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WEAK RIGIDITY OF COMPACT NEGATIVELY
CURVED MANIFOLDS

SH-SHING CHEN

Let M and Mr be simply connected, complete Riemannian
manifolds of nonpositive sectional curvature and let Γ and Γr

be properly discontinuous groups of isometries acting- freely
on M and Mf respectively such that M/Γ and M'\Γ' are
compact. Let Θ: Γ ~> Γf be an isomorphism. There exists a
pseudo-isometry φ: M —> Mf such that φ(γx) = θ(γ)φ(x) for all
I in Γ and x in M. The question is whether this pseudo-
isometry φ can be extended to a homeomorphism ψ between
the boundaries M(oo) and ikf'( oo) of M and Mr respectively.
This homeomorphism is further required to be equivariant with
respect to the isomorphism θ. This extendability is called
the weak rigidity of compact nonpositively curved manifolds.
In this paper, this weak rigidity question is answered affirma-
tively if M is a simply connected, complete Riemannian
manifold of negative sectional curvature and Mf is a non-
compact symmetric space of rank one. If M and Mf are
noncompact symmetric spaces without direct factors of closed
one or two dimensional geodesic subspaces, then this weak
rigidity is proved by G. D. Mostow and is a part of his
important strong rigidity theory of compact, locally symmetric
Riemannian manifolds. This paper is motivated by this
theory of Mostow.

1* Statements of theorems. In [7], Mostow has proved the

following remarkable result.

THEOREM. (Mostow) Let Y be a locally symmetric Riemannian
manifold. The fundamental group πx(Y) determines Y uniquely up
to an isometry and a choice of normalizing constants, provided that
Y has no closed one or two dimensional geodesic subspaces which
are direct factors locally.

According to the uniformization theorem, every compact Riemann
surface Y of genus greater than one has its universal covering manifold
analytically equivalent to the unit disk with the Poincare metric.
Therefore πx(Y) may be identified with a discrete and cocompact Γ
of PSL (2, R). It is well known that two compact Riemann surfaces
Y and Y' of the same genus have isomorphic fundamental groups Γ
and Γr but need not be analytically equivalent. This is the reason
for the proviso in Mostow's theorem.

In this paper, one has the following two theorems which form
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a part of the investigation suggested by Mostow in his introduction
of [7] that the theory of pseudo-isometries may be useful in other
contexts. The theory of quasi-conformal mappings over the complex
numbers C will be discussed in a forthcoming paper.

THEOREM 1. Let M and M' be simply connected, complete Rieman-
nian manifolds of nonpositive sectional curvature and let Γ and Γr

be properly discontinuous groups of isometries acting freely on M
and M' respectively such that M/Γ and M'jΓf are compact. Let
θ: Γ —> Γr be an isomorphism. Then there is a pseudo-isometry
φ: M—> Mr such that φ(yx) = θ(y)φ(x) for all Ί in Γ and x in M, that
is φ is a Γ-space morphism and a pseudo-isometry.

Note that the proviso in Mostow's theorem is not required in
this and the next theorems. In the next theorem, one investigates
whether this .Γ-space morphism can be extended to the boundaries
M(oo) and itf'(oo) equivariantly so that the extension is a homeo-
morphism. Here the boundary ikf(oo) of a simply connected complete
Riemannian manifold M of nonpositive sectional curvature is defined
by Eberlein and O'Neill [4].

THEOREM 2. Let M be a simply connected, complete Riemannian
manifold of negative sectional curvature and let Mr be a noncompact
symmetric space of rank one. Then the Γ-space morphism and
pseudo-isometry φ: M^ M' in Theorem 1 can be extended to a Γ-space
homeomorphism φ: M(°o) —> M'(°°).

The manifold M is required to have negative sectional curvature.
Since it admits a cocompact covering group Γ, the sectional curvature
is bounded above by a negative constant. According to [5], fixed
points of all the elements of Γ are dense in the limit set of Γ which
is actually the full boundary M(°o). The density of fixed points for
an arbitrary manifold of nonpositive sectional curvature admitting
a cocompact covering group Γ is unknown to the author. If the
density is known, then Theorem 2 may be extended to manifolds of
nonpositive sectional curvature and symmetric spaces of arbitrary
rank. Furthermore, M' is required to be symmetric, because a basic
inequality in [7] (§6) does not seem to be extendable to manifolds
of nonpositive sectional curvature.

The proof of Mostow's theorem [7] consists of the following
three steps:

(1) Let Y and Y' be locally symmetric Riemannian manifolds,
let X and Xf denote their universal covering manifolds whose isometry
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groups are G and Gf respectively and let π^Y) ^ Γ = TΓ^F')- Then
there is a Γ.space pseudo-isometry φ:X-^Xr.

(2) The Γ-space pseudo-isometry φ has continuous boundary
values φQ.

(3) ^0 is induced by an analytic isomorphism of the semisimple
Lie groups G and G\

2* Nonpositively curved manifolds* Let M be a simply con-
nected, complete Riemannian manifold of nonpositive sectional curva-
ture. In [4], Eberlein and O'Neill have defined the boundary M(^)
of M to be the set of asymptotic classes of geodesies in M. The
isometries of M can be classified into three classes: (1) elliptic, (2)
parabolic and (3) axial [4]. In this paper, we shall assume that M
admits a properly discontinuous group Γ of isometries acting freely
on M such that M/Γ is compact. In this case, every element of Γ is
axial. Under the restriction that the sectional curvature is bounded
above by a negative constant (this restriction is valid for Theorem
2), every axial element of I(M), the isometry group of M, has two
fixed points in M(°°) and translates the infinite geodesic joining these
two points. If M is symmetric, then these axial elements are those
semisimple elements of G whose polar parts are nontrivial ([7], §2).

In [6], Lawson and Yau have proved that for the compact manifold
N = M/Γ there exists an abelian subgroup A of rank in Γ if and
only if there exists a flat fe-torus immersed isometrically and totally
geodesically in N. For symmetric spaces, the maximal rank is called
the rank of the symmetric space, however, in the general case,
various maximal ranks may be different. If the sectional curvature
is bounded above by a negative constant, then there exists only flat
1-torus [4]. Thus, for Theorem 2, we only have to consider infinite
geodesies instead of flat totally geodesic subspaces and Mostow's
arguments in [7] can be simplified in our discussion. The geometry
of symmetric spaces developed in [7] has its counterpart in simply
connected, complete Riemannian manifolds of nonpositive sectional
curvature. In particular, §§3, 5, and 7 of [7] can be carried over
to our investigation. For any subset S of a metric space and for
any nonnegative real number v, we denote by TV(S) the subset of
points lying within a distance less than v of S. Because of the law
of cosines, Tυ(S) is convex if S is convex. Let F be a flat totally
geodesic subspace of M. Then any point p in M has a point π(p)
in F such that d(p, π(p)) = d(p, F). We call the map π: M-+ F the
orthogonal projection of M onto F. Given two sets A and B, the
Hausdorff distance hb(A, B) is defined by

hb(A, B) = mί{v^ oo; Aa TV(B), Bc Tυ(A)} .
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It is obvious that, given two infinite geodesies σι and σ2, hd{σu σ2) < oo
if and only if σγ and o2 are asymptotic.

3* The basic approximation* Let M be a simply connected,
complete Riemannian manifold of nonpositive sectional curvature and
let Mr be a symmetric space of noncompact type. Let Γ and Γ' be
properly discontinuous groups of isometries acting freely on M and
Mf respectively such that M/Γ and M'jΓ' are compact. Let Θ:Γ->Γ'
be an isomorphism. The following lemma extends Lemma 13.1 of [7].

LEMMA 1. Let F be a Γ-compact flat in M, let A be the stabilizer
of Γ, and let A! = Θ(A). Then there is a unique Γr-compact flat Ff

in Mr stable under A!'.

A flat is a maximal, flat totally geodesic subspace in M. A flat
is Γ-compact if it is invariant under a maximal abelian subgroup A of
Γ. The proof of this lemma follows from the flat torus theorem of
Lawson and Yau [6]. In this paper, we only need the lemma for
infinite geodesies which are invariant under axial elements of Γ and
are the axes of these axial elements respectively. Recall that the
fixed points of these axial elements or the end points of these
geodesies are dense in the boundary M(oo).

LEMMA 2. (The basic approximation) Let F be a Γ-compact
flat in M and F' be the unique flat in Mr stabilized by Θ(A). Then
there is a constant v depending only on k and b but not on the
particular choice of the Γ-compact flat F such that hd(φ(F), Fr) 5̂  v,
where hd denotes the Hausdorff distance between F and Fr.

Proof. Let π:M~>F and π': M' —> Fr denote the orthogonal
projections of M onto F and M' onto F'. Note that π and tf are A
and A! equivariant respectively. The topological argument of Mostow
[7] still implies that π\φ{F)) = F'. Also π(Th(φ'\Ff)) = F. Let

d = sup d(φ{x), Fr)
xeF

df = sup d(φ(F)9 x) .
xeF'

Then, Mostow's estimates are valid in his proof in [7] except particular
attention needs to be paid to Lemma 6.4. of [7] which gives a basic
inequality for symmetric spaces. Since we have assumed that Mr

is symmetric, this basic inequality holds. We do not know how to
prove this inequality for arbitrary negatively curved manifolds.

4* The boundary map* The cone topology on the boundary
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M(oo) has been introduced by Eberlein and O'Neill on [4]. Let x be
a point in M. A sequence {zn} in Λf(<χ>) converges to z in M(°°) if
and only if the angles {^Cx(znf z)} converges to 0 as n approaches
to oo. That is, the infinite geodesies {σn} (σn is an infinite geodesic
joining x to zn) converges to the infinite geodesic σ joining x to z
with the topology of uniform convergence on compact sets in M.
Consequently, §14 of [7] makes sense.

LEMMA 3. Under the hypotheses o/§3, for each infinite geodesic
σ in M, there is an unique infinite geodesic σr in M' such that
hd(φ(σ), σ') <ί v, where v is given in Lemma 2. The map φ: a —> σf

induces a homeomorphism from the boundary M{ oo) onto the boundary
ϋf'(oo). The induced homeomorphism is still denoted by φ.

Proof. Recall that the fixed points of (axial) elements of Γ and
Γ' are dense in the boundaries Λf(°o) and Λf'(°°) respectively. Let
us denote by S the set of fixed points of elements in Γ in Λf(°°). For
each σ representing z in S, let φ{σ) denote the unique infinite geodesic
in Mr such that hd(φ(σ), φ(σ)) 5* v. In order to prove that φ is
the restriction to S of a continuous map of M(o°) into M'(oo)f it
suffices to prove: that if z in M(oo) and {zn} is a sequence in S con-
verging to z, then {φ(zn)} is convergent in ifef'(oo). Let Bs(x) and
Bs(φ(x)) denote the balls of radius s and centers x in M and φ(x) in
Mf respectively. Let σn denote the infinite geodesic joining x to zn

and assume that x is in σ. By hypothesis, hd(σn Π BΛ(x\ σ (Ί B8(x)) —>
0 as n -H> co. Since φ is continuous and φ(Bs(x)) Z) B's/k(φ(x)) for all
s 7^ b, we have

Π J8.'(̂ (α)), ^(σ) Π ̂ (^(x))) > 0

as n—> oo. Let vL be any number such that vι > v. Let J^7 denote
the set of all infinite geodesies & in M' such that

hd(σ' n BiWaj)), Φ(σ) Π B^(a ))) ^ ^ .

Then φ(σn) are all in ^ for all sufficiently large subscripts of the
sequences {σn} of axes of elements of Γ. The family {^s\ s > 0} is
a nested family with a nonempty intersection (see p. 104 of [7]).
Let & be an element of the intersection Π S^s(s > 0). Then

hd(σ' Π B's{φ(x)\ φ(σ) ΓΊ B's(φ(x))) ^ ^

for all s > 0. Thus hd(σ'9 φ(σ)) £ v, for all vx>v. Hence M((j', φ(σ)) S
v. If σ" is another element of the intersection Π ̂ s ( s > 0). Then
hd(σ", φ(σ)) ̂  v, and hd(σ', σ") ^ 2v. It follows that σf and a" are
asymptotic and the sequence {φ(zn)} converges to a single point in
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ibf'(oo). By density, we have that, for each z in M(oo)9 which is
represented by σ, hd(φ(σ), φ(σ)) ̂  v.

Furthermore for each 7 in Γ and each infinite geodesic σ in M,
we have kd(φ(yσ), θ(y)φ(σ)) = hd(θ(y)φ(σ), θ(y)φ(σ)) = hd(φ(σ), φ(σ)).
Hence hd(φ(Ύσ), θ(y)φ(σ)) ̂  hd(φ(yσ), φ(yσ)) + hd(φ(iσ), θ(y)φ(σ)) ̂  2v.
Consequently, φ(yσ) and θ(y)φ(σ) are asymptotic and represent the
same point φ(yz) = θ{j)φ(z) in Λf'(oo).

The map φ is injective. For given distinct points z1 and 22

represented by σγ and tf2 such that hd(σlf σ2) is °o. Then hd{φ(σ^), φ{o^))
is oo since ^ is a pseudo-isometry. Therefore hd{φ{σ^), φ(σ2)) = ^ .
Thus φ{zx) Φ φ(z2).

To prove that φ is a homeomorphism of Af(°°) onto ikf'(oo), we
consider the map ζ5': Λf'(oo) —> M(oo) induced by the pseudo-isometric
Γ'-map Φ': M' —> M. Let s in S and let σ represent z. If 7 is the
axial element translating σ, then 0(σ) is the infinite geodesic in M'
translated by θ(y). Moreover φ'φ(σ) is the infinite geodesic in M
translated by 7. Therefore φ'φ(z) = z for all z in S. Hence φ'φ —
identity. Similarly φφf — identity, φ is a homeomorphism from
M(oo) onto Λf'(oo).

Thus the proof of Theorem 2 is completed.
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