lca-End (M), it then follows that
¢t acts as the identity map on Ext (N, M).

Let t be a standard isomorphism as in (2.10), induced from the
pair of maps (¢, ') as in (2.9). Since ¢, is an isomorphism for each
PecS(4), we can find a map ¢ € Hom (M’, M) such that ¢, approxi-
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mates ¢;' at each Pe S(/); indeed, we can choose ¢ so that
¢+¢ =1 mod a-End (M) .

Then ¢’ is an inclusion, and ¢'¢ acts as 1 on Ext (N, M). Likewise,
we may choose an inclusion : N — N’ such that 'y acts as 1 on
Ext (N, M). The pair (¢, 4) then induces a standard isomorphism
t': Ext (N', M') = Ext (N, M) such that t't = 1. This completes the
proof.

We wish to determine all isomorphism classes of A-lattices X
which are extensions of a given lattice N by another given lattice
M. Let us show that under suitable hypotheses on M and N, this
determination depends only upon the genera of M and N. A4
A-lattice M is called an Eichler lattice if End, (KM) satisfies the
Eichler condition over R (see [11, (38.1)]). This condition depends
only on the A-module KM and on the underlying ring of integers
R. (In the special case where R = alg. int. {K}, M is an Eichler
lattice if and only if no simple component of End,(KM) is a totally
definite quaternion algebra.) Of course, M is an Eichler lattice
wherever End,(KM) is a direct sum of matrix algebras over fields.

We now establish

THEOREM 2.12. Let M and N be A-lattices such that M@ N is
an FEichler lattice, and let M'\/ M, N'\V N. Let

t: Ext (N, M) = Ext (N', M)

be a standard isomorphism as in (2.10). Then t induces a one-to-
one correspondence between the set of isomorphism classes of exten-
stons of N by M, and that of extensions of N' by M'.

Proof. Each A-lattice X, which is an extension of N by M,
determines an extension class &€ Ext (N, M). Two X’s which yield
the same & must be isomorphic to one another, but the converse of
this statement need not be true. (Herein lies the difficulty in the
proof.) In any case, given the extension X, let £ be its extension
class; set & = ¢(&) e Ext (N’, M'), and let & determine the A-lattice
X' (up to isomorphism). Then X' is an extension of N’ by M’,
and X’V X. Now let Y be another extension of N by M, and let
Y’ be the corresponding extension of N’ by M’'. We must prove
that X = Y if and only if X’ = Y’. (Note that every extension of
N’ by M’ comes from some X, by virtue of Lemma 2.11.)

It suffices to prove the implication in one direction, since by
(2.11) the inverse of a standard isomorphism is again standard.
Furthermore, every standard isomorphism can be expressed as a
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product of two standard isomorphisms, each of which involves a
change of only one of the “variables” M and N. It therefore suffi-
ces to prove the desired result for the case in which there is a
change in only one variable, say M. Thus, let us start with an
inclusion ¢: M —— M’ as in (2.9), such that (cok¢), =0 for all
Pe S(4). Given an exact sequence

0— M-t X— N—0,

define a A-module X’ as the pushout of the pair of maps (g, ¢). We
then obtain a commutative diagram of A-modules, with exact rows:

0 ML x N 0

(2.13) ¢l 1 1l

0 M’ X' N—0.

Then X' is precisely the A-lattice determined by X as above, by
means of the standard isomorphism ¢:Ext (N, M) = Ext (N, M)
induced by ¢. Let Y be another extension of N by M, and let Y’
denote the extension of N by M’ corresponding to Y. It then
suffices for us to prove that X' = Y’ whenever X = Y.

Applying the Snake Lemma to (2.13), we obtain an exact sequence
of A-modules

0 X X’ > cok ¢ 0,

with (cok¢)r =0 for all PeS(4). Likewise, there is an exact
sequence

0 Y Y’ cok ¢ 0.

Therefore we obtain
(2.14) XpY =zX'Y

by Lemma 2.2.
Suppose now that X = Y; since X'V X and Y’V Y, the lattices
X, X', Y, Y are in the same genus, and we may rewrite (2.14) as

(2.15) XYy =XpX'.

Clearly KX = KM@ N), and thus X is an Eichler lattice (since
M@ N is an Eichler lattice by hypothesis). By Jacobinski’s Cancel-
lation Theorem [8], we may then conclude from (2.15) that X'=Y".
This completes the proof of the theorem.

REMARKS. (i) It seems likely that the conclusion of the theorem
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holds true whether or not M @ N is an Eichler lattice.

(ii) Suppose that Hom (M, N) = 0. By (1.5), there is a one-to-
one correspondence between the set of all isomorphism classes of
A-lattices X which are extensions of N by M, and the set of orbits
of the bimodule Ext (N, M) under the left action of Aut(XN) and
the right action of Aut(M). By definition, two elements of
Ext (N, M) are strongly equivalent if they lie in the same orbit. The
preceding theorem then shows, in this case where Hom (M, N) =0
and where M @ N is an Eichler lattice, that the orbits depend only
upon the genera of M and N. Indeed, we have shown above that
under these hypotheses, standard isomorphisms preserve strong
equivalence.

(iii) In the special cases of interest in §§4-7, one can prove
(2.12) directly without using Jacobinski’s Cancellation Theorem (see
[13], for example).

The author wishes to thank Professor Jacobinski for some
helpful conversations, which led to a considerable simplification of
the original proof of Theorem 2.12.

3. Direct sums of extensions. As in §2, let 4 be a R-order
in a semisimple K-algebra A, where K is an algebraic number field.
Given A-lattices M, N with Hom,(M, N) = 0, we wish to classify up
to isomorphism all extensions of a direct sum of copies of N by a
direct sum of copies of M. Let &, & e Ext(N®, M), and let g,
determine the extension Y, of N by M. Since Hom (M, N*)=
0, we may apply (1.5) to obtain

PROPOSITION 3.1. The A-lattices Y, Y, are isomorphic if and
only if
(3.2) aé, = &8 for some ac Aut M, Be Aut N©® .,

As before, call & strongly equivalent to & (notation: & ~ &,)
whenever condition (3.2) is satisfied. We may rewrite this condition
in a more convenient form, as follows: there is an isomorphism

Ext (N®, M™) = (Ext (N, M))™**,

where the right hand expression denotes the set of all » X s matrices
with entries in Ext (N, M). If we put

I' =End(M), 4=End,N),

acting from the left on M and N, respectively, then we may iden-
tify Aut M with GL(r, '), and Aut N® with GL(s, 4). Then
(Ext (N, M))™>* is a left GL(r, I')-, right GL(s, 4)-bimodule, and
& ~ & if and only if a&, = &8 for some ac GL(r, I'), BeGL(s, 4).
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As a matter of fact, we may choose a nonzero ideal a of R,
involving only prime ideals P from the set S(4), such that
a-Ext (N, M) =0. Then I" acts on Ext (N, M) via the map I"— T,
where I' = I'/Jal’. Hence GL(r,I') acts on (Ext (N, M))** via the
map GL(r, I') - GL(r, I'). A corresponding result holds for 4.

We are thus faced with the question of determining the orbits
of (Ext (N, M))* under the actions of GL(r, I') and GL(s, 4). We
cannot hope to specify these orbits in general, but we shall see
that they can be determined in some interesting special cases which
arise in practice. Before proceeding with this determination,
however, it is desirable to adopt a slightly more general point of
view.

Let M and N be as above, and let M;\V M, N;V Nfor1<:¢<7,
1 £ j<s. By hypothesis Hom (M, N) =0, so also Hom (M;, N;) =
0 for all 4, 5. Now let £ Ext ([T N;, [ M,) determine an extension
X. It follows from §1 that a full set of isomorphism invariants
of X are the isomorphism classes of [[M; and [ NV;, and the strong
equivalence class of & Further, since J[TM,V M and [[N;V N,
there is a standard isomorphism

t: Ext (TN, [IM,) = Ext (N®, M)

as in (2.10). If we assume that both M and N are Eichler
lattices, then by (2.11) ¢ gives a one-to-one correspondence between
strong equivalence classes in these two Ext’s. We remark in pass-
ing that M is necessarily an Eichler lattice if » > 1.

As a consequence, we deduce

PROPOSITION 3.3. Let M, N be FEichler lattices such that
Hom (M, N) =0, and let M,V M, N;\VV N, 1<1<r. For each 1, let
&, e Ext (N;, M,) determine an extension X, of N, by M,, and let
t;s Ext (N, M,) = Ext (N, M) be o standard isomorphism. Then a
full set of isomorphism invariants of [[X, are the tsomorphism
classes of TIM; and I N;, and the strong equivalence class of

diag (tl(gl)) ] tr(sr))
wn Ext (N, M™).

Proof. The element diag (&, ---, &) € Ext (]I N;, 11 M;) determines
the extension [[X; of [IN, by IIM,. There is a standard isomor-
phism

Ext (IIN,, I M,) = Ext (N, M)

which carries diag (¢, ---, &) onto diag (¢,(&), «--, t.(§,)). The pro-
position then follows at once from the above discussion.
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4. Cyclic p-groups. We consider here the special case where
G is cyclic of order p*, where p is prime and £ =>1. We shall
identify ZG with the ring 4, = Z[x]/(2* — 1), which we denote by
A for brevity when there is no danger of confusion. Let @,(z) be
the cyclotomic polynomial of order 'p’ and degree 4(p?), 0 <1 < k.
Let @, denote a primitive pi-th root of 1, and set

K, = Qw,), R, = alg. int. {K;} = Z[w,], P, =1 — »,)R, .

Then R, = Z[z]/(®,(x)), a factor ring of A4, so every R,-module may
be viewed as A-module.
Given a A-lattice M, let

L={meM: (z*" " — L)m = 0} .

Thus L is a 4,_-lattice, and it is easily verified that M/L is an
R.-lattice. Assuming that we can classify all L’s, the problem of

finding all A-lattices M becomes one of determining the extensions
of R,-lattices by such L’s. This procedure works well for £ =1, 2

(see [1], [7]), but gives only partial results for £ > 2.
Let us first establish a basic result due to Diederichsen [5]:

PRO;’OSITION 4.1. Let 1< j =<k, and let L be a A-lattice such
that (™ — 1)L = 0. Then

Exty(R;, L) = L/pL .

Proof. From the exact sequence 0 — @;(x)4—A— R; -0 we
obtain

Ext (R;, L) = Hom (®,(x)4, L)/image of Hom (4, L) .

Each A-homomorphism f: ®,(x)4— L is completely determined by
the image f(®@;(x)) in L; this image may be any element of L, which
is annihilated by the 4-annihilator of the ideal @;(x)4. This A4-anni-
hilator is {IT%-;;. @.(x)}- (x?’ " —1)4, which annihilates L by hypothesis.
Thus every element of L may serve as the image f(®;(x)), and so
Hom (@;(x)4, L) = L. In this isomorphism, the image of Hom (4, L)
is precisely @;(x)L. But

p—1 =14
(D,(x) = Z x? o,
i=0

which acts on L as multiplication by p. Therefore Ext (R;, L) =
L/pL, as claimed.

We shall consider the problem of classifying extensions of R;-
lattices by R;-lattices, where 0 < i < j <. However, a slightly
more general situation can be handled by the same methods, and
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this extra generality will be needed later. Let E be any Z-torsion-
free factor ring of 4;_,, so E is a Z-order in a Q-algebra which is
a subsum of [[?%;'K,. Let J be the kernel of the surjection Z[z]—E.
If a-f(x)eJ, where acZ is nonzero and f(x)e Z[x], then also
f(x)eJ since E is Z-torsionfree. This implies readily that J is a
principal ideal (h(x)), generated by a primitive polynomial h(x)eJ
of least degree. Since z»’'—1eJ, we find that i(zx) divides 2*' ' —1,
so h(x) is monic. This shows that E is of the form Z[z]/(h(x)),
for some monic divisor i(z) of x* ' — 1 in Z[x].

Let E be as above; an E-lattice L is called locally free of rank
rif L\ E. (Note that all R;-lattices are necessarily locally free.)
We intend to classify extensions of R;-lattices by locally free E-
lattices. From (4.1) we have

Exty(R;, E) = E/pE = E (say) .

Let Z = Z/pZ; the surjection A4, , — E induces a surjection A, ,—F.
Here

A;y = Zlal/(@?™ — 1) = Z[N)JOW'™"), where v =1 —x .

Thus £ is a factor of a local ring A4;_,, and hence is itself a local
ring of the form

E = Z[\J/(\*), where e = deg h(z) .

The action of E on Ext(R;, E) is given via the surjection E — K.
On the other hand, @;(x) = p in 4;_,, hence also in E, so there is
a ring surjection R; — E. Then R; acts on Ext(R;, E) via this
surjection. Now let N be any Rj;-lattice. By Steinitz’s Theorem,
we may write N = [[i-,c, where each ¢, is an R;-ideal in K;. The
isomorphism class of N is determined by its rank s and its Steinitz
class (namely, Ilc, computed inside K;). Analogously (see [11, Exer-
cise 27.7]), a locally free E-lattice L may be written as L = [];-, b,,
where each b, is an E-lattice in @ X, E (=QF) such that b,V E.
The isomorphism class of L is determined by its rank » and its
Steinitz class (that is, the isomorphism class of TIb, computed inside
QE).

Suppose that L and N are given, and let &e Ext'(N, L) deter-
mine a A-lattice X. We wish to classify all such X’s up to isomor-
phism. We have

Ext (N, L) = Ext (R, E™) = {Ext (R;, E)y>° = B,

where E7** denotes the set of all X s matrices over E. Note
that Hom,(F, R;) = 0 since @;(x) annihilates R;, but acts as multi-
plication by p on the Z-torsionfree A-lattice E. Furthermore, both
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R; and E have commutative endomorphism rings, hence are Eichler
lattices. If t: Ext (N, L) = E7** is the isomorphism given above, it
follows from §38 that a full set of invariants of the isomorphism
class of X are

(i) The rank s and Steinitz class of N,

(ii) The rank » and Steinitz class of L, and

(iii) The strong equivalence class of #(&) in E=.

We shall assume that the problem of classifying all lattices N
and L can be solved somehow. To classify all R;-lattices, we must
determine all R;-ideal classes in K;, and we assume that this has
been done by standard methods of algebraic number theory. To
classify all L’s, we need to determine all classes of locally free E-
ideals in QE. This is a difficult problem when 5 = 8, and can be
handled to some extent by the recent methods due to Galovich [6],
Kervaire-Murthy [9], and Ullom [18], [19].

Supposing then that N and L are known, we shall concentrate
on the problem of determining all strong equivalence classes in E7**.
There are homomorphisms

GL(r, E)—> GL(r, E), GL(s, R;) —> GL(s, E) ,

induced by the ring surjections E—— E, R;—— E. The strong
equivalence classes in E"*° are then the orbits in E"*° under the
actions of GL(r, E) on the left, and GL(s, R;) on the right. In
the next section, we shall treat a somewhat more general version
of the question of finding all strong equivalence classes.

5. Strong equivalence classes. Throughout this section, let I”
and 4 be a pair of commutative rings, and let

p:I'—— T, y:4—T,

be a pair of ring surjections. We assume that I" is a local princi-
pal ideal ring, whose distinct ideals are given by (MI:0=Fk =< ¢},
with A = 0. Here, ¢ is assumed finite and nonzero. Let I'™x»
consist of all m X n matrices with entries in I’. The maps @,
induce homomorphisms

(5.1) Py GL(m, I') —> GL(m, I'), 4,: GL(n, 4) —> GL(n, I') ,

which permit us to view ™" as a left GL(m, I')-, right GL(n, 4)-
bimodule. As suggested by our earlier considerations, we call two
elements &, & e '™ strongly equivalent (notation: & ~ &) if & =afB
for some aweGL(m, I'), B€GL(n, 4); here, @ acts as ¢, (@), and B
as Jr(8). We wish to determine the strong equivalence classes in
Imx»,
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(We have already encountered this problem in §4, where we
had a pair of rings R; and E, with ring surjections R; — E, E —»E,
and where £ was a local principal ideal ring. In order to classify
all extensions of an R;-lattice of rank s by a locally free E-lattice
of rank », we needed to determine the strong equivalence classes
of E7** under the actions of GL(r, E) and GL(s, R;).)

Returning to the more general case, we note that if £~ ¢ in
I'™* then £ is equivalent to & in the usual (weaker) sense, that is,
& = péy for some g, ve GL(I'). We can use the machinery of ele-
mentary divisors over the commutative principal ideal ring I’; these
elementary divisors may be chosen to be powers of the prime
element n. Letting el. div. (§) denote the set of elementary divisors
of & we have at once

PROPOSITION 5.2. If &~ &, then el.div. (&) = el. div. (&').

As before, let u(I") denote the group of units of I’. The next
two lemmas are simple but basic:

LEMMA 5.3. For uwewu(l"), let D, denote a diagonal matriz in
GL(m, ") with diagonal entries w,uw™ 1, .-+, 1, arranged in any
order. Let D, denote an analogous matrix in GL(n, I'). Then for
any &el™ ",

E~Dsg, §~ED,.

Proof. There is an identity
uw 0 1 »*\/1 0\/1 w* —1 10
5.4 =
I N R [ P [y [y
in GL(2, ). This implies that D, is expressible as a product of
elementary matrices in GL(m, I'’). Each factor is the image of an

elementary matrix in GL(m, I'), so ¢ ~ D,&. An analogous argument
proves that &~ &D..

LEMMA 5.5. If m < n, then each &el'™" is strongly equivalent
to a matrixz [D 0], where
(5.6) D = diag W uy, -, M up) , 0S by < o0 Sk < 6 u e u(l) .

If m = n, then &~ [lg J, where D' is a diagonal m X n matrix of
the above type.

Proof. Let éel'™*, where m < n. Since I' is a local principal
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ideal ring, we can bring & into the form [D 0], with D as above,
by a sequence of left and right multiplications by elementary
matrices in GL(I"). Each such elementary matrix lies in either
im(p,) or im(y), and thus &é~[D 0] as claimed. An analogous
proof is valid for the case where m = n.

Suppose now that &< I'™**; for convenience of notation let us
assume that m < n, and let §~[D 0] with D as in (5.6). Then
obviously

el. div. (&) = {\*, -+, M}

It follows at once from (5.2) that the set {\*, ---, \*"} is an invari-
ant of the strong equivalence class of £. Let us show at once that
this is the only invariant when m #* n.

PROPOSITION 5.7. Let & & e I™ ", where m # n. Then &~ ¢& if
and only if el.div. (&) = el. div. (&).

Proof. By (5.2) it suffices to show that if m % n, then ¢ is
determined up to strong equivalence by its set of elementary divi-

sors. For convenience of notation, assume that m < n, and write
&~ [D 0], with D as in (56.6). By (5.3) we have

[D 0] ~[D 0]-diag (i, uz', <<, Un'y Uys* Uy, 1, +++, 1)
K R SR
n—m
This gives
&~ [D, 0] where D, = diag (\*, «--, \m) |

and so the strong equivalence class of & is determined by el. div. (&).
This completes the proof.

We are now ready to turn to the question as to when two
elements £ and & in I'™™ are strongly equivalent. By (5.2), it
suffices to treat the case where & and & have the same elementary
divisors. We shall see that there is exactly one additional invari-
ant needed for this case. To begin with, we introduce the follow-
ing notation: let &€ "**™, and suppose that & ~ D, where D is given
by (5.6). We set

(5.8) I = Pl U = w(I)ws (D)

where w*(I") denotes the image of w(I") in «u(/"”), and w*(4) the
image of wu(4). Define

(5.9) w(&) = image of u,~--u, in U .

The main result of this section is as follows:
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THEOREM 5.10. Let & & el™ ™. Then ¢ ~& if and only if
(i) el.div. (&) = el. div. (&), and
(i) u(&) = u() in U.

Proof. Supposing that conditions (i) and (ii) are satisfied, let
&~ D, & ~ diag Vo, - -+, Nmu), wiew(l),

where D is given by (5.6). Setting u = Iu,, v = Ilu;, it follows
from the proof of (5.7) that

(5.11) &~ diag (W, « oo, Nim—1 AEmy), & ~ diag (W, < -0, AEm—1) APmy) |

By virtue of (ii), there exist elements veu(l"), d €u(d), such that
#w = vud in I”’. But then

Aimy! = vy A\Fmy.d in I,
)

diag (1, ) 1’ 7)'diag ()"kx, M )"km_ls )\,kmu).diag (1’ ) 17 5)
= diag (A8, <« ., Nem—1 NEmy') |

Therefore & ~ &, as desired.

Conversely, assume that & ~ &, so (i) holds by (5.2). In proving
(il), we may assume without loss of generality that £ and & are
equal (respectively) to the diagonal matrices listed in (5.11). Since
&~ ¢, we have p& = & for some e GL(m, I'), ve GL(m, 4). It is
tempting to take determinants of both sides, but this procedure
fails because A* = 0 in I'. Instead, we proceed as follows: let D,=
diag (A%, -+ -, AFn), and put

U = @*(#)'diag (1: *t Ty 1: u')r v, = diag (1: M) 1r u)"'//‘*(”) .

The equation p#& = &v then becomes y,-D, = D,-y,. By (5.12) below,
this implies that (det g,)\*= = (det y)\*=. But det zt, = ' -p(det p),
and det v, = u-y(detv). Therefore the images of w and %’ in w(l)
differ by a factor from w*(I")u*(4), which shows that (&) = w(¢') in
U, and completes the proof.

It remains for us to establish the following amusing result on
determinants:

PROPOSITION 5.12. Let R be an arbitrary commutative ring,
and let D = diag (&, ---, &,) be a maitrix over R such that

1= v = Ppibn = En

Jor some elements r,€ R. Let X, Ye R™™ be matrices for which
XD = DY. Then
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(det X)-&,, = (det Y)-¢&,
m R.

Proof. Let X = (x;;), Y = (y;;). The equation XD = DY gives
6 =&Yy 1= hJj=m.

Let z:1—4, -+, m — 1,, be a permutation of the symbols {1, ---, m}.
A typical term in the expansion of det X is of the form +uw, ---,,,,
and we need only show that for each 7 we have

(5'13) xlil' ° 'wmimém = ylil' : 'ymimgm .

Write 7 as a product of cycles, and suppose by way of illustration
that (a, b, ¢) is a 3-cycle occuring as a factor of #. Then

xabxbcxcaém = lra,'xabxbcxca‘fa = Taxabxbcgcyca = Ta,xabgbybcyca
= Tuanabybcyca = yabybcyeugm

The same procedure applies to each cycle occuring in =z, which
establishes (5.13), and completes the proof of the proposition.

The special case where I' =4 = Z, I’ = Z/(p®), p prime, is of
interest. For a matrix Xe Z™*", let p-el. div. (X) be the powers
of p occurring in the ordinary elementary divisors of X (over Z).
If X is square, write det X = (power of p)-uy, where ./} uy.
(Take uy =1 if det X =0.) For X, Y, € Z™", we write X~ Y if

Y = PXQ (mod »°)
for some PeGL(m, Z), Qe GL(n, Z). From (5.10) we obtain
COROLLARY 5.14. Let X, Ye Z™". Then X~ Y if and only if

(i) p-el.div. (X) = p-el. div. (Y), and
(ii) when m = n,

Uy = & uy(mod p*7%) ,

where k 1s the maximum of the exponents of the p-elementary
divisors of X. (If k = e, condition (ii) is automatically satisfied.)

For the particular cases needed in §§ 6-7, one can easily deduce
(5.7) and (5.10) as special cases of the results of Jacobinski [8].
However, it seemed desirable to give here a self-contained proof of
(5.7) and (5.10).

6. Invariants of direct sums of extensions. We now return
to the study of integral representations of a cyclic group G of



INVARIANTS OF INTEGRAL REPRESENTATIONS 485

order p*, keeping the notation of §4. Let N be an R;-lattice of
rank s, and L a locally free E-lattice of rank ». We have seen
that

ExtL(N, L) = Exty (R, E) = E™°

where E = Z[\]/(\°) is a local principal ideal ring. Each extension
X of N by L determines a class &, € E7*, and an element u(£;) in
a factor group of the group of units of some quotient ring of K
(see (5.9)). It follows from the results of §§4, 5 that a full set of
isomorphism invariants of X are as follows:

(i) The rank s of N, and its Steinitz class,

(ii) The rank » of L, and its Steinitz class,

(iii) The elementary divisors of the matrix &,,

(iv) For the case » = s only, the element u(&y).

Since G is a p-group, the genus of X is completely determined
by the p-adic completion X,. In the local case, however, the ideal
classes occurring above are trivial, as is the group in which (&)
lies. Therefore the genus invariants of X are just 7, s, and
el. div. (¢x). Furthermore, by (5.5) the extension X must decompose
into a direct sum of ideals b of R;, locally free ideals ¢ of FE, and
nonsplit extensions of ¢ by b. Let us denote by (b, ¢; A*») an ex-
tension of ¢ by b corresponding to the extension class Mu € E, where
0<rk<e ucu(E), and we have chosen some standard isomorphism
Ext(c, b)) = E. By (1.5), the lattice (b, c; M*u) is indecomposable since
Mu £ 0 in K.

Some further notation will be useful below. Let us set E' =
ENE = Z[\)J(W™), where 1 < m = e. There are ring surjections
E - FE', R;— E’; let u*(E) denote the image of w(H) in w(E’), and
define u*(R;) analogously. We now set

(6.1) U, = uwE")uw*(EW*(R;) .

It follows from the above discussion that a full set of isomorphism
invariants of (b, ¢; M*u) are the isomorphism classes of b and ¢, the
integer %k, and the image of # in U,_,. The genus of X depends
only on k.

We may remark that the group u(E’) is easily described, namely,

WE") = w(Z) % ﬁ a4+,

where in the product ¢ ranges over the integers between 1 and
m — 1 which are prime to p. On the other hand, the calculation
of w*(E) and u*(R;) is considerably more difficult, and the results
so far known are given in [6], [9], [18], and [19]. It is easily veri-
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fied that w*(R;) contains the factor w(Z), and further that 1+ €
u*(R;) since 1+ x =2a. It follows at once that U, and U, are
trivial for all p.

In the special case where E = R, with ¢ < j, we claim that
uw*(R;) Ccu*(R,;), and hence that

Un = w(B")/w*(R,) .

Indeed, as pointed out in [6], there is a commutative diagram
N
w(Rj) — u(k.)

PN
uw(R,) ,

where R, = R,/pR; and N is the relative norm map. Hence im 6;C
im 6,, which implies that u*(R;) C w*(R;) in u(E’).

The structure of U, has been studied in detail by Galovich
[6] and Kervaire-Murthy [9], especially for the case of regular
primes. An odd prime p is regular if the ideal class number of R,
is relatively prime to p (see [2]). For regular p, we have

(6.2) w*(R;) = u(Z) X L+ x IT A + 2+ an,

where each «; ¢ E’, and where ¢ ranges over all integers from 1 to
[(m — 1)/2] which are prime to p. Furthermore, u*(E)C u*(R;) in
this case, so U, is of order p’*™, where f(m) is the number of odd
integers among 3, 5, ---, m — 1 which are prime to p.

Some additional information is available for the special case
where j = 2; here, ¢ < p and U, is an elementary abelian p-group.
Let 6(k) be the number of Bernoulli numbers among B, B,, -+, B,
whose numerators are divisible by . Then (see [2]) the prime p
is regular if and only if 6((p-3)/2) = 0. Call p properly trregular
if p divides the class number of R, but not that of Z[w, + w'].
For such p, one must omit from the formula (6.2) all those factors
1 4+ 2\ 4+ a ¥ for which 27 < p — 3 and the numerator of B; is a
multiple of p. Thus for properly irregular primes p, U, is ele-
mentary abelian of order p™, where

 ([m —2)/2] + o[m — 2], 0=sm=p-—2,

6.3
63 olm) = sy2 o —8)2), m=p—1, p.

Here, we must interpret the greatest integer function [(m — 2)/2]

as 0 when m < 2. Further, for j =2, U, is trivial when p = 2.
For the case where E = Z[«x]/(x* — 1) and j =2, it is known

(see [6], [9], [19]) that u*(E) = w*(R,) for all m and all regular or
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properly irregular primes p. It seems likely that a corresponding
result holds for 7 > 2 for arbitrary E, for all primes p (in this
connection, see [19]).

From the results stated earlier in this section, we obtain

THEOREM 6.3a. Comnsider the direct sum
b c d
(6.4) Y=116.D I c.DII (b, cis Miuy)
k=1 n=1 i=1

where each b is a locally free E-ideal, each ¢ an Rj-ideal, and
0= Fk <e w,cul) for each i. We may view Y as an extension
0-Y,—>Y—->Y, —0, where

Yo:Hb;:EBHbiy Yl—:Hc':L@Hci!

i . . (DO .
corresponding to the (b + d) X (¢ + d) matrix (O O> over K, with
D = diag (\ay, « -+, Neuy).  Define U, as in (6.1), with

m=Minf{e —k:1<41<d) .

Then we have

(i) The genus of Y 1is determined by the integer b+ d
(=E-rank of Y,), the integer ¢ + d (=R;rank of Y,), and the set
of exponents {k,}.

(ii) The additional invariants of the isomorphism class of Y,
needed to determine this class, are the isomorphism classes of

I16,-116, and IIc,-Ilc, ,
and one further invariant which occurs only when b=c=0, namely
the tmage of w,++-uy; in U,.
Several remarks are in order concerning the above result. First
of all, we note that
(6.5) 0P (b, ¢; M) = PO, ¢; \F)

as a consequence of the Absorption Formula (2.7). Namely, choose
we K with image w e E, so then

(b, s 7\'ku) = w(b: ¢ k'k)

in the notation of §2. Since b'/wb’ = b/wb because bV, formula
(6.5) follows from the proof of (2.7). Likewise, we have

¢ D b, s Nu) = D (b, 5\
always, by using the fact that RB; maps onto E. Thus, if either b
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or ¢ is nonzero, we may replace each u, in (6.4) by 1 without affect-
ing the isomorphism class of Y. This agrees with our previous
result.

Next, suppose that b = ¢ = 0, and suppose the summands of Y
numbered so that k, = Max {k,}. The Exchange Formula (2.4) gives
Y= W@ X, where

W= d]:[l (bi’ Cis )'ki) ’ X = (bd7 (OH hkdu) ’

and 4 = u,---u,. Let X’ = (b, cg; Mu'). Our previous result then
takes the form of a Cancellation Theorem, namely,

(6.6) WhHX=WwWedX' if and only if X = X'

This is of special interest in that it applies to a situation in which
the summands lie in different genera. We may also deduce (6.6)
from Jacobinski’s Cancellation Theorem [8, § 4] if desired.

To conclude these remarks, we may point out that the results
of §5 yield a slightly more general cancellation theorem, as follows:
let 4 be any R-lattice in a semisimple K-algebra A, and let M, N
be A-lattices with commutative A-endomorphism rings I, 4, respec-
tively. For ¢+ =1, ---, d, let X, be an extension of N by M corres-
ponding to the class &, ¢ Ext(N, M). Suppose that for each 7, we may
write &, = v,£,0, for some v, €I, 0;€4, and let X’ be any A-lattice.
Then

MX.®X,=T X.®X if and only if X, = X’ .

Further, the same result holds if each X, is replaced by a lattice
in its genus.

7. Cyclic groups of order p*. We shall now determine a full
set of isomorphism invariants of ZG-lattices, where G is cyelic of
order p®. To simplify the notation, we set

R = Zlo], S = Z|w,), E = Z[z]/(x” — 1), E = E[pE = Z[\]/(V)

where Z = Z/pZ and »=1— 2. By §4, every E-lattice is an
extension of an R-lattice by a Z-lattice. In this case, we have
Ext (R, Z)= Z, and w(R) maps onto w(Z). Thus by §6, the only
indecomposable FE-lattices are Z,b, and E () = (Z, b;1), where b
ranges over a full set of representatives of the i, ideal classes of
R. Here, (Z, b;1) denotes an extension of b by Z corresponding to
the extension class 1¢ Z, using a standard isomorphism Ext (b, Z)=
Z. We note that E(b)\V E, so E(b) is a locally free E-lattice of
rank 1; conversely, every such lattice is isomorphic to some FE(b).
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By §6, every E-lattice L is of the form
(7.1) L=Zo@ b ES),

and a full set of isomorphism invariants of L are the integers
a, b, ¢ (the genus invariants), and the ideal class of IIb;-IIb;.

Now let M be any ZG-lattice. By §4, M is an extension of an
S-lattice N by an E-lattice L. A full set of isomorphism invariants
of M are the isomorphism class of L (just determined above), the
isomorphism class of N, and the strong equivalence class in Ext(N, L)
containing the extension class of M. Of course, N is determined
up to isomorphism by its S-rank and Steinitz class. Furthermore,
in calculating strong equivalence classes in Ext (N, L), we may
replace N by any lattice in its genus, and likewise for L. Thus it
suffices to treat the case where L is a sum of copies of Z, R, and
E, and where N is S-free. However, our conclusions can be stated
more neatly as an answer to the following equivalent question:
what are the isomorphism invariants of a direct sum of indecom-
posable ZG-lattices?

As shown in [7], a ZG-lattice M is indecomposable if and only
if M, is indecomposable. The indecomposable Z,G-lattices can be
determined explicitly by considering strong equivalence in the local
case (see [1] or [7]; the case p =2 is treated in [14] and [17]).
Rather than repeat the local argument here, we just state the
conclusion: every indecomposable ZG-lattice is in the same genus as
one (and only one) of the following 4p + 1 indecomposable ZG-lat-
tices:

Z,R,E, S, (Z,S;1),
(E,S;)\,T)’ O_S_Tép’—l,
(7.2) (ZOE, S;1DN), L=sr=p—2,
(R:S;Xf)s 0§7~§p—2,
(ZAR, S;1PN), 0=r=p—2.

Here (Z, S; 1) represents an extension of S by Z with class 1¢Z,
using the isomorphism Ext (S, Z) = Z. Further, (ZQE, S;1P\)
denotes an extension of S by Z@E with class (1, V)eZDE,
using the isomorphism Ext (S, Z@ E)=Z @ E. Analogous defini-
tions hold for the other cases.

A full set of nonisomorphic indecomposable ZG-lattices may
now be obtained from (7.2), by finding all isomorphism classes in
each of the genera occurring in (7.2). This was done in [12], but
we take this opportunity to correect a misstatement in that article.
Let us denote by U, a full set of representatives w in w(R) or w(E)
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of the elements of the factor group U,, where the u’s are chosen
so that v =1 (mod \). Recall that for 1< m < p — 1, U, denotes
the group of units of Z[\]/(A™) modulo the image of u(R), while
U, denotes u(E) modulo the images of «(S) and w(E). The nota-
tions U,, U, are then consistent with those introduced in § 6. Finally,
let n, be some fixed quadratic nonresidue (mod p).

THEOREM 7.3. Let b range over a full set of representatives
of the hy ideal classes of R, and ¢ likewise for the hg ideal classes
of S. A full list of nmonisomorphic indecomposable ZG-lattices is as
follows:

(a) Z,b, E®),c, (Z,c;1).

(b) (E®), snuw), uel, ,, 0<r=<p— 1.

© (ZHE®), s61DVw), uel, ., 1=r=p—2.

(d) If p=1(mod4), (ZDE®), ¢; 1PN uny), ue U, ,_,, 1<r<p—2.

(e) (b, c;Nu), ue ﬁp_l_r, 0=r=p-—2.

) (Z@b, c;1Pvu), uel, ., 0 r=p—2.

Proof. Observe first that b gives all isomorphism classes in
the genus of R, and c¢ these in the genus of S. Further E(b) gives
all isomorphism classes in the genus of E. It remains for us to
check strong equivalence classes in each of the remaining cases, and
for this it suffices to treat the cases where b=R, ¢c=8 and E(H)=E.

Next, we have Ext (S, Z) = Z, and «(S) maps onto u(Z). Hence
there is only one nonzero strong equivalence class in Ext (S, Z), so
all nonsplit extensions of S by Z are mutually isomorphic. Also,
Ext (S, E) = E = Z[\J/(\?), and by § 6 the nonzero strong equivalence
classes in Ext (S, E) are represented by (Nu:uec U, ,, 0 < r=p—1}.
This gives the lattices deseribed in (b). A similar argument yields
those in (e).

Consider next the classification of lattices in the genus of
(ZBR, S; 1P r), where 0= r = p — 2. The following observation
is needed both here and later: each E-lattice L is expressible as an
extension 0 — L, — L 2 L, — 0, with L, a Z-lattice uniquely deter-
mined inside L, and L, an R-lattice. The map @ induces surjections
L — L, Ext (S, L) — Ext (S, L,), where bars denote reduction mod p,
and where the surjections are consistent with the isomorphisms
Ext (S, L) = L, Ext (S, L,) = L,. Now let M be an extension of an
S-lattice N by L, so L (and hence also L,) are uniquely determined
inside M. Then there is a commutative diagram

0 L M N 0

Lol

0 L, M* N 0,
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giving rise to a ZG-exact sequence

0 L, M M* 0.

The isomorphism class of M uniquely determines that of M*, and
the extension class of M* in Ext (N, L,) is the image of the class
of M in Ext (N, L), under the map induced by 6.

Suppose in particular that M = (ZP R, S; 1 P \u); then M*=
(R, S; »u), and thus the image of » in U,_,_, is an isomorphism
invariant of M. Conversely, any M’ in the genus of M may be
written as (Z@b, ¢; ¢ @ Nu'), where gcu(Z). Then M’'=(Z Y, c;
aB P Nvauw'B) for any acu(R), Beu(S). Choose B so that ¢8 =1
in Z, and then choose a so that aw’'B lies in 17,,_1_,. This proves
that M’ is isomorphic to one of the lattices in (f), and therefore (f)
gives a full list of nonisomorphic indecomposable ZG-lattices in the
genus of (ZP R, S;1HN).

Turning to the most difficult case, we have Ext(S, ZP FE) =
Z @ FE, and we must determine strong equivalence classes in Z@ E
under the actions of Aut(Z@E) and Aut(S). We may represent
the elements of Z@ E as vectors <§_> on which Aut(ZE@ FE) acts
from the left, and Aut(S) from the right. Let @(x) denote the
cyclotomic polynomial of order p. Since Hom (F, Z7) = Z and
Hom (Z, E) = ®(x)E, we obtain

(7.4) End(Z @ E) = {f:f= <“ b), a,beZ, ¢, dekl .

O(x)c d

There is a fiber product diagram

E-2z

(7.5) sozl l

R— 7,
and an E-exact sequence

0— 2022, 7 E—R—0.

Each feEnd(Z@ E), given as in (7.4), induces a map f, on ZP Z

and a map f, on R, where

f, = ( @ b >, Jf. = multiplication by @.(d) .
pPi(c) i(d)

Clearly, f is an automorphism if and only if f, € GL(2, Z) and ¢,(d) €
#(R). Furthermore, for each a cu(R) there exists an automorphism
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f such that ¢@,(d) = a@. Also, for each matrix pe GL(2, Z) whose
(2, 1) entry is divisible by p», we can find an automorphism f such
that f, = ¢

Now let M be a lattice in the genus of (ZP E, S; 1P \") with
extension class <z_> Since (2) ~ Q,l) for some ¢&,, we may hereafter
assume that z = 1. Factoring out the submodule Z&@ Z of M as
before, we obtain an extension M* of S by R, with extension class
7y(€), where @,: E — R is induced from ¢,. The isomorphism class
of M* is determined from that of M. In particular, if the exten-

sion class of M is <>Jlu)’ where 1 <7 < p—2 and u cu(E), then the

extension class of M* is \Mu, viewed as element of RE. Therefore
the image of w in U,_,_, is an isomorphism invariant of M. We
shall see that when p = 8 mod 4, this image of % and the integer
r are a full set of isomorphism invariants of M. On the other
hand, when » =1 mod 4, an additional invariant will be needed,
namely the quadratic character of u (mod\) viewed as element of
w(Z).

Let feAut (ZPE), scu(S), and let 1 < r < p — 2. The equa-
tion

& e o)) = o)
(7.5) <@(w)c a/ ) 2T

becomes (since A'b = 0 in Z)

asl =1 in Z, Vu' = sdvu + O(x)es in E .
Since det f, = + 1, we have ad = # 1(mod \) in E. Thus we obtain
(7.6) w' = sdu = o *u (mod \) .

If » =3 (mod4), then as a ranges over all integers prime to p so
does +a72, and (7.6) imposes no condition on % (mod \). However,
if p=1(mod4), then +a~? is always a quadratic residue (mod p).
It follows from (7.6) that the quadratic character of wu (modX\) is

an invariant of the strong equivalence class of ()ﬁu)’ and is there-

fore an isomorphism invariant of M. This argument, together with
the discussion in the preceding paragraph, shows that no two of
the lattices listed in (c) and (d) can be isomorphic.

To complete the proof of the theorem, we must show that a

given lattice M with extension class < 1 , Where 1 =<r<p—2

AU
and wcw(E), is isomorphic to one of the lattices in (¢) and (d).
Choosing a =1, b=0, d =1 in (7.5'), we see that we can change



INVARIANTS OF INTEGRAL REPRESENTATIONS 493

A modulo At without affecting the strong equivalence class of
1
Vu)‘
choose pcu(R), scu(S), such that 0 = s = ¢7* (mod \). There exists
an fc Aut (Z @ E), given as in (7.4), with ¢,(d) = o and det f, = 1.
Therefore ad = +1 (mod \), and so ¢ = *+q(mod p). Thus (7.6) yields

Now suppose that u = + ¢* (mod \), wWhere ¢qe Z; we may

w = (£ a)(E£q¢) =1(modN).

Now choose %€ U,,_H so that % and ' have the same image in
U,._., 80 & = au (mod A*7") for some aeu(R). Then a =1 (mod ),
since w' =% =1(modx). It follows from (7.5) that a = ¢,(d) for
some d € u(E). Then d-xu’ = % (mod A~'), which shows that

) ~ ) ~ e
~ ~ ,
AU Nu' AU

as desired. On the other hand, when p = 1(mod4) and % (mod\)
is not a square in u(Z), then u = m,q* (mod \) for some qec Z. The
above reasoning shows that

) ~ brind
vu N,

so M is isomorphic to a lattice of type (d). This completes the proof
of the theorem.

COROLLARY 7.7. The number of isomorphism classes of inde-
composable ZG-lattices equals

1+ Zhlc + Zhs + th/S(3NL + | Upl + 81'(N1 - lUp—ll)) ’

where
P—2
Nl = % ’ U:D*l——rl ’

and ¢, =2 ¢f p =1(mod4), ¢, = 1 otherwise. If p is a regular odd
prime (07 of p = 2), then |U,| = p™ 2 for 0 <m < p — 1, where
the greatest integer function is interpreted as 0 1f m < 2. Further,
U, = U,_.| if p ts regular or properly irregular; in the latter

case, (U, = "™ where g is given by (6.3).

Proof. In (7.3) there are 1 + 2k, + 2k, lattices of type (a), and
hzhsN, lattices for each of types (e) and (f). Further, there are
hphs(N, + | U,|) lattices of type (b), and e,hzhs(N, — |U,_.|) of types
(¢) and (d). This gives the desired result.
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We note that for p =2,3,5, the number of indecomposable
ZG-lattices equals 9, 13, 40, respectively.

We are now ready to give a full set of isomorphism invariants
for a direct sum M of indecomposable lattices chosen from the list
in (7.3). Since the Krull-Schmidt-Azumaya Theorem holds for Z,G-
lattices, it is clear that the number of summands in the genus of
each of the 4p + 1 types in (7.2) must be an invariant. This gives
us a set of 4p + 1 nonnegative integers, which are precisely the
genus invariants of M. Furthermore, the ideal class of the product
of all R-ideals b occurring in the various summands must be an
isomorphism invariant of M. Likewise, the ideal class of the pro-
duct of all S-ideals ¢ which occur is another invariant.

Now let M be a direct sum of indecomposable ZG-lattices chosen
from the list (a)-(f) in (7.3). For each summand of type (b)-(f),
the symbol % or wn, occurring therein may be viewed as an element
of w(E). We may then form the product u,(M) of all u’s and un,’s
which occur in the summands of M of types (b)-(f); if there are
no such summands, we set u, (M) =1. Let (M) be the largest
exponent » which occurs in any type (b) summand, and let »,(M) be
the largest exponent » among all summands of types (c), (d), (e),
and (f). (Choose r,(M) = p if M has no summand of type (b), and
choose 7, (M) = p — 1 if M has no summands of types (c)-(f).) The
main result of this article is as follows:

THEOREM 7.8. Let M be a direct sum of indecomposable ZG-
lattices, which we may assume are of the types listed in (1.3). In
terms of the above notation, a full set of isomorphism invariants
of M consists of:

(i) The 4p + 1 genus tnvariants of M,

(ii) The R- and S-ideal classes associated with M,

(iii) If M has no summand of types b, E®), ¢, (Z,¢; 1), and if
r(M) < r(M), the isomorphism invariant given by the image of
w(M) in U,_,_,,, whereas if r (M) > r,(M), the invariant given by
the image of u(M) in U,_., and

@iv) If p=1(mod4), and +f M has no summand of types Z,
E®), (Z,¢1), (E®),cru) or (Z@BDb, ;1P Nu), the isomorphism
mvariant given by the quadratic character of the image of u,(M)
in wZ).

Proof. Step 1. We have already remarked that the isomorphism
class of M determines the invariants listed in (i) and (ii), and that
the only remaining invariants needed to determine M up to isomor-
phism are those which characterize the strong equivalence class of
M. 1In this step (the hardest of all), we suppose that M is as in
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(iii), and proceed to show that the proposed invariant is indeed an
isomorphism invariant of M. Define M* = M/L, as in the proof of
(7.3); then M* must be a direct sum of lattices in the genus of
(R, S; A7) for various 7, because of the hypotheses on M. It follows
from §6 that the image of w, (M) in U, is an isomorphism invari-
ant of M* (and hence also of M), where

m=p—1-—Max{r} =p —1— Max{r, 7.} .

Thus we see that if », = r,, then the image of u, (M) in U,_,_,, is
an isomorphism invariant of M, as claimed.

Now let », > 7, and suppose M is as in (iii), so M is a direct
sum of lattices in the genera of

(1.9) Z,(Z©D R, S$;\), (B, S;N), (ZDE, S;1DN), (B, S;\)

for various 7’s. Viewing M as an extension of a free S-lattice by
a direct sum of copies of Z, R, and E, the extension class &, of M
has the form

00 0O
I 0 00
0 0 IO
D0 0 0,
0 D,0 O
00 DO
0 0 0 D

The top row corresponds to summands of type Z; each D, is a
diagonal matrix with diagonal entries of the form \u or A un,; the
four columns correspond (respectively) to the last four types of
summands listed in (7.9). Changing notation slightly, we may then
write

H 0 0

0 L0 H_[oo Dﬁ[Dl 0}
Ex=1|Dy 0 0> "“IO, 12“‘0D2.

0 D, 0

0 0D,

We must show that the image of u,M) in U,_,, is an invariant of

the strong equivalence class of &,.

r2
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The endomorphism ring of Z“ P RY P E'“ consists of all
matrices

Au 0 A
f: 0 Azz Azs ’
D(x)Ay Ny Ay

where the rows have entries in Z, R, and E, respectively. As in
the proof of (7.3), f is an automorphism if and only if

A, A, A, A
(7.10) |: :IEGL(Z) y li :IGGL(R) ,
pp,(As) @1(A33> Ny Ayz) Py Ass)

where the @, are induced from those in (7.5).
Now suppose that &, ~ &,., where &, has the same form as &,,
but with diagonal entries AN’ or Mu'n,., Then we obtain

B, B, 0 B, Bj; 0 0
B,, B,, 0 B, By;||0 I 0
0 0 By, B, By| D, 0 0
o(x)B,, O)B, AB; B, B;||0 D;0
O(x)B;, P(x)B;, ABy; DB, B;]l0 0 D,

H 0 0

0 I 0 |[S, S. S

=D, 0 0 ||S,; S. S|,
0 D; 0 IS, S. Si
0 0 D

where [S;;]**e GL(S). The (4,1) block in the left hand product
equals @(x)B,H + AB,D,,. However, @(x) is a multiple of N\ in
E, and each diagonal entry of D,, is of the form \'u for some
r <7r,. We may therefore write this (4, 1) block as

(W77n2Cy + MBo) Dy,

for some C,. The same procedure can be carried out for the blocks
in positions (5, 1), (4, 2), and (4, 8). Setting k = p — 1 — 7, for brevity,
we obtain

By, By, By,
(7.11) MC,, + AB,;, MC, + B, Bg|-diag (D, D,, D,)
NCy, + AMB;y; MCy + By, By
= diag (D1, D:, Di)-[S;;]° .
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Now 7, > 7, = 0 gives 7, = 1; thus for each p€ R, the product A"p

is unambiguously defined inside E. The method of proof of (5.10)
then shows that

N1 Bu (M) = Niou(M’) in E ,

where B is the determinant of the first matrix appearing in (7.11),
and o = det [S;;]eu(S). However, r, +k=7r,+p—-1—r,=p so
A1tE =0 in E. Therefore A8 = \"8*, where

BSS B34 BSE
B* = det Po(MBys) P(By) P By) | € u(R) .
sz()\’Bba) @2(354) @2(355)
This shows that B*u(M)=cu,(M’) in Z[N]/(A?~"), so therefore wu,(M)
and u,(M’) have the same image in U,_,, as desired. Thus when

7, > 1, the image of u,(M) in U,_,, is an isomorphism invariant
of M.

Step 2. Suppose next that the hypotheses of (iv) are satisfied.
Then M is a direct sum of lattices in the genera of

(7.12) R, S, (R, S;\), (ZDE,S;1BN\),
and we may write the extension class &, of M in the form
0 I
5)[ =|HO0 ’
0D

with D a diagonal matrix with entries Au. The first column corres-
ponds to summands of the first three types in (7.12), and the
second column to the last type. If &, has the same form as §&,,
then the strong equivalence &, ~ &, yields an equation

[Su S,z]

Szl. SZZ

But A,.D = Q over Z, since every diagonal entry of D is a multiple
of », and MZ = 0. Thus we obtain

A, =S, over Z, O(x)A,, + AuD = D'S,, .

All 0 Als 0 I 0 I
0 A, A l|HO|=|H 0
D(x)As, MNA,, Ay [0 D 0 D.

Consequently |4,| = |S,| in Z, and
N7 Al u(M) = N2 8| u(M') (mod A7) .



498 IRVING REINER

On the other hand, [4,||@(4s)| = *+1(modp) by (7.10), so we
have

(M) = £ | A, Pu(M') (mod ).

This proves that in case (iv), the quadratic character of the image
of u(M) in w(Z) is an isomorphism invariant of M. (This argument
is an obvious extension of that given in the proof of (7.3).)

Step 3. To complete the proof, we must show that the set of
invariants (i)-(iv) do indeed determine M up to isomorphism. We
shall accomplish this by repeated use of the Absorption and Ex-
change Formulas of §2, and for this purpose we need a collection
of short exact sequences. For brevity of notation we omit the
0’s at either end of such sequences, agreeing that the first arrow
is assumed monic, the second arrow epic.

We have already pointed out that every element in a factor
group U, can be represented by an element w in E or R, such that
% = 1(mod ). For such u, we have uZ = Z, and thus

(7.13) R/uR = (E|Z)|w(E|Z) = (B|Z)/(wE|Z) = EJuE .

Likewise, b/ub = E®)/uE(®") always. Further, for u» = 1(modN\)
there are exact sequences

R—— R—— R/uR, (R, S;\)— (R, S; N'u) — R/uR ,
ZDE S;1®N)— (ZBE, S; 1® Vu— EfuE,

and so on. If M is a direct sum of indecomposable lattices of the
types listed in (7.3), it thus follows from the existence of such
exact sequences that we may concentrate all of the w’s in any
preassigned summand of M, without affecting the isomorphism class
of M. This means that we can set all but one of the u’s equal to
1, and replace the remaining « by the product of all of the original
w’s. (Caution: this does mot enable us to move the n,’s occuring in
type (d) summands!) Furthermore, if either b or E(b) occurs as
summand, then the Absorption Formula permits us to make every
u equal to 1, without affecting the isomorphism class of M.

Next, there is a surjection S — E, so for each u € u(E) we can
find an element veS such that ¥ = ™ in E; then v acts on £ as
multiplication by »~'. From the commutative diagram

R— (R, S; u)— S

] I

R—> (R, S;\) — S
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we obtain an E-exact sequence
(R, S; \") — (R, S; Vu) — SjvS .
Likewise, there are exact sequences
S— S— 8/S, (Z,8;1)—(Z, S; 1) — S/vS,
(ZOE,S;1pN)—> (ZDE, S; u B Nu)— S/vsS,
and so on. Note also that
(ZPE,S;vPrNv)=(ZBE,S;1PNv)

whenever v = 1(mod)\). It thus follows (by the Absorption For-
mula) that if either ¢ or (Z, ¢; 1) is a summand of M, then we can
replace v by 1 in every summand of M in which w’s occur, without
affecting the isomorphism class of M. This completes the proof
that if M has any summand of the types in (iii), then we can elimi-
nate all of the w’s. On the other hand, if M has no such summand,
then by Step 1 the image of u(M) in either U, ,_,, or U,_, is an
isomorphism invariant of M.

Step 4. Suppose finally that p = 1 (mod 4). There are exact
sequences
Z—— 7L —— ZInZ, (%, S; 1) — (Z, S; 1) — Z[n,Z ,
(7.14) (ZOR,S;1HNu)— (ZDR, S; n,DNU) — Zn,2Z .

Choose v,cu(S) with v, =n, in u(Z); then u and wuwv;' have the
same image in U,_,_. for each #, and therefore
(ZOR,S;1PNu)=(ZDR,S;1LPNuv,) = (ZDR,S; v, BNU)
= (ZDR,S;n,ENu) .

Thus (7.14) yields an exact sequence
(ZBR, S;1PVu)— (ZODR, S; 1D Nu)— Zn .

Now let w = 1 (mod ), and let us denote by [umn,] an element
u, € w(E) such that u, =1 (mod ) and w, = un, in U,_,_, (for some
given 7). Then we have

(ZDE, S;ni* DNu) =(ZD E, S; LD Nww,)
=(ZPE, S;1PNun,);
the second isomorphism is valid because u,v, and un, have the same

image in w(Z), as well as the same image in U, ,,. Thus the
exact sequence
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(ZOE, S;n' DNu)— (ZDE, S;1 P Nwu) — Z[nZ
may be rewritten as
(71.15) (ZBE, S; 1P Nun,) — (ZP E, S; 1 P Nlun,)) — Z/n,Z .
Finally, there are exact sequences

(B, S; Vu) — (B, S; Nun,) — E[nE ,
(ZBE S;1DNu)— (ZDE, S; 1D Nun,) — En K .

It now follows from (7.15), and the other sequences listed above,
that if M contains any summand of the types listed in (iv), then
the isomorphism class of M is unchanged if we replace un, by [un,]
in every type (d) summand of M. In any case, if both » and «’
are congruent to 1(mod ), then (7.15) gives

(Z @D E, S; LD Nun,) B (ZD E, S; 1D Nu'n,)
= (ZDE,S; 1P N[un,)) P (ZDE, S; 1P Mun)) .

Hence, we can always eliminate any even number of type (d) sum-
mands of M. Further, if M contains no summands of the types
listed in (iv), then we have shown in Step 2 that the quadratic
character of the image of u, (M) in u(Z) is an isomorphism invari-
ant of M.

In view of the various changes which we have described in
Steps 8 and 4, it is now clear that the invariants listed in (i)-(iv)
completely determine the isomorphism class of M. This completes
the proof of the theorem.

To conclude, we remark that many of the above results can be
generalized to extensions of R;-lattices by a direct sum of locally free
lattices over several orders which are factor rings of Z[x]/(x?''—1).
In particular, we can classify all 4,-lattices M for which QM is
a direct sum of copies of Z, R;,, and R;, where 1=i<j=&k. It
is known (see [1]) that there are only finitely many isomorphism
classes of indecomposable lattices of this type. However, this gives
only a partial classification of the integral representations of a
cyclic group of order p° since for G cyclic of order p? there exist
ZG-lattices which are not direct sums of locally free lattices of the
types just mentioned.

Even for G cyclic of order % a further question remains: given
a ZG-lattice M, how can one calculate the isomorphism invariants
of M intrinsically, without first expressing M as a direct sum of
indecomposable lattices? Such a calculation would undoubtedly help
to clarify the structure of M.
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