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RADII OF CONVEXITY FOR CERTAIN CLASSES OF
UNIVALENT ANALYTIC FUNCTIONS

0. P. JϋNEJA AND M. L. MOGRA

Let P(a, β) denote the class of functions 2>(2)=l+δi2H
which are analytic and satisfy the inequality \(p(z)—l)l
{2β(p(z)-a)-(p(z)—l)}\<l for some a,β (O^α<l, 0<j8^1) and
all zeE={z:\z\<l}. Also, let Pb(a, β)^{peP(a, β): p'(0)=
2bβ(l—a), OfgδΞgl}. In the present paper, we determine
sharp estimates for the radii of convexity for functions in
the classes Ra(a, β) and S*(a, β) where Ra(a, β)={f(z)=zJ

Γ

aβ(l-a)z2+ •••: f'ePa(a,β), O^α^l}, S*(α, β) = {g(z) = z +
2aβ(l-a)z2+' :zg'/gePa(a,β), O^α^l}. The results thus
obtained not only sharpen and generalize the various known
results but also give rise to several new results.

1* Introduction* Let P denote the class of functions

(1.1) p(z) = l + b,z + b2z
2 +

which are analytic and satisfy Re (p(z)) > 0 for zeE = {z: \z\ < 1}.
Considerable work has been done to study the various aspects of
the above mentioned class (see e.g., [11], [12] and others). Some
of these results have also been extended to the class P{a) of func-
tions p(z) which are analytic and satisfy Re (p(z)) > a, 0 <; a < 1
for zeE. If p e P(μ), it is easily seen that | b, \ £ 2(1 - a). Further,
we note that if τ = exp {— i arg 6J then p(τz) = 1 + 16X | z +
and so while studying P(a)9 there is no loss of generality if one
takes the first coefficient bx in (1.1) to be nonnegative.

McCarty in [8] determined a lower bound on Re zp\z)/p(z) for
functions p(z) in the class Pb(a) = {peP(a): p\0) = 26(1 — a), 0 ^
6^1} . He also applied the results obtained to determine the sharp
estimates for the radii of convexity of the two classes Ra(a) and
S*(a) for each αe[0, 1] and ae[0, 1) where

Ra(a) = {f(z) =z + a(l- a)z* + • : / ' e Pa(a)}

and

S*(a) = {g(z) =z + 2α(l - a)z2 + . : zg'lg e Pa(μ)} .

For still another class R'a[a) defined by R'a(a) = [f(z) = z + ail —
a)z2 + •: \f\z) - 1| < α, 1/2 < a S 1, z e E) Goel [4] determined
the radius of convexity.

In the present paper, we propose an approach by which it is
not only possible to have a unified study of the above mentioned
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classes but of various other classes as well. For this purpose we
introduce the following classes:

P(α, β) = {p(z) = 1 + \z + : | (p(z) - l)/{2β(p(z) - a)

- (p(z) - 1)} | < 1, for a e [0, 1), β e (0,1] and z e E)

Pb{a, β) = {pe P(α, β): p'(0) = 2bβ(l - a), 0 % b £ 1}

Λβ(α, β) = {/(«) = « + α/3(l - α)^2 + . . . : / ' e P α ( α , /3), 0 ^ α ^ 1}

S*(α, /3) = {g(z) = z + 2aβ(l - α)^;2 + . . . : zg'jg 6 Pa{a, β), O ^ α ^ l }

and determine sharp estimates for the radii of convexity for func-
tions in Ra(a, β) and Sα*(α, β).

2. Preliminary lemmas* Let B denote the class of analytic
functions w{z) in E which satisfy the conditions w(Q) = 0 and \w(z)\<
1 for zeE. We require the following lemmas:

L E M M A 1 [ 1 5 ] . If weB, then for zeE

(2.1) Izw\z) -

LEMMA 2. Let w e B. Then we have

(2.2) Re ί ™Ά I < -_!_ReU(*) + -*--s-t
1(1 + sw(»))(l + ίw(2))l " ( s ί ) 2 I p ( )

where p(z) = (1 + tw(z))/(l + sw(z)), \z\ = r and — 1 <; £ < s <£ 1.

Using the estimate (2.1), the lemma follows easily. Hence we
omit the proof.

LEMMA 3. If p(z) = (1 + tw(z))/(l + sw(z)), w e B, then for
each b e [0, 1] and s, t satisfying — l i * £ < s < ^ l , p(z) lies in the
disc

where

A - (1 + br)z - str\b + r ) 2 . D ^ (s
δ ( DD

+ brf - s\\b + r)2' h (1 + brf -

r = \z\ < 1.
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Proof. Since p(z) = (1 + tw(z))/(l + sw(z)), we have

(2.3) w(z) =
sp(z) — t

= -[bz + • • • ] = -zφ(z)

where <j> is analytic and | φ{z) | <£ 1 for z e E with φ'(0) = b. Now,
since (φ(z) — &)/(l — bφ{z)) is subordinate to z, it follows that φ(z) is
subordinate to (2 + &)/(! + bz) and so

(2.4) - p(z)
sp(z) — t

Putting p(z) = ξ + iη, (2.4) gives

•„ (1 + brf — str*(b +

(\z\ + 6 )
(1 + b\z\)

br)
(1 + brY - βV(δ + r) 2

Hence the lemma.

LEMMA 4. If p(z) = (1 + tw(z))J(l +
z\ = r, 0 ^ r < 1, we

6r)2 - s2r2(6

/or

Ka + - r*)\p(z)\

(2.5) ^

where

(2.5; a)

(2.5; b)

1 — r2

_W/W*

+ ί)(l - ίr2)(A;(l - r2) + 1 - sV) - (1 - sir2)]

if Rb S Λ*

W = t(kt + 8*)r* + 2δί{(fc + s) + (kt + s*)}rs

+ [62(1 + t){(k + t) + (kt + s2)} + 2t(k + s) - (s - ί)2]r

+ 26{(fc + ί) + ί(fc + s)}r + (k + ί) ,

W* = {1 + rδ(l + ί) + ίr2}{l + r6(l + s) + sr2}

= (1 + ί)(l - ίr2)/(A;(l - r') + 1 - sV), i26 - Ab - Db where
At, Dh are defined as in Lemma 3 and k ^ s, — 1 ^ ί < s <; 1.

Proof. Let 12; I = r, and p(z) = Ab + ξ + iη = Re^, then -τr/2<
ψ < π/2. Denoting the left hand side of (2.5) by

Ub(ξ, η), we get

(2.6) Ub(ξ, V) = k(Ah t(Ab 1 - r 2 [((Ab+ξ)-Aγ
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and

(2.7)

where

Vh(ξ, η) = -2t(Ab + ζ) + (A2 + 2A1(Ab + £) - Λ2)( \~J£ ) R

= -2tR cos ψ + (A2 - Λ2 + 2AJR cos
1 — r2

Since for fixed r, 0 ^ r < 1, Ab — Db decreases as δ increases over
the interval [0,1], it follows that R ^ R cos ψ ^ Ab - Db^ A.-D^
Thus, for all δ, 0 ^ 6 ^ 1,

Af»(Λ, f) ^ i? cos ψΓ -2ί + (A2 - At + 2A,R cos ψ + i?2)

1 - A)2 - «]> 0,

for all 8, t satisfying - 1 ^ t < s ^ 1. Thus V*(f, 97) = Λf»(JB, ψ) is
positive for all points in the disc Δ(z). Now, (2.7) gives that, for
every fixed ξ, Ub(ξ, Ύ]) is increasing function of η for positive η and
is a decreasing function of η for negative rj. Thus, the minimum
of Uh(ξf y]) inside the disc A is attained on the diameter forming
part of the real axis. Setting η = 0 in (2.6), we obtain

(2.9) min Uh(ξ, η) ^ Nb(R) = (k + -V
(1 — r 2 )

V 1 - r 2

where R = Ab + ξ e [Ah — X>6, A6 + DJ. Thus the absolute minimum
of Nh(R) in (0, 00) is attained at

and the value of this minimum is equal to



RADII OF CONVEXITY FOR CERTAIN CLASSES 363

(2.11) Nb(R*) = —L_Γi/(*(1 - r2) + 1 - sV)(l + ί)(l - trz)
1 r*L

Since it is easily seen that i2* < A± + Ώx and that Ab + Db is a
decreasing function of 5 for 0 <; 6 <J 1, it follows that R* < Ab+Db

for 6 6 [0,1]; but JB* is not always greater than Aδ — D6. In case
JS* g [A6 — A, Û + AL it c a n be easily verified that Nb(R) increases
with R in [Ab — Db, Ab + A] Thus the minimum of Nb(R) on the
segment [Ab — Db9 Ab + Db] is attained at Rb — Ab — Db. The value
of this minimum equals

Nb(Rb) Ξ= iV6(A6 - A) = TF/TF* ,

where W and TF* are given by (2.5; a) and (2.5; b). Moreover
Nh(R*) = iV6(jB6) for those values of k, s, and t for which Rb = JB*.
Hence the lemma.

3. The class Ra(cc, β). Let i?(α, β) be the class of functions
f(z) = z + azz

2 + which are analytic and satisfy the inequality
|(/'(s) - l)/{2β(f(z) -a)- (/'(*) - 1)}|< 1 for some α, ^(0 ^ α < 1,
0 < /5 ̂  1) and «6 E. One of the authors [9] has shown that for
/ 6 R(a, β), I α21 ^ i8(l - a). Define

Ra(a, β) - {f(z) =z + aβ(l - ά)z2 + •••:/' ePa(af β), 0 ^ a ^ 1} .

Now, we determine a sharp estimate for the radii of convexity
for functions in Ra(a, β).

THEOREM 1. Let f eRa(a, β), then f is convex in \z\<r0 where
r0 is the smallest positive root of the equation

1 + iaβar + (Aaβ'a2 - 2(1 + β - Zaβ))rz + 4β(2aβ - ί)ar3

+ (2/9 - l)(2αjβ - IV - 0

if Ra ^ R* and

n - l{-aβ + Va{l - 2aβ + aβ2)}/(l -

if Ra ^ R* where

R = 1 + 2aβar + {2aβ - l)r2

 R* = / g(l - {2aβ - l)r2) V/2

1 + 2βar + (2/3 - l)r 2 f V 1 ~ (2/5 - l)r 2 /

r = |2| < 1. The result is sharp for each α, β(0 ^ a < 1, 0 <
/3 ^ 1) α^ώ 0 ^ α ^ 1.
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Proof. Since feRa(a,β), an application of Schwarz's lemma
gives

= 1 + (2aβ - l)w(z)
1 + (2/3 - l)w(z)

where w eB. Logarithmic differentiation of (3.1) gives

zw\z)
(3.2)

Applying (2.2) with s = 2/9 - 1, ί = 2aβ - 1 to (3.2), we get

- 2a:/3l2 - [1 - 1 , 1 - 2aβ
J /3(l-«)(l-r*)\p(z)\

where p(2) = (1 + (2aβ - ΐ)w(z))/(l + (2β - ϊ)w(z)). An application
of Lemma 4 with k = s = 2β — 1, t = 2aβ — 1 to (3.3) gives

(3.4) Re ί l +
f'(z)

(2β

- (1 + (1 - 2aβ)(2β - l)r2) + (1 -

- 2aβ)r>)

- r2)]

1 + Aaβar+(4α^2α2 - 2(1 + β - 3α/3))r2

+ 4/3 x ) 3 - l)r4

ar + (2aβ - l)r2)

where

if

+ 2aβar + (2α/3 - l)r2

 Λ * = /α(l - (2aβ - l)r2) \1/2

1+2/Sαr + (2/3 - l)r* ' V 1 - (2/3 - l)r2 / '

O ^ α ^ 1 .

Now the theorem follows easily from (3.4).
The function given by

- 1 - 2aβaz + (2aβ -

and

where c is determined by the relation
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1 - 2aβcτ + (2aβ - l)r f ^ R* ^ I a(χ + (l - 2aβ)rz)
1 - 2βcr + (2/9 - l)r2 V (l - (2/9 - l)r2)

show that the results obtained in the theorem are sharp.
Putting β = 1, in Theorem 1, we get the following result due

to McCarty [8].

COROLLARY l(a). Each feRJjx) maps \z\<rQ onto a convex
region where r0 is the smallest positive root of the equation

1 + Aaar + (6a - 4 + 4aa2)r2 + 4(2α - l)αr 3 + (2a - l)r 4 = 0

if Ra ^ E

n = [{-«+ Va(\ - α)

ΐ/ Ra <L R*, where

•p „ 1 -I- 2a:αr 4- (2α - l)r 2

 p * „ /α(l - (2β - I)r 2)\ 1 / 2

r2 ' ~V Γ^T /
r = |JS| < 1. The result is sharp for each a (0 ^ a < 1)

0 ^ α ^ 1.

COROLLARY l(b). Lβί feR'a(a), then f is convex in
where r0 is the smallest positive root of the equation

1 + 2(1 - a)ar + ((1 - a)a2 - Say- - 2aar% = 0

if Ra ^ J?* and

rQ - [{ - (1 - a) + 1/(1 - a)(l +

i/ Ra ^ R*, where

1 + ar

and r = |JS| < 1. The result is sharp for each a (0 ^ a < 1)
0 ^ α ^ 1.

The result is obtained by replacing a by 1 — a and /9 by 1/2
in Theorem 1. It may be noted that this result was obtained by
Goel [4] under the additional restriction 1/2 <i a :g 1.

REMARK. Replacing (a, β) by (0,1), or by (0,1 - δ), 0 ^ δ < 1
or by (0, (25 - l)/2δ), 1/2 < δ ^ 1, or by ((1 - 7)/l + 7, (1 + 7(/2), 0 <
7 ^ 1, or by ((1 - a + 27δ)/(l + δ), (1 + δ)/2), 0 ^ 7 < 1, 0 < δ ^ 1,
we get the estimates for the radii of convexity for functions with
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fixed second coefficient of the classes introduced and studied by
MacGregor [7], Shaffer [13], Goel [3], Caplinger and Causey [1] and
the authors [6] respectively.

4* The class Sα*(α, β). Let S*(α, β) be the class of functions
g(z) = z + a%z2 + which are analytic and satisfy the inequality
\W(z)/g(z) - l)/{2β(zg\z)/g(z) -a)- (zg'(z)/g(z)-l)}\ < 1, for some
a, β(0 ^ a < 1, 0 < β <: 1) and zeE. The authors [5] have shown
that for geS*(a, β), |α a | ^ 2/3(1 - α). Define

S*(a, β) = {g(z) = z + 2aβ(l-a)z2 + •: ̂ '/^ 6 Pβ(α, 8̂), Ogα^l} .

Now, we determine a sharp estimate for the radii of convexity
for functions in Sβ*(α, /S).

THEOREM 2. Let geSα*(α, /9), then g is convex in \z\ < rQ

where r0 is the smallest positive root of the equation

2/3(3α: - l)αr + (4a2β2a2 + 8aβ - 2 - 4/9)r2

- 2/5(1 + α - 4/9α2)αr3 + (1 - 2aβ)2r< = 0

- [(5a - 1)/{(1 - a + 4/9α2) + 4ατ/(l + β

^ R*, where

R = 1 + 2α/3αr + (2α/9 - l)r2

 β 5 ί { = /α(l + (1 - 2o:/3)r2) V/2

1 + 2βar + (2/3 - l)r* ' \ (2-a)-(2β-a)r2 )

and r — \z\ <1. The result is sharp for each a, β (0 <; a < 1, 0 <
/3 ̂  1) αwd 0 ^ α ^ 1.

Proof. Since gf e S*(a, β), an application of Schwarz's lemma
gives

( 4 # 1 )

g{z) 1 + (20 -

where w e S . Logarithmic differentiation of (4.1) gives

(4 2) 1 + z 9"{z) - 1 + (2aβ - l)w(z)
g'{z) 1 + (2/3 - l M z )

1 + (2/3 - l)w(s))(l + (2aβ -

Applying (2.2) with β = 2£ — 1, ί = 2α/3 - 1 to (4.2), we get
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(4.3) Re {l + z^Ά} * j^—^[ Re {(4/9 - 1 - 2aβ)p(z)

2aβ - 1 1 _ r2\(2β-l)p(z) + l-2aβ\*-\l-p(z)\2 1
p(z) ί (l~r*)\p(z)\ J

, a + aβ - 1
β{l - a)

where p(z) = (1 + (2aβ - l)w(z))/(l + (2/3 - l)w(z)). Now, an appli-
cation of Lemma 4 with k = 4/3 — 1 — 2aβ, s = 2/3—1 and t = 2aβ — 1
to (4.3) gives the required results easily.

The functions given by

z θ\z) = 1 - 2aβaz + (2aβ - l)^?2 . f β ^ p *
flr(2) 1 - 2/3α^ + (2β - 1 ) ?

and

(2α/3 -

g(z) 1 - 2βcz + (2/3 - l)z2 ~

where c is determined by the relation

1 - 2aβcr + (2aβ - l)r2

 = ^ * = /α(l - (2α/3 - l))r2 V/2

1 - 2/3cr + (2/3 - 1>2 \ (2-a)-(2β-a)r2 )

show that the results obtained in the theorem are sharp.
Taking β = 1, in Theorem 2, we get the following result due

to McCarty [8] which also includes the result obtained by Tepper
[16].

COROLLARY 2(a). Each geS%(a) maps | 2 | < r 0 onto a convex
region where r0 is the smallest positive root of the equation

- 2)ar + (4αV + 8a - 6)r2 + (8a2 - 2a - 2)αr3

+ (2a - 1)V = 0

if Ra ^ #* and

r0 = [(5a - l)/{(4α2 - a + 1) + AaV(a9 - 3α

ΐ/ J?α ̂  i2* where

R = 1 + 2ααr + (2a - l)r2 ^ ^ = (a(l - (2α - l))r2V/2

1 + 2αr + r2 ' \ (2 - α)(l - r2) /

r = \z\ < 1. Γ/̂ β result is sharp for each a (0 <; α < 1) and
0 < α < 1.
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REMARKS. ( i ) Replacing (α, β) by (0,1/2), or by (0, (2δ - 1)/
28), 1/2 < δ ^ 1, or by ((1 - τ)/l + 7, (1 + 7)/2), 0 < 7 ^ 1, we may
obtain the estimates for the radii of convexity for functions with
fixed second coefficient of the classes introduced and studied by
Eenigenburg [2], Ram Singh [14] and Padmanabhan [10] respectively.

(ii) Setting a = 1 in Theorem 1 and Theorem 2 we get the
sharp estimates for the radii of convexity for functions in R(a, β)
and S*(a, β). These were obtained by the authors in [9] and [5]
and thus also include the results obtained in [1], [2], [13] etc.

( i i i ) By setting a = 0 in Theorem 1 and Theorem 2, we may
get the results for functions in R(a, β) and S*(a, β) with missing
second coefficient and in particular for odd functions in these classes.

The authors wish to thank the referee for his helpful sugges-
tions.
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