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A REPRESENTATION OF H?-FUNCTIONS WITH 0<p< o

SERGIO E. ZARANTONELLO

Let E be an open arc in the unit circle. Let F belong
to the Hardy space H?, 0 < p <o, and let g be the restric-
tion of the boundary distribution of ¥ to E. For each
0 < 1<1 we construct functions G;€ H? from g such that
G, — F in the topology of H? as 1 —1.

I. Introduction. The purpose of this article is to extend to
the case 0 < p < 1 the following theorem of D. J. Patil.

THEOREM A. [2, Th. I, p.617]. Let E be a subset of the unit
cirele T, of positive Lebesgue measure. Let 1 < p =< oo, let F be in
the Hardy space H?, and let g be the restriction to E of the bound-
ary-value function of F. Denote the normalized Lebesgue measure
on T by m, the open unit disc in the complex plane by U, and
define for each >0

Hy(z) = exp { —% log(1 + x)SEZ + z dm(w)} (ze U),
Gi(2) = xH;(z)S}f—"ﬁ—’%j—)dm<w> , (ze U),

where h; is the boundary-value function of H,.
Then as »— =, G, approaches F uniformly on compact subset
of U. Moreover, if 1 < p < oo then ||G; — Fl|lzp — 0 as N — oo,

The extension of the above to the case 0 < p» <1 involves a
strengthening of the hypotheses: the set E of positive measure will
be replaced by an open arc in T, and instead of the characteristic
function of E we will work with an infinitely differentiable function
with support in E.

Specifically, let E be an open arc in 7T, and let 4 be an infini-
tely differentiable function on T with support in E such that

(1) 0=y(w)=1 (weT),

(ii) J ={we T:y(w) = 1} has positive Lebesgue measure.

THEOREM B. Let 0 < p < <o, let F be im H?, and let g be the
restriction to E of the boundary distribution of F on T. Define
Jor each 0 <A< 1
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)
) = 2E 8 (weT),
Hz) = exp |~ 1| L2 E10g[1 + pwldmw)} (e V),
Gi(2) = Hy(2)Xg, 2:0:C.) (ze U),

where h; is the boundary-value function of H, {,>; 1s the pairing
between distributions and test fumctions on E, and C, is the Cauchy
kernel, i.e., ‘

Cow) = —L (weT, zeU).
1 — wz
Then ||G; — Fllgp — 0 as x— 1. In particular G, approaches F
uniformly on compact subsets of U.

Our main result, Theorem B (Theorem 4.6 in the text), is proven
in §IV. In §II we establish the notation and terminology, and list
well-known properties of the Hardy spaces and Toeplitz operators.
Our proof of Theoram B closely parallels the method of Patil in
[2]; it involves the use of Toeplitz operators associated with infinitely
differentiable functions, which, we prove in §III, can be extended
to bounded operators on H? for all 0 < p < co.

II. Preliminaries. In the sequel, U will be the open unit dise
in the complex plane and T its boundary, the unit circle. We shall
denote the normalized Lebesgue measure on T' by m; the correspond-
ing L*-spaces will be denoted by L?(T) and the L?-norm by || |lisz).
The phrase “almost everywhere” will always refer to the measure m.

1. Test functions and distributions. Let E be an open arc in
T. The space of test functions on E will be represented by C3(HE).
The test functions on E, we recall, are infinitely differentiable com-
plex-valued functions on E with compact support. If E = T, we
write C*(T) instead of C3(T). By a distribution on E we shall
mean a continuous skewlinear functional on the topological linear
space Cy°(E). The space of distributions on E will be denoted by D(E).

If {¢, @)z represents the sesquilinear pairing between ¢ e D(E)

and @ e Cy(E), we identify a locally integrable function f on E with
the distribution f defined by

Sy prs = | Fwoip@pdm) .

The same symbol {,>, shall be used to represent the inner
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product in L E).
Let ¢ € D(T), and define ¢, € C*(T) by e,(w) = w" for each integer
n. The Fourier coefficients of ¢ are the numbers

$(n) = {8, ew)r -

The Fourier series of ¢ is the formal series 3'= ¢(n)w". A straight-
forward calculation shows that 3,2 a,w" is the Fourier series of a
test function on 7T if and only if

la.| = O(ln]")

for all integers ¢. Consequently, a necessary and sufficient con-
dition for 32 a,w" to be the Fourier series of a distribution on T
is that

la,| = O(|n|™)

for some integer gq.

If ¢ € D(T) has Fourier series ‘2 a,w", we denote by Pg the
distribution of Fourier series >, ,a,w". We refer to P as the pro-
jection operator. If e C(T), we define M,p<c D(T), by

<M¢’¢’ ":[">T = <¢: 9—5"#>T

for all 4+ e C=(T). We call M, the multiplication by o.
Finally, we remark that the partial sums of the Fourier series
of ¢€ D(T) converge to ¢ in the topology of D(T) and that

G, Pre = 3, Fn)Fm)
for p € C(T) and ¢ € D(T).

2. Hardy spaces. Let F' be a holomorphic function in the
open unit dise U. If 0 <7 <1, and if w e T, we write F.(w) = F(rw)
and define, for 0 < p < o,

[ E ||zrir = 1}_{? I|E || zecry -

The Hardy space H*(U) is the linear space of all holomorphic func-
tions F on U such that |[|[F||g»y < . The space H=(U) is the
space of bounded holomorphic functions in U, and || ||, e is the
supremum norm.

If p=1, then H?(U) is a Banach space with norm ||||z»w). This
is no longer true if 0 < p < 1; in this case, however, we can regard
H?(U) as a complete metric space with the translation-invariant
metric
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dF, G) = || F — Gllirw) -

For all 0 < p < o the polynomials are dense in H?*(U). If
0<p<q= o it can be verified that || ||;ew) = || ||xew; consequently
H(U) is a dense subspace of H?(U). We also remark that the
topology of H?(U), 0 < p = oo, is stronger than that of uniform con-
vergence on compact subsets of U.

Let 1< p <o and let F(z) = D7, a,2" be in H?(U); as is well-
known, >o_.,a,w" is the Fourier series of a function fe L*(T).
Moreover,

lim F.(w) = f(w)

for almost all we T,
W Fllurwr = 1f llzoery
and, if 1 <p < o,
lim ||, = fluscry = 0 -

Thus, F'— f is an isometry between H?(U) and a closed linear sub-
space H?(T) of L*(T), which consists of the functions in L*(T)
whose Fourier coefficients corresponding to negative integers are
identically zero. We refer to F' as the holomorphic extension of f
to U, and to f as the boundary-value function of F on T.

Our main concern, in this article, is with the spaces H?(U)
with 0 < p < 1. The following theorem is due to Hardy and Little-
wood, and will be used in the sequel.

2.1. THEOREM [1, Th. 6.4, p.98]. Let 0<p=1, and let
F) =Yg ,a,2" be in H?(U). Then

la, | = C(p)n"*7 ||F|| yow)

for n =1,2, ---, where C(p) is a constant which depends only on p.

[Clearly C(1) =1 is best possible.]

If 0<p<1l and if F(z) = >7-,0a,2", the above implies that
S, a,w" is the Fourier series of a distribution f on T. As with
the case 1 < p < o, we rafer to F' as the holomorphic extension of
f to U, and to f as the distributional boundary-value of F' on T.
The space of all distributional boundary-values of functions in
H?(U) will be denoted by H?(T). We endow H?(T) with a metric
structure isometric to that of H?(U) by setting

Hf”HP(T) = ”FHHP(U)
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whenever f and F' are related as above.
It is known ([1, Th. 7.5, p.115]) that each @ € C*(T) gives rise
to a bounded linear functional 4, on H?(U), 0 < p < 1, defined by

AwF = <f’ ¢>T .

This implies that the topology of H?(T) is stronger than the one
inherited from D(T).

Let 0 < p < o, let F e H?(U), define F.(w) = F(rw) for 0 <7 <1
and we T, and let f be the distributional boundary-value of F. For
ze U and 0 < r <1, Cauchy’s formula

F(rz) = S FW)
rl — Wz
holds. Since in all cases 0 < p < o the functions F, converge to f
in H?(T), and hence in the weaker topology of D(T), it follows
that

F(z) ={f, Cr
where

1

C.lw) = 1— wz

ze U, and we T.

3. Toeplitz operators. Let P be the orthogonal projection of
L¥T) onto H¥T). Fix e L>(T) and let M, be the corresponding
multiplication operator on L*(T). The Toeplitz operator S,: HX(T)—
H*T) is the composition PM,; i.e.,

S.f = P(of)
for fe HYT). It can be immediately verified that

6) = | 2L gw) = (7, Gy

is the holomorphic extension of S,f to U.
The following elementary properties will be used in the sequel:
(a) Sy is the adjoint operator of S,.
(b) If either e H™(T) or € H*(T), then Soyp = S,Sy.
A consequence of (b) ([2, Lemma 1, p. 618]) is:
(¢) If he H*(T), if 1/he H>(T), and if ¢ = |h|™?, then S, is
invertible and (S,)™* = S,S;.

I1I. Toeplitz operators on H?(T), 0 <p» <1. Since the ortho-
gonal projection P of L*T) onto H*T) extends or restricts to a
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bounded projection of L*(T) onto H?(T), the Toeplitz operator
S, = PM, is bounded on H?(T) whenever 1 < p < « and ¢@e L(T).
The projection P, however, is not bounded on L'(T); thus, in general,
S, will not be a bounded operator on HYT), or on H?(T) with
0 < p<1l. As was noted earlier, the projection P can be naturally
extended to the space D(T) of distributions; namely, by assigning
to the distribution ¢~ 3\t2 a,w™ the “analytic” distribution Pg~
S a,w*. If e C(T), the multiplication operator M. can also be
naturally extended to D(T). Thus, the symbol PM,f is meaningful
for fe HY(T), 0 < p < =. Our goal is to prove that S, = PM,, with
peC=(T), is a bounded operator of H*(T) into itself, even 1if
0<p=1

LemMA 3.1. Let peC=(T), let fe H(T), and let 0 <p=1.
Then

HSs?fHHP(T) = K.(0) |/ oy »

where K(p) depends on » and @ dbut is independent of f. Moreover,
if @ has Fourier series >,72c,w” and if C(p) is the constant of
Theorem 2.1, them we can choose

Ki(p) = (3 el + 3 (2 + C0)(n — 17 fle, 777 .
Proof. Let G be the holomorphic extension of S,f to U, i.e.,
G(z) = S L ONCIPo
r 1 — wz

and let F(z) = 37, a;2” be the holomorphic extension of f to U.
We proceed to establish
NGy = Ko@) | El vy »

which is equivalent to the assertion of the lemma. To this effect
we write

(3.1.1) G(z) =S, ST—]L-@_JC—(;‘)’;— dm(w) ,

and define

M(2) = | 2L g

@) = | 2 )

for all nonnegative integers n, and z¢e U.
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Both M, and N, are holomorphic in U. Clearly M,(z) = 2"F(z):
hence

(3-1-2) HMnHHmm = HFHIIP(U) .
On the other hand, for n =1, 2, ---,
N,(2) = gof(j + ) = Z‘”{;f(j)z" - gf(j)zf} ,

which can be rewritten (since the Fourier coefficients of f are the
Taylor coefficients of F')

N,(&) = 2 F@) — S a2 | .
Consequently, for 0 < p <1,
NP < 2 F@P + Slarl,
and
lim | |N,(rw)l” dm(w) < 1F e, + 3 a1
Since by Theorem 2.1
la;| < C)3" " |F |lusier
for j=1,2, ---, and since
lao| = [[Fllarwn

we get

(3.1.3) N ooy = 21 F 5oy + C0)*(n — 177?| F|%o) -

By (3.1.1) we have
G2 = 3, . My(@) + S0, N,(3) ;
(3.1.2) and (3.1.3) then imply
BLD) Gl = Slenl” | Malliw + el | Nalmc
SUFod S leal? + 35 12 + C0Y(n — 1077] e, ]2}
This completes the proof. [We recall that |¢,| = O(n™?) for all

positive integers q; consequently, the right-hand term in (8.1.4) is
finite.]
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THEOREM 3.2. If @<cC=(T), the Toeplitz operator S, = PM, is
a bounded operator on H?(T) for 0 < p < 1.
If ¢ has Fourier series >,"% c,w", the norm

1Se ey = sub{l Sof lurry: | fllapr = 1}
satisfies the estimate

(1) ISelllzoizy = Ko(p) -

Finally, if fe H(T), then S,f is the distributional boundary-
value of the holomorphic function (of the variable z)

(2) (M,f, CHr
where C,(w) =1/1 — wz, we T, and z€ U.

Proof. Fix 0 < p<1. That the operator S,: H*T) — H*T) can
be uniquely extended to a bounded operator L on H?(T) and that
the norm of L satisfies (1) is a direct consequence of Lemma 3.1
and of the fact that H*T) is dense in H?(T).

To establish L = PM,, fix fe H?(T) and let Ge H?(U) be the

holomorphic extension of Lf to U. Our immediate goal is to show
that

G(z) = {f, PCor -

Let F be the holomorphic extension of f to U, set F.(w) = F(rw),
and denote by G, the holomorphic extension of LF, = S,F, to U.
It is clear that

G0 = | D) gw) = (F,, 7C.); .
r 1 — w2z
Since the functions F, converge to the distribution f in the

topology of H?(T) as r tends to 1, it follows that
(3.2.1) lim G,(2) = {f, $C.)»

for each ze U. On the other hand, the continuity of L implies
that LF, approaches Ljf in H?(T); or equivalently for the holo-
morphic extensions: that G, converges to G in H?(U), in particular

(3.2.2) lirrll G.(z) = G(2)

for ze U. The equalities (3.2.1) and (3.2.2) now establish
(3.2.3) G(z) = {f, C.or = (M, f, C.)r .
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By a straightforward calculation it can be shown that the boundary-
value of G (the distribution Lf) is the analytic projection of M.,f,
i.e., Lf = PM, = S,. This completes the proof.

COROLLARY 3.3. If @ C™(T), if he H*(T), if 1/hc H*(T), and
if @ = |h|™® then the Toeplitz operator S,: H*(T)— H*(T) is in-
vertible, and S;* = S,S3, for all 0 < p < .

Proof. The case 1 < p < = is dealt with in [2]. To prove the
remaining case it suffices to show that heC=(T), for then the
operators S, S;, S, will be bounded operators on H?(T),0<p <1,
that satisfy S;' = S,S; on a dense subset [say H*T)] of H*(T).
This, however, follows readily. The hypotheses on % imply that
log ||, the real part of logh, is in C*(T'), consequently loghe C=(T)
which implies ke C~(T).

IV. The representation of functions in H?(U).

DEFINITIONS 4.1. Let E be an open arc in the unit circle 7.
Choose 4 € C*(T) such that

(a) + has compact support in H,

b) 0=yw)=1 (weT),

() J ={we T y(w) =1} has positive Lebesque measure.

For each 0 < )\ < 1 define

R AC))
w) = 7 2E s (weT),
Hy(z) = exp{———%STZ—t—:log[l + X;(w)]dm(w)} (ze U).

It is immediate that x,€C=(T), and that H;e H*(U). Denote
by h; the boundary-value of H,. The following are verified:

@ ()| =1+ pw) (weT),

(&) h; and h;* are tn H=(T).

Finally, define for each 0 <\ <1

pAw) =1 + Ya(w) (weT).
Then
_ 1
() Paw) = T 0(m) N (10) (weT).

Our next lemma is an immediate consequence of Corollary 3.3.

LEMMA 4.2. Each S,, is an invertible operator on H?(T),
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0 < p < oo, with inverse S;; = S;,Si,.

LEMMA 4.3. The operators S;;, 0<\<1, are uniformly bounded
on H?(T),0 < p < co.

Proof. The case 1 < p < o is a consequence of the conjugate
function theorem of M. Riesz (as in [2, Lemma 5, p. 618]).
Assume 0 < p £ 1, and let fe H?(T). Then

fl z(m(hz(n)f (@eg-nim

0 ¢=0

Shzsl—b;_f =

0

Ms iMs
Ms M3

S hmhmF@esn

0 ¢g=max (0,%
n—

1l

0

8
[}
3
1

—~1

> m)h()F @y

0 2=0 ¢=max (0,%—m,
40 = n—1

Z Z il:l(m)k\l(n) Z eq—'n+m .

k=—co m—n=Fk g=max (0,n—m)

Ms

m

Silshx‘f

it

Il

Recalling |A;(w)|* =1 — Mp(w), and letting K, (p) be the constant
of Lemma 3.1, we verify (using the estimates 2.1):

HSh;SE;,f”?mT) < 201 + MK f e »
which establishes the Lemma.
LEMMA 4.4. Fix ze U. Then lim,., ||S;C.|lurwy =0, for 0<

p < co. Moreover S;\C, = H;(2)h,C..
[For ze U and we T we recall the definition C,(w) = 1/1 — wz.]

Proof. The same argument used in [2, Lemma 3, p.618] es-
tablishes

Si,C. = Hy(2)C, .
Since S,;! = S,,8:,, we have
(4.4.1) S;;Cz = S"ZSZ/ICZ = Shl Hz(Z)C, = .H;(Z)hzcz .

From the definition of H, it follows that

@42 H@|=exp |~ 3| L2 loglt + pwldm(w)]

< ex p{ls Tjr—}ﬁl—log(l—x)dm(w)} =1 -,

where 2a = {1 — |2|/1 + |z[}m(J) > 0.
By (4.4.2) we have
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(4.4.3) | H{@DrC oy = | Hi(D) | C || o
= @ =M hllzew | Cllara -
Combining (4.4.1), (4.4.3), and
h(w)| =1+ W] =1,
we get

tim || S51C, luscry = Tim (1 = %) [|Collser) = 0.

LEMMA 4.5. If 0<p <o and fe HX(T), then
l}ﬁl W =T+ 8 )7" Sy S llueery = 0.

Proof. Lemma 4.3 and Lemma 4.4, in conjunction with the well-
known fact that the linear span of {C,:ze U} is dense in H?(T),
0 < p < o, imply

I;I_I.? HS;;fHHP(T) =0

for all fe H*(T). Since (I + S,)™" =(S,)" =S8, by Lemma 4.2,
we have

Hm [|(1 + 8,)™ sy = 0 -
Observing that
L+ 8)"f=Ff—UT+8,)7S, [,
we get

im |1 = (T + 8,78,/ llasr = 0.

THEOREM 4.6. Let Fe H?(U), with 0 < p < o, let fe H?(T) be
the distributional boundary-value of F on T, and let g be the
restriction of f to the open arc E. For 0 <\ < 1 define holomorphic
Sunctions G, on U by

Gl<z) = Hl(z)<g’ XZhZCZ>E .

Then as N—1 we have ||G; — F'||lypay — 0. In particular G, ap-
proaches F uniformly on compact subsets of U.

Proof. In view of Lemma 4.5, the proof will be complete if
we succeed in showing that G, is the holomorphic extension of
(I+8,)7'S,,f to U. The case 1 < p < co is essentially dealt with
in [2]; we restrict ourselves to 0 < p < 1.
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Let fe H¥(T). Since (I+S,,™" is a self-adjoint operator on H*(T),
(4.6.1) (I + 8,78, fr Cdr = (S fs I+ 8,)7'C.s
=M, [, I+ 8,)7Chr .
By Lemma 4.4,
(I+ 8,)7C. = 8;C. = Hi()hC. ,

Consequently
(4.6.2) My fy (I + 8,)7'Coor = My, f, H(2)hC.)r

= Hy(z){M,,f, hC.)r

= H(2){f, 1:0C.)r

Since the operators involved are defined and continuous on H?*(T),
and since H*(T) is dense in H?(T), the relations (4.6.1) and (4.6.2)
imply
I+ 8,718, Codr = Hy(2)XS, :aCoyr
for all fe H*(T). Therefore
Gi(z) = Hy(2){g, 1:lC.)r = Hy(2){S, X1h:C.)r
= (I + Sz)™*Sy, /5 Cor s

which establishes G, as the holomorphic extension (the “Cauchy
integral”) of (I + S;)7'S,,f to the disc U.
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