RADII OF CONVEXITY FOR CERTAIN CLASSES OF UNIVALENT ANALYTIC FUNCTIONS

O. P. JUNEJA AND M. L. MOGRA

Let $P(\alpha, \beta)$ denote the class of functions $p(z)=1+b_1z+\cdots$ which are analytic and satisfy the inequality |(p(z)-1)/| $\{2\beta(p(z)-\alpha)-(p(z)-1)\}|<1$ for some α, β $(0\leq \alpha<1, 0<\beta\leq 1)$ and all $z\in E=\{z: |z|<1\}$. Also, let $P_b(\alpha, \beta)=\{p\in P(\alpha, \beta): p'(0)=2b\beta(1-\alpha), 0\leq b\leq 1\}$. In the present paper, we determine sharp estimates for the radii of convexity for functions in the classes $R_a(\alpha, \beta)$ and $S_a^*(\alpha, \beta)$ where $R_a(\alpha, \beta)=\{f(z)=z+a\beta(1-\alpha)z^2+\cdots: f'\in P_a(\alpha, \beta), 0\leq a\leq 1\}$, $S_a^*(\alpha, \beta)=\{g(z)=z+2a\beta(1-\alpha)z^2+\cdots: zg'/g\in P_a(\alpha, \beta), 0\leq a\leq 1\}$. The results thus obtained not only sharpen and generalize the various known results but also give rise to several new results.

1. Introduction. Let P denote the class of functions

(1.1)
$$p(z) = 1 + b_1 z + b_2 z^2 + \cdots$$

which are analytic and satisfy $\operatorname{Re}(p(z)) > 0$ for $z \in E \equiv \{z: |z| < 1\}$. Considerable work has been done to study the various aspects of the above mentioned class (see e.g., [11], [12] and others). Some of these results have also been extended to the class $P(\alpha)$ of functions p(z) which are analytic and satisfy $\operatorname{Re}(p(z)) > \alpha, 0 \leq \alpha < 1$ for $z \in E$. If $p \in P(\alpha)$, it is easily seen that $|b_1| \leq 2(1 - \alpha)$. Further, we note that if $\tau = \exp\{-i \arg b_1\}$ then $p(\tau z) = 1 + |b_1|z + \cdots$ and so while studying $P(\alpha)$, there is no loss of generality if one takes the first coefficient b_1 in (1.1) to be nonnegative.

McCarty in [8] determined a lower bound on $\operatorname{Re} zp'(z)/p(z)$ for functions p(z) in the class $P_b(\alpha) \equiv \{p \in P(\alpha): p'(0) = 2b(1-\alpha), 0 \leq b \leq 1\}$. He also applied the results obtained to determine the sharp estimates for the radii of convexity of the two classes $R_a(\alpha)$ and $S_a^*(\alpha)$ for each $a \in [0, 1]$ and $\alpha \in [0, 1)$ where

$$R_a(\alpha) = \{f(z) = z + a(1 - \alpha)z^2 + \cdots : f' \in P_a(\alpha)\}$$

and

$$S^*_{\scriptscriptstyle a}(lpha) = \{g(z) = z + 2a(1-lpha)z^{\scriptscriptstyle 2} + \cdots : zg'/g \in P_{\scriptscriptstyle a}(lpha)\}\;.$$

For still another class $R'_a(\alpha)$ defined by $R'_a(\alpha) = \{f(z) = z + a(1 - \alpha)z^2 + \cdots : |f'(z) - 1| < \alpha, 1/2 < \alpha \leq 1, z \in E\}$ Goel [4] determined the radius of convexity.

In the present paper, we propose an approach by which it is not only possible to have a unified study of the above mentioned classes but of various other classes as well. For this purpose we introduce the following classes:

$$egin{aligned} P(lpha,\,eta) &= \{p(z) = 1 + b_1 z + \cdots : |(p(z) - 1)/\{2eta(p(z) - lpha) \ &- (p(z) - 1)\}| < 1, & ext{for } lpha \in [0,1), \ eta \in (0,1] ext{ and } z \in E\} \ P_b(lpha,\,eta) &= \{p \in P(lpha,\,eta) : p'(0) = 2beta(1 - lpha), \ 0 \leq b \leq 1\} \ R_a(lpha,\,eta) &= \{f(z) = z + aeta(1 - lpha)z^2 + \cdots : f' \in P_a(lpha,\,eta), \ 0 \leq a \leq 1\} \ S_a^*(lpha,\,eta) &= \{g(z) = z + 2aeta(1 - lpha)z^2 + \cdots : zg'/g \in P_a(lpha,\,eta), \ 0 \leq a \leq 1\} \end{aligned}$$

and determine sharp estimates for the radii of convexity for functions in $R_a(\alpha, \beta)$ and $S_a^*(\alpha, \beta)$.

2. Preliminary lemmas. Let B denote the class of analytic functions w(z) in E which satisfy the conditions w(0)=0 and |w(z)|<1 for $z \in E$. We require the following lemmas:

LEMMA 1 [15]. If $w \in B$, then for $z \in E$

(2.1)
$$|zw'(z) - w(z)| \leq \frac{|z|^2 - |w(z)|^2}{1 - |z|^2}.$$

LEMMA 2. Let $w \in B$. Then we have

$$\begin{array}{l} \text{(2.2)} \ \operatorname{Re}\left\{\frac{zw'(z)}{(1+sw(z))(1+tw(z))}\right\} &\leq -\frac{1}{(s-t)^2}\operatorname{Re}\left\{sp(z) \ + \ \frac{t}{p(z)} - s - t\right\} \\ &+ \frac{1}{(s-t)^2}\frac{r^2|sp(z) - t|^2 - |1 - p(z)|^2}{(1-r^2)|p(z)|} \end{array}$$

where p(z) = (1 + tw(z))/(1 + sw(z)), |z| = r and $-1 \leq t < s \leq 1$.

Using the estimate (2.1), the lemma follows easily. Hence we omit the proof.

LEMMA 3. If p(z) = (1 + tw(z))/(1 + sw(z)), $w \in B$, then for each $b \in [0, 1]$ and s, t satisfying $-1 \leq t < s \leq 1$, p(z) lies in the disc

$$arDelta(z)\equiv \{\zeta\colon |\,\zeta-A_b\,|\,{\leq}\, D_b\}$$
 ,

where

$$A_{b}=rac{(1+br)^{2}-str^{2}(b+r)^{2}}{(1+br)^{2}-s^{2}r^{2}(b+r)^{2}}; D_{b}=rac{(s-t)r(b+r)(1+br)}{(1+br)^{2}-s^{2}r^{2}(b+r)^{2}}$$

and r = |z| < 1.

Proof. Since p(z) = (1 + tw(z))/(1 + sw(z)), we have

(2.3)
$$w(z) = \frac{1 - p(z)}{sp(z) - t} = -[bz + \cdots] = -z\phi(z)$$

where ϕ is analytic and $|\phi(z)| \leq 1$ for $z \in E$ with $\phi'(0) = b$. Now, since $(\phi(z) - b)/(1 - b\phi(z))$ is subordinate to z, it follows that $\phi(z)$ is subordinate to (z + b)/(1 + bz) and so

(2.4)
$$\left|\frac{1-p(z)}{sp(z)-t}\right| \leq |z|\frac{(|z|+b)}{(1+b|z|)}.$$

Putting $p(z) = \xi + i\eta$, (2.4) gives

$$\left|\hat{\varsigma} + i\eta - rac{(1+br)^2 - str^2(b+r)^2}{(1+br)^2 - s^2r^2(b+r)^2}
ight| \leq rac{(s-t)r(b+r)(1+br)}{(1+br)^2 - s^2r^2(b+r)^2} \;.$$

Hence the lemma.

LEMMA 4. If p(z) = (1 + tw(z))/(1 + sw(z)), $w \in B$, then for |z| = r, $0 \leq r < 1$, we have

where

$$W = t(kt + s^2)r^4 + 2bt\{(k + s) + (kt + s^2)\}r^3 + [b^2(1 + t)\{(k + t) + (kt + s^2)\} + 2t(k + s) - (s - t)^2]r + 2b\{(k + t) + t(k + s)\}r + (k + t),$$

(2.5; b)
$$W^* = \{1 + rb(1 + t) + tr^2\}\{1 + rb(1 + s) + sr^2\}$$

and $R^{*2} = (1 + t)(1 - tr^2)/(k(1 - r^2) + 1 - s^2r^2)$, $R_b = A_b - D_b$ where A_b , D_b are defined as in Lemma 3 and $k \ge s$, $-1 \le t < s \le 1$.

Proof. Let |z| = r, and $p(z) = A_b + \xi + i\eta \equiv \text{Re}^{i\psi}$, then $-\pi/2 < \psi < \pi/2$. Denoting the left hand side of (2.5) by

 $U_b(\xi, \eta)$, we get

$$(2.6) U_b(\xi,\eta) = k(A_b + \xi) + t(A_b + \xi)R^{-2} + \frac{1 - s^2r^2}{1 - r^2}[((A_b + \xi) - A_1)^2 + \eta^2 - D_1^2]R^{-1}$$

and

(2.7)
$$\frac{\partial U_b}{\partial \eta} = \eta R^{-4} V_b(\xi, \eta)$$

where

$$egin{aligned} V_b(\hat{\xi},\eta) &= -2t(A_b+\hat{\xi}) + (D_1^2+2A_1(A_b+\hat{\xi})-A_1^2)\Big(rac{1-s^2r^2}{1-r^2}\Big)R \ &+ \Big(rac{1-s^2r^2}{1-r^2}\Big)R^3 \ &= -2tR\cos\psi + (D_1^2-A_1^2+2A_1R\cos\psi)\Big(rac{1-s^2r^2}{1-r^2}\Big)R \ &+ \Big(rac{1-s^2r^2}{1-r^2}\Big)R^3 \equiv M_b(R,\psi)(\mathrm{say}) \;. \end{aligned}$$

Since for fixed r, $0 \leq r < 1$, $A_b - D_b$ decreases as b increases over the interval [0, 1], it follows that $R \geq R \cos \psi \geq A_b - D_b \geq A_1 - D_1$. Thus, for all b, $0 \leq b \leq 1$,

$$egin{aligned} M_b(R, \ \psi) &\geq R \cos \psi iggl[-2t + (D_1^{\,2} - A_1^2 + 2A_1R \cos \psi + R^2) \left(rac{1-s^2r^2}{1-r^2}
ight) iggr] \ &\geq 2R \cos \psi iggl[iggl(rac{1-s^2r^2}{1-r^2}iggr)(A_1 - D_1)^2 - t iggr] > 0, \end{aligned}$$

for all s, t satisfying $-1 \leq t < s \leq 1$. Thus $V_b(\xi, \eta) \equiv M_b(R, \psi)$ is positive for all points in the disc $\Delta(z)$. Now, (2.7) gives that, for every fixed ξ , $U_b(\xi, \eta)$ is increasing function of η for positive η and is a decreasing function of η for negative η . Thus, the minimum of $U_b(\xi, \eta)$ inside the disc Δ is attained on the diameter forming part of the real axis. Setting $\eta = 0$ in (2.6), we obtain

(2.9)
$$\min_{-1 \le \eta \le 1} U_b(\xi, \eta) \equiv N_b(R) = \left(k + \frac{1 - s^2 r^2}{1 - r^2}\right)R + \frac{(1 + t)(1 - tr^2)}{(1 - r^2)}R^{-1} - 2A_1\left(\frac{1 - r^2 s^2}{1 - r^2}\right)$$

where $R = A_b + \xi \in [A_b - D_b, A_b + D_b]$. Thus the absolute minimum of $N_b(R)$ in $(0, \infty)$ is attained at

(2.10)
$$R^* = \left(\frac{(1+t)(1-tr^2)}{k(1-r^2)+1-s^2r^2}\right)^{1/2}$$

and the value of this minimum is equal to

362

(2.11)
$$N_b(R^*) = \frac{1}{1-r^2} \left[\sqrt{(k(1-r^2)+1-s^2r^2)(1+t)(1-tr^2)} - (1-str^2) \right].$$

Since it is easily seen that $R^* < A_1 + D_1$ and that $A_b + D_b$ is a decreasing function of b for $0 \leq b \leq 1$, it follows that $R^* < A_b + D_b$ for $b \in [0, 1]$; but R^* is not always greater than $A_b - D_b$. In case $R^* \notin [A_b - D_b, A_b + D_b]$, it can be easily verified that $N_b(R)$ increases with R in $[A_b - D_b, A_b + D_b]$. Thus the minimum of $N_b(R)$ on the segment $[A_b - D_b, A_b + D_b]$ is attained at $R_b = A_b - D_b$. The value of this minimum equals

$$N_b(R_b) \equiv N_b(A_b - D_b) = W/W^*$$
,

where W and W^{*} are given by (2.5; a) and (2.5; b). Moreover $N_b(R^*) = N_b(R_b)$ for those values of k, s, and t for which $R_b = R^*$. Hence the lemma.

3. The class $R_a(\alpha, \beta)$. Let $R(\alpha, \beta)$ be the class of functions $f(z) = z + a_2 z^2 + \cdots$ which are analytic and satisfy the inequality $|(f'(z) - 1)/\{2\beta(f'(z) - \alpha) - (f'(z) - 1)\}| < 1$ for some $\alpha, \beta(0 \le \alpha < 1, 0 < \beta \le 1)$ and $z \in E$. One of the authors [9] has shown that for $f \in R(\alpha, \beta), |a_2| \le \beta(1 - \alpha)$. Define

$$R_{a}(lpha,\,eta)=\{f(z)=z+aeta(1-lpha)z^{2}+\cdots:f'\in P_{a}(lpha,\,eta),\,\,0\leq a\leq 1\}$$
 .

Now, we determine a sharp estimate for the radii of convexity for functions in $R_{\alpha}(\alpha, \beta)$.

THEOREM 1. Let $f \in R_a(\alpha, \beta)$, then f is convex in $|z| < r_0$ where r_0 is the smallest positive root of the equation

if $R_a \geq R^*$ and

$$r_{\scriptscriptstyle 0} = [\{-lphaeta + \sqrt{lpha(1-2lphaeta + lphaeta^2)}\}/(1-2lphaeta)]^{\scriptscriptstyle 1/2}$$

if $R_a \leq R^*$ where

$$R_a=rac{1+2lphaeta ar+(2lphaeta-1)r^2}{1+2eta ar+(2eta-1)r^2} \;,\; R^*=\Big(rac{lpha(1-(2lphaeta-1)r^2)}{1-(2eta-1)r^2}\Big)^{1/2}$$

and r = |z| < 1. The result is sharp for each α , $\beta(0 \leq \alpha < 1, 0 < \beta \leq 1)$ and $0 \leq a \leq 1$.

Proof. Since $f \in R_a(\alpha, \beta)$, an application of Schwarz's lemma gives

(3.1)
$$f'(z) = \frac{1 + (2\alpha\beta - 1)w(z)}{1 + (2\beta - 1)w(z)}$$

where $w \in B$. Logarithmic differentiation of (3.1) gives

$$(3.2) \quad 1 + z \frac{f''(z)}{f'(z)} = 1 - 2\beta(1-\alpha) \left\{ \frac{zw'(z)}{(1+(2\beta-1)w(z))(1+(2\alpha\beta-1)w(z))} \right\} .$$

Applying (2.2) with $s = 2\beta - 1$, $t = 2\alpha\beta - 1$ to (3.2), we get

(3.3) Re
$$\left\{1 + z \frac{f''(z)}{f'(z)}\right\} \ge \frac{1}{2\beta(1-\alpha)} \left[\operatorname{Re}\left\{(2\beta - 1)p(z) + \frac{2\alpha\beta - 1}{p(z)}\right\} - \frac{r^2|(2\beta - 1)p(z) + 1 - 2\alpha\beta|^2 - |1 - p(z)|^2}{(1 - r^2)|p(z)|} \right] + \frac{1 - 2\alpha\beta}{\beta(1 - \alpha)}$$

where $p(z) = (1 + (2\alpha\beta - 1)w(z))/(1 + (2\beta - 1)w(z))$. An application of Lemma 4 with $k = s = 2\beta - 1$, $t = 2\alpha\beta - 1$ to (3.3) gives

$$(3.4) \operatorname{Re} \left\{ 1 + z \frac{f''(z)}{f'(z)} \right\}$$

$$\geq \begin{bmatrix} \frac{1}{\beta(1-\alpha)(1-r^2)} [\sqrt{4\alpha\beta^2(1-(2\beta-1)r^2)(1+(1-2\alpha\beta)r^2)} \\ -(1+(1-2\alpha\beta)(2\beta-1)r^2) + (1-2\alpha\beta)(1-r^2)] \\ \text{if } R_a \leq R^* , \\ 1+4\alpha\beta ar + (4\alpha\beta^2a^2 - 2(1+\beta-3\alpha\beta))r^2 \\ +4\beta \times (2\alpha\beta-1)ar^3 + (2\beta-1)(2\alpha\beta-1)r^4 \\ \hline (1+2\beta ar + (2\beta-1)r^2)(1+2\alpha\beta ar + (2\alpha\beta-1)r^2) \\ \text{if } R_a \geq R^* \end{bmatrix}$$

where

Now the theorem follows easily from (3.4).

The function given by

$$f'(z)=rac{1-2lphaeta az+(2lphaeta-1)z^2}{1-2eta az+(2eta-1)z^2} ext{ if } R_{a} \geqq R^{*}$$
 ,

and

$$f'(z)=rac{1-2lphaeta cz+(2lphaeta-1)z^2}{1-2eta cz+(2eta-1)z^2} ext{ if } R_{\scriptscriptstyle a} \leq R^*$$

where c is determined by the relation

$$rac{1-2lphaeta cr+(2lphaeta-1)r^2}{1-2eta cr+(2eta-1)r^2}=R^*=~\sqrt{rac{lpha(1+(1-2lphaeta)r^2)}{(1-(2eta-1)r^2)}}$$

show that the results obtained in the theorem are sharp.

Putting $\beta = 1$, in Theorem 1, we get the following result due to McCarty [8].

COROLLARY 1(a). Each $f \in R_a(\alpha)$ maps $|z| < r_0$ onto a convex region where r_0 is the smallest positive root of the equation

 $1+4lpha ar+(6lpha-4+4lpha a^2)r^2+4(2lpha-1)ar^3+(2lpha-1)r^4=0$ if $R_a \geq R^*$ and

$$r_{_{0}} = [\{-lpha + \sqrt{lpha(1-lpha)}\}/(1-2lpha)]^{_{1/2}}$$

if $R_a \leq R^*$, where

$$R_{a}=rac{1+2lpha a r+(2lpha-1)r^{2}}{1+2a r+r^{2}} ext{ , } \quad R^{*}=\Bigl(rac{lpha (1-(2lpha-1)r^{2})}{1-r^{2}}\Bigr)^{1/2}$$

and r = |z| < 1. The result is sharp for each α $(0 \le \alpha < 1)$ and $0 \le \alpha \le 1$.

COROLLARY 1(b). Let $f \in R'_a(\alpha)$, then f is convex in $|z| < r_0$ where r_0 is the smallest positive root of the equation

$$1 + 2(1 - \alpha)ar + ((1 - \alpha)a^2 - 3\alpha)r^3 - 2\alpha ar^3 = 0$$

if $R_a \geq R^*$ and

$$r_{\scriptscriptstyle 0} = [\{-(1-lpha) + \sqrt{(1-lpha)(1+3lpha)}\}/2lpha]^{1/2}$$

if $R_a \leq R^*$, where

$$R_a = rac{1+(1-lpha)ar-lpha r^2}{1+ar}$$
 , $R^* = [(1-lpha)(1+lpha r^2)]^{1/2}$

and r = |z| < 1. The result is sharp for each α $(0 \leq \alpha < 1)$ and $0 \leq a \leq 1$.

The result is obtained by replacing α by $1 - \alpha$ and β by 1/2 in Theorem 1. It may be noted that this result was obtained by Goel [4] under the additional restriction $1/2 \leq \alpha \leq 1$.

REMARK. Replacing (α, β) by (0, 1), or by $(0, 1 - \delta)$, $0 \leq \delta < 1$ or by $(0, (2\delta - 1)/2\delta)$, $1/2 < \delta \leq 1$, or by $((1 - \gamma)/1 + \gamma, (1 + \gamma(/2), 0 < \gamma \leq 1)$, or by $((1 - \delta + 2\gamma\delta)/(1 + \delta), (1 + \delta)/2)$, $0 \leq \gamma < 1$, $0 < \delta \leq 1$, we get the estimates for the radii of convexity for functions with fixed second coefficient of the classes introduced and studied by MacGregor [7], Shaffer [13], Goel [3], Caplinger and Causey [1] and the authors [6] respectively.

4. The class $S_a^*(\alpha, \beta)$. Let $S^*(\alpha, \beta)$ be the class of functions $g(z) = z + a_2 z^2 + \cdots$ which are analytic and satisfy the inequality $|(zg'(z)/g(z)-1)/\{2\beta(zg'(z)/g(z)-\alpha)-(zg'(z)/g(z)-1)\}| < 1$, for some $\alpha, \beta(0 \leq \alpha < 1, 0 < \beta \leq 1)$ and $z \in E$. The authors [5] have shown that for $g \in S^*(\alpha, \beta)$, $|a_2| \leq 2\beta(1-\alpha)$. Define

$$S_a^*(lpha,\,eta)\!=\!\{g(z)\!=\!z\!+\!2aeta(1\!-\!lpha)z^2\!+\!\cdots\!:zg'\!/g\in P_a(lpha,\,eta),\,\,0\!\leq\!a\!\leq\!1\}$$
 .

Now, we determine a sharp estimate for the radii of convexity for functions in $S^*_{\alpha}(\alpha, \beta)$.

THEOREM 2. Let $g \in S_a^*(\alpha, \beta)$, then g is convex in $|z| < r_0$ where r_0 is the smallest positive root of the equation

if $R_a \geq R^*$ and

$$r_{_{0}} = [(5lpha - 1)/\{(1 - lpha + 4etalpha^2) + 4lpha \sqrt{(1 + eta - 3lphaeta + lpha^2eta^2)}\}]^{_{1/3}}$$

if $R_a \leq R^*$, where

$$R_a=rac{1+2lphaeta ar+(2lphaeta-1)r^2}{1+2eta ar+(2eta-1)r^2} ext{,} \quad R^*=\Big(rac{lpha(1+(1-2lphaeta)r^2)}{(2-lpha)-(2eta-lpha)r^2}\Big)^{1/2}$$

and r = |z| < 1. The result is sharp for each α, β ($0 \le \alpha < 1$, $0 < \beta \le 1$) and $0 \le \alpha \le 1$.

Proof. Since $g \in S_a^*(\alpha, \beta)$, an application of Schwarz's lemma gives

(4.1)
$$z \frac{g'(z)}{g(z)} = \frac{1 + (2\alpha\beta - 1)w(z)}{1 + (2\beta - 1)w(z)}$$

where $w \in B$. Logarithmic differentiation of (4.1) gives

(4.2)
$$1 + z \frac{g''(z)}{g'(z)} = \frac{1 + (2\alpha\beta - 1)w(z)}{1 + (2\beta - 1)w(z)} \\ - 2\beta(1 - \alpha) \left\{ \frac{zw'(z)}{(1 + (2\beta - 1)w(z))(1 + (2\alpha\beta - 1)w(z))} \right\}.$$

Applying (2.2) with $s = 2\beta - 1$, $t = 2\alpha\beta - 1$ to (4.2), we get

(4.3)
$$\operatorname{Re}\left\{1 + z \frac{g''(z)}{g'(z)}\right\} \geq \frac{1}{2\beta(1-\alpha)} \left[\operatorname{Re}\left\{(4\beta - 1 - 2\alpha\beta)p(z) + \frac{2\alpha\beta - 1}{p(z)}\right\} - \frac{r^2|(2\beta - 1)p(z) + 1 - 2\alpha\beta|^2 - |1 - p(z)|^2}{(1 - r^2)|p(z)|} + \frac{\alpha + \alpha\beta - 1}{\beta(1 - \alpha)}$$

where $p(z) = (1 + (2\alpha\beta - 1)w(z))/(1 + (2\beta - 1)w(z))$. Now, an application of Lemma 4 with $k = 4\beta - 1 - 2\alpha\beta$, $s = 2\beta - 1$ and $t = 2\alpha\beta - 1$ to (4.3) gives the required results easily.

The functions given by

$$zrac{g'(z)}{g(z)}=rac{1-2lphaeta az+(2lphaeta-1)z^2}{1-2eta az+(2eta-1)z^2} ext{ if } R_{a}\geq R^*$$

and

$$z rac{g'(z)}{g(z)} = rac{1-2lphaeta cz+(2lphaeta-1)z^2}{1-2eta cz+(2eta-1)z^2} ext{ if } R_{a} \leqq R^*$$

where c is determined by the relation

$$\frac{1-2\alpha\beta cr+(2\alpha\beta-1)r^2}{1-2\beta cr+(2\beta-1)r^2}=R^*=\Big(\frac{\alpha(1-(2\alpha\beta-1))r^2}{(2-\alpha)-(2\beta-\alpha)r^2}\Big)^{_{1/2}}$$

show that the results obtained in the theorem are sharp.

Taking $\beta = 1$, in Theorem 2, we get the following result due to McCarty [8] which also includes the result obtained by Tepper [16].

COROLLARY 2(a). Each $g \in S^*_a(\alpha)$ maps $|z| < r_0$ onto a convex region where r_0 is the smallest positive root of the equation

if $R_a \geq R^*$ and

$$r_{\scriptscriptstyle 0} = [(5lpha - 1)/\{(4lpha^2 - lpha + 1) + 4lpha
u/(\overline{lpha^2 - 3lpha + 2})\}]^{_{1/2}}$$

if $R_a \leq R^*$ where

$$R_{a}=rac{1+2lpha ar+(2lpha-1)r^{2}}{1+2ar+r^{2}}$$
 , $R^{*}=\Bigl(rac{lpha(1-(2lpha-1))r^{2}}{(2-lpha)(1-r^{2})}\Bigr)^{1/2}$

and r = |z| < 1. The result is sharp for each α $(0 \le \alpha < 1)$ and $0 \le \alpha \le 1$.

367

REMARKS. (i) Replacing (α, β) by (0, 1/2), or by $(0, (2\delta - 1)/2\delta)$, $1/2 < \delta \leq 1$, or by $((1 - \gamma)/1 + \gamma, (1 + \gamma)/2)$, $0 < \gamma \leq 1$, we may obtain the estimates for the radii of convexity for functions with fixed second coefficient of the classes introduced and studied by Eenigenburg [2], Ram Singh [14] and Padmanabhan [10] respectively.

(ii) Setting a = 1 in Theorem 1 and Theorem 2 we get the sharp estimates for the radii of convexity for functions in $R(\alpha, \beta)$ and $S^*(\alpha, \beta)$. These were obtained by the authors in [9] and [5] and thus also include the results obtained in [1], [2], [13] etc.

(iii) By setting a = 0 in Theorem 1 and Theorem 2, we may get the results for functions in $R(\alpha, \beta)$ and $S^*(\alpha, \beta)$ with missing second coefficient and in particular for odd functions in these classes.

The authors wish to thank the referee for his helpful suggestions.

References

1. T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., **39** (1973), 357-361.

2. P. J. Eenigenburg, A class of starlike mappings in the unit disc, Compositio Math., 24 (1972), 235-238.

3. R. M. Goel, A class of univalent functions whose derivatives have positive real part in the unit disc, Nieuw Arch. Wisk., 15 (1967), 55-63.

4. _____, A class of univalent functions with fixed second coefficients, J. Math. Sci., 4 (1969), 85-92.

5. O. P. Juneja and M. L. Mogra, On starlike functions of order α and type β , Rev. Roumaine Math. Pures Appl., 23 (1978), 751-765.

6. ____, A class of univalent functions, Bull. Sci. Math., (To appear).

7. T. H. MacGregor, Functions whose derivatives have positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.

8. C. P. McCarty, Two radius of convexity problems, Proc. Amer. Math. Soc., 42 (1974). 153-160.

9. M. L. Mogra, On a class of univalent functions whose derivatives have a positive real part, (Communicated).

10. K. S. Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian Math. Soc., **32** (1968), 89-103.

11. M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc., 102 (1962), 82-93.

12. _____, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc., **106** (1963), 236-253.

13. D. B. Shaffer, Distortion theorems for a special class of analytic functions, Proc. Amer. Math. Soc., **39** (1973), 281-287.

14. R. Singh, On a class of starlike functions II, Ganita, 19 (1968), 103-110.

15. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23 (1971), 323-339.

16. D. E. Tepper, On the radius of convexity and boundary distortion of schlicht functions, Trans. Amer. Math. Soc., 150 (1970), 519-528.

Received September 26, 1977 and in revised form March 17, 1978.

INDIAN INSTITUTE OF TECHNOLOGY KANPUR-208016 (INDIA)