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A REPRESENTATION OF //'-FUNCTIONS WITH 0<p<oo

SERGIO E. ZARANTONELLO

Let E be an open arc in the unit circle. Let F belong
to the Hardy space Hp, 0 < p <oo, and let g be the restric-
tion of the boundary distribution of F to E. For each
0 < λ < 1 we construct functions Gx e Hp from g such that
Gx -+F in the topology of Hp as λ -* 1.

L Introduction* The purpose of this article is to extend to
the case 0 < p < 1 the following theorem of D. J. Patil.

THEOREM A. [2, Th. I, p. 617]. Let E be a subset of the unit
circle T, of positive Lebesgue measure. Let 1 tί p :S °°, let F be in
the Hardy space Hp, and let g be the restriction to E of the bound-
ary-value function of F. Denote the normalized Lebesgue measure
on T by m, the open unit disc in the complex plane by U, and
define for each λ > 0

Hλ(z) = exp {—ί log(l + λ)ί ™Jr_±dm(w)\ (z e U),
I 2 JEW — z )

Gx{z) = \Hi(z)\ y w ) g { w ) dm(w) , (zeU),
JE 1 — wz

where hλ is the boundary-value function of Hx.
Then as λ —» co 9 Gλ approaches F uniformly on compact subset

of U. Moreover, if 1 < p < cχ> then \\Gχ — F\\HP —> 0 as λ —> °o.

The extension of the above to the case 0 < p < 1 involves a
strengthening of the hypotheses: the set E of positive measure will
be replaced by an open arc in T, and instead of the characteristic
function of E we will work with an infinitely differentiable function
with support in E.

Specifically, let E be an open arc in T, and let ψ be an infini-
tely differentiable function on T with support in E such that

( i ) 0 ^ ψ(w) ^ 1 (we Γ),
(ii) J = {w e T: ψ(w) = 1} has positive Lebesgue measure.

THEOREM B. Let 0 < p < co, Ut F be in Hp, and let g be the

restriction to E of the boundary distribution of F on T. Define
for each 0 < λ < 1
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Hλ(z) = exp {—U ™±± log [1 + χ>(w)]dm(w)\ (zeU),

where hλ is the boundary-value function of Hλ, (,}E is the pairing
between distributions and test functions on E, and Cz is the Cauchy
kernel, i.e.,

C,(w) = ί-3- (weT,zeU).
1 — wz

Then \\Gχ — F\\HP —> 0 as λ—> 1. In particular Gλ approaches F
uniformly on compact subsets of U.

Our main result, Theorem B (Theorem 4.6 in the text), is proven
in § IV. In § II we establish the notation and terminology, and list
well-known properties of the Hardy spaces and Toeplitz operators.
Our proof of Theorem B closely parallels the method of Patil in
[2]; it involves the use of Toeplitz operators associated with infinitely
differentiable functions, which, we prove in § III, can be extended
to bounded operators on Hp for all 0 < p < ^o.

II* Preliminaries. In the sequel, U will be the open unit disc
in the complex plane and T its boundary, the unit circle. We shall
denote the normalized Lebesgue measure on Γ by m; the correspond-
ing Lp-spaces will be denoted by LP(T) and the Lp-norm by || | | L P ( Γ ).

The phrase "almost everywhere" will always refer to the measure m.

1* Test functions and distributions* Let E be an open arc in
T. The space of test functions on E will be represented by C"(E).
The test functions on E, we recall, are infinitely differentiable com-
plex-valued functions on E with compact support. If E = T, we
write C°°(T) instead of C?(T). By a distribution on E we shall
mean a continuous skewlinear functional on the topological linear
space C™(E). The space of distributions on E will be denoted by D(E).

If (φ, φ)E represents the sesquilinear pairing between φ e D(E)
and ψ e C~(E), we identify a locally integrable function f on E with
the distribution / defined by

<Λ φ)E = \ f(w)<p(w)dm(w) .
JE

The same symbol (,)E shall be used to represent the inner
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product in L\E).
Let φ G D(T), and define en e C°°(T) by en(w) = wn for each integer

n. The Fourier coefficients of 9 are the numbers

φ(n) = <^, eT C> r .

The Fourier series of 9 is the formal series XίΞ φ(n)wn. A straight-
forward calculation shows that ΣίΞ απw

π is the Fourier series of a
test function on T if and only if

\an\ =O(\n\<)

for all integers q. Consequently, a necessary and sufficient con-
dition for Σ ί - α*ww to be the Fourier series of a distribution on T
is that

\an\ =O(\n\-«)

for some integer q.
If φeD(T) has Fourier series Σ i ~ α»w*» we denote by Pφ the

distribution of Fourier series Σ»=o α»ww We refer to P as the pro-
jection operator. If φeC°°(T), we define MφφeD(T), by

for all ψeC°°(T). We call M^ the multiplication by φ.
Finally, we remark that the partial sums of the Fourier series

of φeD(T) converge to φ in the topology of D(T) and that

(φ, <p)τ = Σ Φ(n)φ(n)

for φeC°°(T) and φeD(T).

2. Hardy spaces* Let F be a holomorphic function in the
open unit disc U. If 0 < r < 1, and if w e T, we write Fr(w) = F(rw)
and define, for 0 < p < 00,

\\F\\unu) = \LP(T)

The Hardy space Hp( U) is the linear space of all holomorphic func-
tions F on U such that \\F\\HP(U) < 00. The space H°°(U) is the
space of bounded holomorphic functions in U, and || ||7/oo(t/) is the
supremum norm.

If P^l, then HP(U) is a Banach space with norm || | | / / W ) . This
is no longer true if 0 < p < 1; in this case, however, we can regard
HP(U) as a complete metric space with the translation-invariant
metric
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d(F,G) = \\F-G\\P

mu).

For all 0 < p < o° the polynomials are dense in HP(U). If
0 < p < g ^ c o it can be verified that || \\HP(U) ^ || \\Hnu)', consequently
Hq(U) is a dense subspace of HP(U). We also remark that the
topology of Hp{ U), 0 < p <£ °o, is stronger than that of uniform con-
vergence on compact subsets of U.

Let l^p^oo and let F{z) = Σ»-o«»«* be in HP(U); as is well-
known, Σ?=oΛww

w is the Fourier series of a function feLp(T).
Moreover,

lim jPr(w) - /(w)
r-*l

for almost all w e T,

I! FWHPW) — I I / I U P ( D

and, if 1 <i p < oo,

Thus, JP7 —> / is an isometry between iί p( [/) and a closed linear sub-
space fZ"p(Γ) of LP(T), which consists of the functions in LP(T)
whose Fourier coefficients corresponding to negative integers are
identically zero. We refer to F as the holomorphic extension of f
to U, and to / as the boundary-value function of F on T.

Our main concern, in this article, is with the spaces HP{U)
with 0 < p < 1. The following theorem is due to Hardy and Little-
wood, and will be used in the sequel.

2.1. THEOREM [1, Th. 6.4, p. 98]. Let 0 < p £ 1, and let

F(z) - ΣSUα s" be in HP(U). Then

for n — 1, 2, , where C(p) is a constant which depends only on p.

[Clearly C(l) = 1 is best possible.]
If 0 < p < 1 and if F(z) = Σϊ=o α»zM, the above implies that

Σ»=o <inWn is the Fourier series of a distribution / on T. As with
the case 1 ̂  p ^ °°, we refer to F as the holomorphic extension of
f to U, and to / as the distributional boundary-value of F on T.
The space of all distributional boundary-values of functions in
HP(U) will be denoted by HP(T). We endow HP(T) with a metric
structure isometric to that of HP(U) by setting
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whenever / and F are related as above.
It is known ([1, Th. 7.5, p. 115]) that each φeC~(T) gives rise

to a bounded linear functional Λφ on HP(U), 0 < p < 1, defined by

ΛφF = </, φ)τ .

This implies that the topology of HP(T) is stronger than the one
inherited from D(T).

Let 0 < p < oo, let FeHp(U), define Fr(w) = F(rw) for 0 < r < 1
and w e T, and let / be the distributional boundary-value of F. For
ze U and 0 < r < 1, Cauchy's formula

F(rz) = \ M *w!_ dm(w)
JT 1 — wz

holds. Since in all cases 0 < p < °° the functions Fr converge to /
in HP(T), and hence in the weaker topology of D(T), it follows
that

F(z) = </, Cz)τ

where

C.(w) = , 1 . ,
1 — wz

z e U, and w e T.

3* Toeplitz operators. Let P be the orthogonal projection of
L\T) onto H\T). Fix φeL°°(T) and let Mφ be the corresponding
multiplication operator on L2(T). The Toeplitz operator Sφ: H*(T)->
H\T) is the composition PMφ; i.e.,

Sφf = P(φf)

for feH\T). It can be immediately verified that

G(z) = \ ΦW'JyV) dm(^w) = (Mφf, Cz)τ

is the holomorphic extension of Sφf to Z7.
The following elementary properties will be used in the sequel:
(a) Sφ is the adjoint operator of Sφ.
(b) If either φeH°°(T) or ψeH°°(T), then Sφψ = SφS+.
A consequence of (b) ([2, Lemma 1, p. 618]) is:
(c) If heH°°(T), if l/heH°°(T), and if φ = \h\~\ then Sφ is

invertible and (Sφ)"1 = ShSj.

III. Toeplitz operators on HP(T), 0 < p ^ 1. Since the ortho-
gonal projection P of L2(T) onto H\T) extends or restricts to a
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bounded projection of LP{T) onto HP(T), the Toeplitz operator
Sφ = PMφ is bounded on HP{T) whenever 1 < p < co and φeL00^).
The projection P, however, is not bounded on Lι(T); thus, in general,
Sω will not be a bounded operator on H\T), or on HP(T) with
0 < p < 1. As was noted earlier, the projection P can be naturally
extended to the space D{T) of distributions; namely, by assigning
to the distribution φ~ Y^2anw

% the "analytic" distribution Pφ~
Σn^anw

n If φeC°°(T), the multiplication operator Me can also be
naturally extended to D(T). Thus, the symbol PMφf is meaningful
for fe HP(T), 0 < p < c>o. Ow goal is to prove that S9 = PM9, mίfe
φeC°°(T), is a bounded operator of HP(T) into itself, even if
0 < p ^ l .

LEMMA 3.1. Let φeCm(T), let feH\T), and let 0 < p ^ 1.

n <,Kψ{p)\\f

where K(p) depends on p and φ but is independent of f. Moreover,
if φ has Fourier series Σ-Ξ cnw

n and if C(p) is the constant of
Theorem 2.1, then we can choose

Proof. Let G be the holomorphic extension of Sψf to U, i.e.,

G{z) =

and let F(z) — Σ?=o a>jZj be the holomorphic extension of / to U.
We proceed to establish

\\G\\HP{u)^KΨ(p)\\F\\IIP{u),

which is equivalent to the assertion of the lemma. To this effect
we write

(3.1.1) G(z) = ΣcA wjy_J dm(w) ,
J?7 1 — wz

and define

)τ 1 — wwz

Nn(z) = \ w Λ™'
JT 1 — wί

for all nonnegative integers n, and z e U.
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Both Mn and Nn are holomorphic in U. Clearly Mn{z) = znF(z):
hence

(3.1.2) \\Mn\\HP{u) = \\F\\imu).

On the other hand, for n — 1, 2, ,

i Σ
i=o li=o j=o

which can be rewritten (since the Fourier coefficients of / are the
Taylor coefficients of F)

NΛ(z) = z-\F(z)-

Consequently, for 0 < p ^ 1,

and

Since by

for j = 1,

we get

(3.1.3)

By (3

(3.1.2) anc

(3.1.4)

limt
r- l IT

Theorem

2, •••,

.1.1) we

1 (3.1.3)

llβ lib,

2.1

a.

and si

have

G(z) -

then i

\\F\\'av

)\pdm

3 ^ ί

nee

IFII&P

oo

= Σc
%=0

mply

ι 1 ̂ % 1
)

MύVFUi,

_̂ s 11 J? \uP{U)

W) + C(p)»(n

oo

% = 1

k l' + Σ[2

H P(

—

oo

Σ

+

Λ - l

+ Σ

7V7" ^/y v

|c_.|»

C(p)ϊ)

IfΊIW,

(«. - i ) 2 - y

This completes the proof. [We recall that \cn\ = O(n~g) for all
positive integers q; consequently, the right-hand term in (3.1.4) is
finite.]
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THEOREM 3.2. / / φeC°°(T), the Toeplitz operator Sφ = PMφ is
a bounded operator on HP(T) for 0 < p :g 1.

/ / φ has Fourier series Σ-™ cnw
n> the norm

\\\Sv\\\imT) =

satisfies the estimate

(1) \\\Sφ\\\HPm £ Kφ{p) .

Finally, if fe HP(T), then Sφf is the distributional boundary-
value of the holomorphic function (of the variable z)

( 2 ) {Mψf, Cz)τ ,

where Cz(w) = 1/1 — wz, w e T, and ze U.

Proof. Fix 0 < p ^ 1. That the operator Sφ: H\T) -> H\T) can
be uniquely extended to a bounded operator L on HP(T) and that
the norm of L satisfies (1) is a direct consequence of Lemma 3.1
and of the fact that H\T) is dense in HP(T).

To establish L = PMψi &xfeHp(T) and let GeHp(U) be the
holomorphic extension of Lf to U. Our immediate goal is to show
that

G(Z) = </, φCz)τ .

Let F be the holomorphic extension of / to U, set Fr(w) = F(rw),
and denote by Gr the holomorphic extension of LFr = SφFr to £7.
It is clear that

Gr(z) = \ *»m«) dm(w) = <Fr,
JT 1 — wz

Since the functions Fr converge to the distribution / in the
topology of HP(T) as r tends to 1, it follows that

(3.2.1) lim Gr(z) = (f, φCz\
r-*l

for each z e U. On the other hand, the continuity of L implies
that LFr approaches Lf in HP(T); or equivalently for the holo-
morphic extensions: that Gr converges to G in HP(U), in particular

(3.2.2) lim Gr(z) = G(z)

for zeU. The equalities (3.2.1) and (3.2.2) now establish

(3.2.3) G(z) = </, φCz)τ = (Mφf, Cz)τ .
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By a straightforward calculation it can be shown that the boundary-
value of G (the distribution Lf) is the analytic projection of Mφf,
i.e., Lf = PMΨ = Sφ. This completes the proof.

COROLLARY 3.3. If φeC°°(T), if heH°°(T), if l/heH°°(T), and
if φ = \h\-2 then the Toeplitz operator Sφ: H

P(T) -* HP(T) is in-
vertible, and So1 — ShSι, for all 0 < p < oo.

Proof. The case 1 < p < oo is dealt with in [2]. To prove the
remaining case it suffices to show that heC°°(T), for then the
operators Sh, Sj, Sφ will be bounded operators on HP(T), 0 < p ^ 1,
that satisfy S'1 = ShSΈ on a dense subset [say H\T)] of iP(T).
This, however, follows readily. The hypotheses on h imply that
log\h\, the real part of logh, is in C°°(Γ), consequently logΛ,eC°°(T)
which implies heC°°(T).

IV* The representation of functions in HP(U).

DEFINITIONS 4.1. Let £7 be an open arc in the unit circle T.
Choose ψeC^T) such that

(a) ψ has compact support in E,
(b) 0 S ψ{w) g 1 (we T),
(c) J — {w e T\ ψ(w) = 1} feαs positive Lebesque measure.
For each 0 < λ < 1 define

^ (,eΓ),
1 — .λψ (w)

H (̂ ) - exp {- Af 2ίL±Aiog[l + χλ(w)]dm(w)i (2 e U) .

It is immediate that χλeC°°(T), and that HλeH~(U). Denote
by hχ the boundary-value of Hλ. The following are verified:

(d) \hλ(w)r = 1 + χλ(w) (weT),
(e) hλ and hj1 are in jy°°(Γ).
Finally, define for each 0 < λ < 1

φλ(w) - 1 + χλ(w) (weT) .

Then

(f ) φλ(w) = 1 — - (W 6 Γ) .
1 — Xψ(w)

Our next lemma is an immediate consequence of Corollary 3.3.

LEMMA 4.2. Each Sφχ is an invertible operator on HP(T),
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0 < p < co, with inverse Sφι

? — ShχS'hλ.

LEMMA 4.3. The operators Ŝ J, 0 < λ < l , are uniformly bounded
on HP(T), 0 < p < co.

Proof. The case 1 < p < oo is a consequence of the conjugate
function theorem of M. Riesz (as in [2, Lemma 5, p. 618]).

Assume 0 < p £ 1, and let fe HP(T). Then

Shβaλf - Σ Σ Σ fi
m=Q n=0 9=0

oo oo

Σ Σ Σ hx{m)hι{n)f{q)e^n+
m=0 n—Q g=max (0,n—m)

Σ Σ Σ hλ(m)Kλ(n)f(q)eq-n+
m~0 n~0 ?=max (0,% — m)

n-i

k ——<χ> m—n — k g=max (0,n — m)
= ShSkif- Σ Σ hλ(m)hz(n)

λ fc = -co m-n = k q

Recalling \hλ(w)\2 — 1 — Xψ(w), and letting Kψ{p) be the constant
of Lemma 3.1, we verify (using the estimates 2.1):

which establishes the Lemma.

LEMMA 4.4. Fix zeU. Then l im^ \\Sφ\Cz\\HPm = 0, /o?̂  0 <
p < co. Moreover Sφ\Cz = Hλ(z)hλCz.

[For 2? 6 U and w e T we recall the definition Cβ(t«;) = 1/1 — wz.]

Proof. The same argument used in [2, Lemma 3, p. 618] es-
tablishes

S-hfz =

Since S^̂ 1 = ShχSιλf we have

(4.4.1) S~φ\Gz - S A ; ι S^C β - S*, Hλ(z)C, = Hλ{z)hλCz .

From the definition of Hλ it follows that

(4.4.2) \Hλ{z)\ - exp J - l f | ~ Lg|>

t log[l +
I 2 Jr |1 — wz\2

exp \M
I 2

L| wz

1 +
log (1 - X)dm(w)\ = (1 - λ)" ,

where 2α = {1 - |«|/1 + |«|}m(J) > 0.
By (4.4.2) we have
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(4.4.3)

^ ( 1 — λ ) α 11 lflχ I \H°°{T) 11 Cz \\HP(T)

Combining (4.4.1), (4.4.3), and

\hλ(w)\ = [1 + χa(w)]-1/£ ^ 1 ,

we get

lim 11 S ϊC, I |/jrp(Γ) ^ lim (1 - λ ) α | | C z | | ^ ( Γ ) = 0 .

LEMMA 4.5. // 0 < p < oo α^d feHp(T), then

limWf -(I+SχλΓSχλf\\HPm - 0 .

Proof. Lemma 4.3 and Lemma 4.4, in conjunction with the well-
known fact that the linear span of {Cz:ze U) is dense in HP(T),
0 < p < oo, imply

\im\\S?λf\\HP(τ) = 0
λ—l

for all feHp(T). Since (I + S^y1 = (S^)"1 = Sφ\ by Lemma 4.2,
we have

Observing that

we get

THEOREM 4.6. Let FeHp(U), with 0 < p < oo, let feHp(T) be
the distributional boundary-value of F on T, and let g be the
restriction of f to the open arc E. For 0 < λ < 1 define holomorphic
functions Gλ on U by

Gx(z) = Hλ{z)(g, χλhλCz)E .

Then as λ —> 1 we have \\Gλ — F\\Hp{u) —> 0. In particular Gλ ap-
proaches F uniformly on compact subsets of U.

Proof. In view of Lemma 4.5, the proof will be complete if
we succeed in showing that Gλ is the holomorphic extension of
(I + SχJ-'Sy f to U. The case 1 < p < oo is essentially dealt with
in [2]; we restrict ourselves to 0 < p <; 1.
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Let feH\T). Since (/+S^)'1- is a self-ad joint operator on H\T),

(4.6.1) <(i + sχysyj, czyτ = (sχ/, α + sx.rα>Γ

= <MXιf, (I + SZ))-'C?)Γ .

By Lemma 4.4,

(J + SXλΓCz = S-φ\Cz = ΪUz)hCz ,

Consequently

(4.6.2) <Λfχ/, (I + SlλΓCz\ - <M χ/, Hλ{z)hλCz)τ

= Hλ(z)(Mχχf, hλCz)τ

= Hλ(z)(f, χλhλCz\ .

Since the operators involved are defined and continuous on HP(T),
and since H\T) is dense in HP(T), the relations (4.6.1) and (4.6.2)
imply

<(/ + SZλ)-ιSZλf, Cz)τ = Hλ(z)(f, χλhλCz)τ

for all feHp(T). Therefore

Gλ(z) = Hλ(z)(g, χλhλCz)E - Hλ(zKf, χλhλCz}τ

= <(/ + SXλΓSχχf9 Cz)τ ,

which establishes Gλ as the holomorphic extension (the "Cauchy
integral") of (J + Sχ^S^f to the disc U.
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