A REPRESENTATION OF H^p -FUNCTIONS WITH 0

SERGIO E. ZARANTONELLO

Let E be an open arc in the unit circle. Let F belong to the Hardy space H^p , 0 , and let <math>g be the restriction of the boundary distribution of F to E. For each $0 < \lambda < 1$ we construct functions $G_{\lambda} \in H^p$ from g such that $G_{\lambda} \to F$ in the topology of H^p as $\lambda \to 1$.

I. Introduction. The purpose of this article is to extend to the case 0 the following theorem of D. J. Patil.

THEOREM A. [2, Th. I, p. 617]. Let E be a subset of the unit circle T, of positive Lebesgue measure. Let $1 \le p \le \infty$, let F be in the Hardy space H^p , and let g be the restriction to E of the boundary-value function of F. Denote the normalized Lebesgue measure on T by m, the open unit disc in the complex plane by U, and define for each $\lambda > 0$

$$H_{\lambda}(z) = \exp\left\{-\frac{1}{2}\log(1+\lambda)\int_{\mathbb{R}} \frac{w+z}{w-z}dm(w)
ight\} \qquad (z \in U),$$

$$G_{\lambda}(z) = \lambda H_{\lambda}(z) \! \int_{E} \! rac{\overline{h_{\lambda}(w)} g(w)}{1 - ar{w} z} dm(w)$$
 , $(z \in U)$,

where h_{λ} is the boundary-value function of H_{λ} .

Then as $\lambda \to \infty$, G_{λ} approaches F uniformly on compact subset of U. Moreover, if $1 then <math>||G_{\lambda} - F||_{H^p} \to 0$ as $\lambda \to \infty$.

The extension of the above to the case 0 involves a strengthening of the hypotheses: the set <math>E of positive measure will be replaced by an open arc in T, and instead of the characteristic function of E we will work with an infinitely differentiable function with support in E.

Specifically, let E be an open arc in T, and let ψ be an infinitely differentiable function on T with support in E such that

- (i) $0 \leq \psi(w) \leq 1 \quad (w \in T),$
- (ii) $J = \{w \in T: \psi(w) = 1\}$ has positive Lebesgue measure.

THEOREM B. Let $0 , let F be in <math>H^p$, and let g be the restriction to E of the boundary distribution of F on T. Define for each $0 < \lambda < 1$

$$\chi_{\mathbf{i}}(w) = \frac{\lambda \psi(w)}{1 - \lambda \psi(w)}$$
 $(w \in T)$,

$$H_{\lambda}(z) = \exp\left\{-rac{1}{2}\!\int_{\mathbb{R}}\!rac{w+z}{w-z}\log\left[1+\chi_{\lambda}\!(w)
ight]\!dm(w)
ight\} \qquad (z\in U)$$
 ,

$$G_{\lambda}(z) = H_{\lambda}(z) \langle g, \chi_{\lambda} h_{\lambda} C_{z}
angle_{E}$$
 $(z \in U)$,

where h_{λ} is the boundary-value function of H_{λ} , \langle , \rangle_{E} is the pairing between distributions and test functions on E, and C_{z} is the Cauchy kernel, i.e.,

$$C_{z}(w)=rac{1}{1-war{z}} \qquad \qquad (w\in T,\,z\in U)\;.$$

Then $||G_{\lambda} - F||_{H^p} \to 0$ as $\lambda \to 1$. In particular G_{λ} approaches F uniformly on compact subsets of U.

Our main result, Theorem B (Theorem 4.6 in the text), is proven in § IV. In § II we establish the notation and terminology, and list well-known properties of the Hardy spaces and Toeplitz operators. Our proof of Theorem B closely parallels the method of Patil in [2]; it involves the use of Toeplitz operators associated with infinitely differentiable functions, which, we prove in § III, can be extended to bounded operators on H^p for all 0 .

- II. Preliminaries. In the sequel, U will be the open unit disc in the complex plane and T its boundary, the unit circle. We shall denote the normalized Lebesgue measure on T by m; the corresponding L^p -spaces will be denoted by $L^p(T)$ and the L^p -norm by $||\cdot||_{L^p(T)}$. The phrase "almost everywhere" will always refer to the measure m.
- 1. Test functions and distributions. Let E be an open arc in T. The space of test functions on E will be represented by $C_0^{\infty}(E)$. The test functions on E, we recall, are infinitely differentiable complex-valued functions on E with compact support. If E = T, we write $C^{\infty}(T)$ instead of $C_0^{\infty}(T)$. By a distribution on E we shall mean a continuous skewlinear functional on the topological linear space $C_0^{\infty}(E)$. The space of distributions on E will be denoted by D(E).

If $\langle \phi, \varphi \rangle_E$ represents the *sesquilinear* pairing between $\phi \in D(E)$ and $\varphi \in C_0^{\infty}(E)$, we identify a locally integrable function f on E with the distribution f defined by

$$\langle f, \varphi \rangle_{\scriptscriptstyle E} = \int_{\scriptscriptstyle E} f(w) \overline{\varphi(w)} dm(w)$$
 .

The same symbol \langle , \rangle_E shall be used to represent the inner

product in $L^2(E)$.

Let $\phi \in D(T)$, and define $e_n \in C^{\infty}(T)$ by $e_n(w) = w^n$ for each integer n. The Fourier coefficients of ϕ are the numbers

$$\hat{\phi}(n) = \langle \phi, e_n \rangle_T$$
.

The Fourier series of ϕ is the formal series $\sum_{-\infty}^{+\infty} \hat{\phi}(n)w^n$. A straightforward calculation shows that $\sum_{-\infty}^{+\infty} a_n w^n$ is the Fourier series of a test function on T if and only if

$$|a_n| = O(|n|^q)$$

for all integers q. Consequently, a necessary and sufficient condition for $\sum_{-\infty}^{+\infty} a_n w^n$ to be the Fourier series of a distribution on T is that

$$|a_n| = O(|n|^{-q})$$

for some integer q.

If $\phi \in D(T)$ has Fourier series $\sum_{n=0}^{+\infty} a_n w^n$, we denote by $P\phi$ the distribution of Fourier series $\sum_{n=0}^{\infty} a_n w^n$. We refer to P as the *projection operator*. If $\varphi \in C^{\infty}(T)$, we define $M_{\varphi}\phi \in D(T)$, by

$$\langle M_{\varphi}\phi,\,\psi
angle_T=\langle\phi,\,ar{arphi}\psi
angle_T$$

for all $\psi \in C^{\infty}(T)$. We call M_{φ} the multiplication by φ .

Finally, we remark that the partial sums of the Fourier series of $\phi \in D(T)$ converge to ϕ in the topology of D(T) and that

$$\langle \phi, \varphi
angle_T = \sum\limits_{-\infty}^{+\infty} \widehat{\phi}(n) \overline{\widehat{\varphi}(n)}$$

for $\varphi \in C^{\infty}(T)$ and $\phi \in D(T)$.

2. Hardy spaces. Let F be a holomorphic function in the open unit disc U. If 0 < r < 1, and if $w \in T$, we write $F_r(w) = F(rw)$ and define, for 0 ,

$$||F||_{H^{p}(U)} = \lim_{r o 1} ||F_r||_{L^{p}(T)}$$
 .

The $Hardy\ space\ H^p(U)$ is the linear space of all holomorphic functions F on U such that $||F||_{H^p(U)}<\infty$. The space $H^\infty(U)$ is the space of bounded holomorphic functions in U, and $||\ ||_{H^\infty(U)}$ is the supremum norm.

If $p \ge 1$, then $H^p(U)$ is a Banach space with norm $|| \ ||_{H^p(U)}$. This is no longer true if $0 ; in this case, however, we can regard <math>H^p(U)$ as a complete metric space with the translation-invariant metric

$$d(F, G) = ||F - G||_{H^{p}(U)}^{p}$$
.

For all $0 the polynomials are dense in <math>H^p(U)$. If $0 it can be verified that <math>|| \ ||_{H^p(U)} \le || \ ||_{H^q(U)}$; consequently $H^q(U)$ is a dense subspace of $H^p(U)$. We also remark that the topology of $H^p(U)$, 0 , is stronger than that of uniform convergence on compact subsets of <math>U.

Let $1 \leq p \leq \infty$ and let $F(z) = \sum_{n=0}^{\infty} a_n z^n$ be in $H^p(U)$; as is well-known, $\sum_{n=0}^{\infty} a_n w^n$ is the Fourier series of a function $f \in L^p(T)$. Moreover,

$$\lim_{r \to 1} F_r(w) = f(w)$$

for almost all $w \in T$,

$$||F||_{H^{p}(U)} = ||f||_{L^{p}(T)}$$
,

and, if $1 \leq p < \infty$,

$$\lim_{r \to 1} ||F_r - f||_{L^{p}(T)} = 0$$
.

Thus, $F \to f$ is an isometry between $H^p(U)$ and a closed linear subspace $H^p(T)$ of $L^p(T)$, which consists of the functions in $L^p(T)$ whose Fourier coefficients corresponding to negative integers are identically zero. We refer to F as the holomorphic extension of f to U, and to f as the boundary-value function of F on T.

Our main concern, in this article, is with the spaces $H^p(U)$ with 0 . The following theorem is due to Hardy and Littlewood, and will be used in the sequel.

2.1. THEOREM [1, Th. 6.4, p. 98]. Let $0 , and let <math>F(z) = \sum_{n=0}^{\infty} a_n z^n$ be in $H^p(U)$. Then

$$|a_n| \le C(p) n^{1/p-1} ||F||_{H^{p}(U)}$$

for $n = 1, 2, \dots$, where C(p) is a constant which depends only on p.

[Clearly C(1) = 1 is best possible.]

If $0 and if <math>F(z) = \sum_{n=0}^{\infty} a_n z^n$, the above implies that $\sum_{n=0}^{\infty} a_n w^n$ is the Fourier series of a distribution f on T. As with the case $1 \le p \le \infty$, we refer to F as the holomorphic extension of f to U, and to f as the distributional boundary-value of F on T. The space of all distributional boundary-values of functions in $H^p(U)$ will be denoted by $H^p(T)$. We endow $H^p(T)$ with a metric structure isometric to that of $H^p(U)$ by setting

$$||f||_{H^{p}(T)} = ||F||_{H^{p}(U)}$$

whenever f and F are related as above.

It is known ([1, Th. 7.5, p. 115]) that each $\varphi \in C^{\infty}(T)$ gives rise to a bounded linear functional A_{φ} on $H^{p}(U)$, 0 , defined by

$$\Lambda_{\varphi}F = \langle f, \varphi \rangle_{T}$$
.

This implies that the topology of $H^p(T)$ is stronger than the one inherited from D(T).

Let $0 , let <math>F \in H^p(U)$, define $F_r(w) = F(rw)$ for 0 < r < 1 and $w \in T$, and let f be the distributional boundary-value of F. For $z \in U$ and 0 < r < 1, Cauchy's formula

$$F(rz) = \int_{r} \frac{F_{r}(w)}{1 - \bar{w}z} dm(w)$$

holds. Since in all cases $0 the functions <math>F_r$ converge to f in $H^p(T)$, and hence in the weaker topology of D(T), it follows that

$$F(z) = \langle f, C_z \rangle_T$$

where

$$C_z(w) = rac{1}{1-w\overline{z}}$$
 ,

 $z \in U$, and $w \in T$.

3. Toeplitz operators. Let P be the orthogonal projection of $L^2(T)$ onto $H^2(T)$. Fix $\varphi \in L^{\infty}(T)$ and let M_{φ} be the corresponding multiplication operator on $L^2(T)$. The Toeplitz operator $S_{\varphi} \colon H^2(T) \to H^2(T)$ is the composition PM_{φ} ; i.e.,

$$S_{\varphi}f = P(\varphi f)$$

for $f \in H^2(T)$. It can be immediately verified that

$$G(z) = \int_{\scriptscriptstyle T} rac{arphi(w)f(w)}{1-ar{w}z} dm(w) = \langle M_{\scriptscriptstyle arphi}f,\, C_{\scriptscriptstyle z}
angle_{\scriptscriptstyle T}$$

is the holomorphic extension of $S_{\varphi}f$ to U.

The following elementary properties will be used in the sequel:

- (a) $S_{\overline{\varphi}}$ is the adjoint operator of S_{φ} .
- (b) If either $\bar{\varphi} \in H^{\infty}(T)$ or $\psi \in H^{\infty}(T)$, then $S_{\varphi \psi} = S_{\varphi} S_{\psi}$.

A consequence of (b) ([2, Lemma 1, p. 618]) is:

- (c) If $h \in H^{\infty}(T)$, if $1/h \in H^{\infty}(T)$, and if $\varphi = |h|^{-2}$, then S_{φ} is invertible and $(S_{\varphi})^{-1} = S_h S_{\overline{h}}$.
- III. Toeplitz operators on $H^p(T)$, 0 . Since the orthogonal projection <math>P of $L^2(T)$ onto $H^2(T)$ extends or restricts to a

bounded projection of $L^p(T)$ onto $H^p(T)$, the Toeplitz operator $S_\varphi = PM_\varphi$ is bounded on $H^p(T)$ whenever $1 and <math>\varphi \in L^\infty(T)$. The projection P, however, is not bounded on $L^1(T)$; thus, in general, S_φ will not be a bounded operator on $H^1(T)$, or on $H^p(T)$ with 0 . As was noted earlier, the projection <math>P can be naturally extended to the space D(T) of distributions; namely, by assigning to the distribution $\phi \sim \sum_{n=0}^{+\infty} a_n w^n$ the "analytic" distribution $P\phi \sim \sum_{n=0}^{\infty} a_n w^n$. If $\varphi \in C^\infty(T)$, the multiplication operator M_φ can also be naturally extended to D(T). Thus, the symbol $PM_\varphi f$ is meaningful for $f \in H^p(T)$, $0 . Our goal is to prove that <math>S_\varphi = PM_\varphi$, with $\varphi \in C^\infty(T)$, is a bounded operator of $H^p(T)$ into itself, even if 0 .

Lemma 3.1. Let $\varphi \in C^{\infty}(T)$, let $f \in H^2(T)$, and let 0 . Then

$$\|S_arphi f\|_{H^{p}(T)} \leqq K_arphi(p) \, \|f\|_{H^{p}(T)}$$
 ,

where K(p) depends on p and φ but is independent of f. Moreover, if φ has Fourier series $\sum_{-\infty}^{+\infty} c_n w^n$ and if C(p) is the constant of Theorem 2.1, then we can choose

$$K_arphi(p) = \{\sum_{n=0}^\infty |\, c_n\,|^p \, + \, \sum_{n=1}^\infty \, [2 \, + \, C(p)^p (n \, - \, 1)^{2-p} \, ||\, c_{-n}\,|^p \}^{1/p} \,$$
 .

Proof. Let G be the holomorphic extension of $S_{\varphi}f$ to U, i.e.,

$$G(z) = \int_{T} rac{arphi(w)f(w)}{1-ar{w}z} dm(w)$$
 ,

and let $F(z) = \sum_{j=0}^{\infty} a_j z^j$ be the holomorphic extension of f to U. We proceed to establish

$$||G||_{H^{p}(U)} \leqq K_{\varphi}(p) \, ||F||_{H^{p}(U)}$$
 ,

which is equivalent to the assertion of the lemma. To this effect we write

$$(3.1.1) G(z) = \sum_{-\infty}^{+\infty} c_n \int_{T} \frac{w^n f(w)}{1 - \overline{w} z} dm(w) ,$$

and define

$$M_{\scriptscriptstyle n}(z) = \int_{\scriptscriptstyle T} rac{w^{\scriptscriptstyle n} f(w)}{1 - ar{w} z} \, dm(w)$$
 ,

$$N_{\scriptscriptstyle n}(z) = \int_{\scriptscriptstyle T} rac{\overline{w}^{\scriptscriptstyle n} f(w)}{1-ar{w} z} dm(w)$$
 ,

for all nonnegative integers n, and $z \in U$.

Both M_n and N_n are holomorphic in U. Clearly $M_n(z)=z^nF(z)$: hence

$$||M_n||_{H^{p(U)}} = ||F||_{H^{p(U)}}.$$

On the other hand, for $n = 1, 2, \dots$

$$N_n(z) = \sum\limits_{j=0}^{\infty} \widehat{f}(j+n) z^j = z^{-n} \Bigl\{ \sum\limits_{j=0}^{\infty} \widehat{f}(j) z^j - \sum\limits_{j=0}^{n-1} \widehat{f}(j) z^j \Bigr\}$$
 ,

which can be rewritten (since the Fourier coefficients of f are the Taylor coefficients of F)

$$N_{n}(z) = z^{-n} \Big\{ F(z) - \sum\limits_{i=0}^{n-1} lpha_{j} z^{j} \; \Big\}$$
 .

Consequently, for 0 ,

$$|N_n(z)|^p \le |z|^{-np} \Bigl\{ |F(z)|^p + \sum_{i=0}^{n-1} |a_i|^p \Bigr\}$$
 ,

and

$$\lim_{r\to 1} \int_T |N_{\mathbf{n}}(rw)|^p \ dm(w) \leqq ||F||_{H^{p}(U)}^p + \sum_{j=0}^{n-1} |\alpha_j|^p \ .$$

Since by Theorem 2.1

$$|a_j| \le C(p)j^{1/p^{-1}} ||F||_{H^p(U)}$$

for $j = 1, 2, \dots$, and since

$$|a_0| \leq ||F||_{H^{p(I)}}$$
.

we get

$$(3.1.3) ||N_n||_{H^p(U)}^p \leq 2 ||F||_{H^p(U)}^p + C(p)^p (n-1)^{2-p} ||F||_{H^p(U)}^p.$$

By (3.1.1) we have

$$G(z) = \sum_{n=0}^{\infty} c_n M_n(z) + \sum_{n=1}^{\infty} c_{-n} N_n(z)$$
;

(3.1.2) and (3.1.3) then imply

$$\begin{split} (3.1.4) \qquad & ||G||_{H^{p}(U)}^{p} \leq \sum_{n=0}^{\infty} |c_{n}|^{p} \, ||\, M_{n} \, ||_{H^{p}(U)}^{p} \, + \, \sum_{n=1}^{\infty} |c_{-n}|^{p} \, ||\, N_{n} \, ||_{H^{p}(U)}^{p} \\ & \leq ||\, F \, ||_{H^{p}(U)}^{p} \Big\{ \sum_{n=0}^{\infty} |c_{n}|^{p} \, + \, \sum_{n=1}^{\infty} \left[2 \, + \, C(p)^{p} (n \, - \, 1)^{2-p} \right] |c_{-n}|^{p} \Big\} \, . \end{split}$$

This completes the proof. [We recall that $|c_n| = O(n^{-q})$ for all positive integers q; consequently, the right-hand term in (3.1.4) is finite.]

THEOREM 3.2. If $\varphi \in C^{\infty}(T)$, the Toeplitz operator $S_{\varphi} = PM_{\varphi}$ is a bounded operator on $H^{p}(T)$ for 0 .

If φ has Fourier series $\sum_{-\infty}^{+\infty} c_n w^n$, the norm

$$|||S_{\sigma}|||_{H^{p}(T)} = \sup\{||S_{\sigma}f||_{H^{p}(T)}: ||f||_{H^{p}(T)} \le 1\}$$

satisfies the estimate

$$|||S_{\wp}|||_{H^{p}(T)} \leq K_{\wp}(p).$$

Finally, if $f \in H^p(T)$, then $S_{\varphi}f$ is the distributional boundary-value of the holomorphic function (of the variable z)

$$\langle M_{arphi}f,\,C_{z}
angle _{T}$$
 ,

where $C_z(w) = 1/1 - w\overline{z}$, $w \in T$, and $z \in U$.

Proof. Fix $0 . That the operator <math>S_{\varphi}$: $H^{2}(T) \to H^{2}(T)$ can be uniquely extended to a bounded operator L on $H^{p}(T)$ and that the norm of L satisfies (1) is a direct consequence of Lemma 3.1 and of the fact that $H^{2}(T)$ is dense in $H^{p}(T)$.

To establish $L=PM_{\varphi}$, fix $f\in H^p(T)$ and let $G\in H^p(U)$ be the holomorphic extension of Lf to U. Our immediate goal is to show that

$$G(z) = \langle f, \bar{\varphi}C_z \rangle_T$$
.

Let F be the holomorphic extension of f to U, set $F_r(w) = F(rw)$, and denote by G_r the holomorphic extension of $LF_r = S_{\varphi}F_r$ to U. It is clear that

$$G_r(z) = \int_T rac{arphi(w) F_r(w)}{1 - ar{w} z} dm(w) = \langle F_r, ar{arphi} C_z
angle_T$$
 .

Since the functions F_r converge to the distribution f in the topology of $H^p(T)$ as r tends to 1, it follows that

$$\lim_{r \to 1} G_r(z) = \langle f, \, \overline{\varphi} C_z \rangle_T$$

for each $z \in U$. On the other hand, the continuity of L implies that LF_r approaches Lf in $H^p(T)$; or equivalently for the holomorphic extensions: that G_r converges to G in $H^p(U)$, in particular

$$\lim_{r\to 1} G_r(z) = G(z)$$

for $z \in U$. The equalities (3.2.1) and (3.2.2) now establish

$$(3.2.3) G(z) = \langle f, \overline{\varphi}C_z \rangle_T = \langle M_{\varphi}f, C_z \rangle_T.$$

By a straightforward calculation it can be shown that the boundary-value of G (the distribution Lf) is the analytic projection of $M_{\varphi}f$, i.e., $Lf = PM_{\varphi} = S_{\varphi}$. This completes the proof.

COROLLARY 3.3. If $\varphi \in C^{\infty}(T)$, if $h \in H^{\infty}(T)$, if $1/h \in H^{\infty}(T)$, and if $\varphi = |h|^{-2}$ then the Toeplitz operator $S_{\varphi} \colon H^{p}(T) \to H^{p}(T)$ is invertible, and $S_{\varphi}^{-1} = S_{h}S_{\overline{h}}$, for all 0 .

Proof. The case $1 is dealt with in [2]. To prove the remaining case it suffices to show that <math>h \in C^{\infty}(T)$, for then the operators S_h , $S_{\bar{h}}$, S_{φ} will be bounded operators on $H^p(T)$, $0 , that satisfy <math>S_{\varphi}^{-1} = S_h S_{\bar{h}}$ on a dense subset [say $H^2(T)$] of $H^p(T)$. This, however, follows readily. The hypotheses on h imply that $\log |h|$, the real part of $\log h$, is in $C^{\infty}(T)$, consequently $\log h \in C^{\infty}(T)$ which implies $h \in C^{\infty}(T)$.

IV. The representation of functions in $H^p(U)$.

DEFINITIONS 4.1. Let E be an open arc in the unit circle T. Choose $\psi \in C^\infty(T)$ such that

- (a) ψ has compact support in E,
- (b) $0 \le \psi(w) \le 1 \quad (w \in T),$
- (c) $J = \{w \in T: \psi(w) = 1\}$ has positive Lebesgue measure.

For each $0 < \lambda < 1$ define

$$\chi_{\lambda}(w) = rac{\lambda \psi(w)}{1 - \lambda \psi(w)}$$
 $(w \in T)$,

$$H_{\lambda}(z) = \exp\left\{-rac{1}{2}\int_{T}rac{w+z}{w-z}\log[1+\chi_{\lambda}(w)]dm(w)
ight\} \qquad (z\in U)$$

It is immediate that $\chi_{\lambda} \in C^{\infty}(T)$, and that $H_{\lambda} \in H^{\infty}(U)$. Denote by h_{λ} the boundary-value of H_{λ} . The following are verified:

- (d) $|h_{\lambda}(w)|^{-2} = 1 + \chi_{\lambda}(w)$ $(w \in T)$,
- (e) h_{λ} and h_{λ}^{-1} are in $H^{\infty}(T)$.

Finally, define for each $0 < \lambda < 1$

$$\varphi_{\lambda}(w) = 1 + \chi_{\lambda}(w)$$
 $(w \in T)$.

Then

(f)
$$arphi_{\lambda}(w) = rac{1}{1-\lambda \omega(w)}$$
 $(w\in T)$.

Our next lemma is an immediate consequence of Corollary 3.3.

LEMMA 4.2. Each S_{φ_1} is an invertible operator on $H^p(T)$,

 $0 , with inverse <math>S_{arphi_{\lambda}}^{\scriptscriptstyle -1} = S_{\scriptscriptstyle h_{\lambda}} S_{\scriptscriptstyle h_{\lambda}}^{\scriptscriptstyle -}$.

LEMMA 4.3. The operators $S_{\varphi_{\lambda}}^{-1}$, $0<\lambda<1$, are uniformly bounded on $H^p(T)$, $0< p<\infty$.

Proof. The case 1 is a consequence of the conjugate function theorem of M. Riesz (as in [2, Lemma 5, p. 618]).

Assume $0 , and let <math>f \in H^p(T)$. Then

$$\begin{split} S_{h_{\hat{\lambda}}} S_{\bar{h}_{\hat{\lambda}}} f &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{q=0}^{\infty} \hat{h}_{\hat{\lambda}}(m(\bar{\hat{h}}_{\hat{\lambda}}(n)\hat{f}(q)e_{q-n+m})) \\ &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{q=\max(0,n-m)}^{\infty} \hat{h}_{\hat{\lambda}}(m)\bar{\hat{h}}_{\hat{\lambda}}(n)\hat{f}(q)e_{q-n+m} \\ &- \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{q=\max(0,n-m)}^{n-1} \hat{h}_{\hat{\lambda}}(m)\bar{\hat{h}}_{\hat{\lambda}}(n)\hat{f}(q)e_{q-n+m} \\ &= S_{\bar{h}_{\hat{\lambda}}} S_{h_{\hat{\lambda}}} f - \sum_{k=-\infty}^{+\infty} \sum_{m-n=k}^{\infty} \hat{h}_{\hat{\lambda}}(m)\bar{\hat{h}}_{\hat{\lambda}}(n) \sum_{q=\max(0,n-m)}^{n-1} e_{q-n+m} \end{split}.$$

Recalling $|h_{\lambda}(w)|^2 = 1 - \lambda \psi(w)$, and letting $K_{\psi}(p)$ be the constant of Lemma 3.1, we verify (using the estimates 2.1):

$$||S_{h_j}\!S_{ar{h}_j}f||_{H^p(T)}^p \leq 2[1+\lambda^p K_\phi^{\,p}(p)]\,||\,f\,||_{H^p(T)}^p$$
 ,

which establishes the Lemma.

Lemma 4.4. Fix $z\in U$. Then $\lim_{\lambda\to 1}||S_{\varphi_\lambda}^{-1}C_z||_{H^{p}(T)}=0$, for $0< p<\infty$. Moreover $S_{\varphi_\lambda}^{-1}C_z=\overline{H_\lambda(z)}h_\lambda C_z$.

[For $z \in U$ and $w \in T$ we recall the definition $C_z(w) = 1/1 - w\bar{z}$.]

Proof. The same argument used in [2, Lemma 3, p. 618] establishes

$$S_{\overline{h}}, C_z = \overline{H_{\lambda}(z)}C_z$$
 .

Since $S_{\varphi\varphi_{\lambda}}^{-1}=S_{h_{\lambda}}S_{\overline{h}_{\lambda}}$, we have

$$(4.4.1) \hspace{1cm} S_{\varphi_{\lambda}}^{-1}C_z = S_{h_{\lambda}}S_{\overline{h}_{\lambda}}C_z = S_{h_{\lambda}}\,\overline{H_{\lambda}(z)}C_z = \overline{H_{\lambda}(z)}h_{\lambda}C_z \;.$$

From the definition of H_{λ} it follows that

$$egin{aligned} (4.4.2) & |H_{\lambda}(z)| = \exp\left\{-rac{1}{2}\!\int_{\mathbb{T}}rac{1-|z|^2}{|1-ar{w}z|^2}\log[1+\chi_{\lambda}(w)]dm(w)
ight\} \ & \leq \exp\left\{rac{1}{2}\!\int_{\mathbb{T}}rac{1-|z|}{1+|z|}\log{(1-\lambda)}dm(w)
ight\} = (1-\lambda)^{lpha} \; , \end{aligned}$$

where $2\alpha = \{1 - |z|/1 + |z|\}m(J) > 0$. By (4.4.2) we have

$$(4.4.3) || H_{\lambda}(z)h_{\lambda}C_{z}||_{H^{p}(T)} = |H_{\lambda}(z)| ||h_{\lambda}C_{z}||_{H^{p}(T)} \leq (1 - \lambda)^{\alpha} ||h_{\lambda}||_{H^{\infty}(T)} ||C_{z}||_{H^{p}(T)} .$$

Combining (4.4.1), (4.4.3), and

$$|h_{\lambda}(w)| = [1 + \chi_{\lambda}(w)]^{-1/2} \leq 1$$
,

we get

$$\lim_{z \to 1} ||S_{arphi_{\lambda}}^{-1} C_z||_{H^{p}(T)} \leq \lim_{z \to 1} |(1-\lambda)^{lpha}||C_z||_{H^{p}(T)} = 0$$
 .

LEMMA 4.5. If $0 and <math>f \in H^p(T)$, then

$$\lim_{t \to 1} ||f - (I + S_{\chi_{\lambda}})^{-1} S_{\chi_{\lambda}} f||_{H^{p}(T)} = 0$$
 .

Proof. Lemma 4.3 and Lemma 4.4, in conjunction with the well-known fact that the linear span of $\{C_z\colon z\in U\}$ is dense in $H^p(T)$, $0< p<\infty$, imply

$$\lim_{\lambda \to 1} ||S_{\varphi_{\lambda}}^{-1} f||_{H^{p}(T)} = 0$$

for all $f \in H^p(T)$. Since $(I + S_{\chi_{\lambda}})^{-1} = (S_{\varphi_{\lambda}})^{-1} = S_{\varphi_{\lambda}}^{-1}$ by Lemma 4.2, we have

$$\lim_{I \to I} ||(I + S_{\chi_{\lambda}})^{-1} f||_{H^{p}(T)} = 0$$
 .

Observing that

$$(I+S_{\chi_{\lambda}})^{-1}f=f-(I+S_{\chi_{\lambda}})^{-1}S_{\chi_{\lambda}}f$$
 ,

we get

$$\lim_{\lambda \to 1} ||f - (I + S_{\chi_{\lambda}})^{-1} S_{\chi_{\lambda}} f||_{H^{p}(T)} = 0$$
.

THEOREM 4.6. Let $F \in H^p(U)$, with $0 , let <math>f \in H^p(T)$ be the distributional boundary-value of F on T, and let g be the restriction of f to the open arc E. For $0 < \lambda < 1$ define holomorphic functions G_{λ} on U by

$$G_{\lambda}(z) = H_{\lambda}(z) \langle g, \chi_{\lambda} h_{\lambda} C_z
angle_E$$
 .

Then as $\lambda \to 1$ we have $||G_{\lambda} - F||_{H^{p}(U)} \to 0$. In particular G_{λ} approaches F uniformly on compact subsets of U.

Proof. In view of Lemma 4.5, the proof will be complete if we succeed in showing that G_{λ} is the holomorphic extension of $(I + S_{\lambda})^{-1}S_{\lambda}f$ to U. The case 1 is essentially dealt with in [2]; we restrict ourselves to <math>0 .

Let $f \in H^2(T)$. Since $(I+S_{\chi_2})^{-1}$ is a self-adjoint operator on $H^2(T)$,

$$\begin{array}{ll} (4.6.1) & \langle (I+S_{\chi_{\lambda}})^{-1}S_{\chi_{\lambda}}f,\,C_{z}\rangle_{T} = \langle S_{\chi_{\lambda}}f,\,(I+S_{\chi_{\lambda}})^{-1}C_{z}\rangle_{T} \\ & = \langle M_{\chi},f,\,(I+S_{\chi_{\lambda}})^{-1}C_{z}\rangle_{T} \;. \end{array}$$

By Lemma 4.4.

$$(I+S_{\chi_2})^{-1}C_z=S_{arphi_2}^{-1}C_z=\overline{H_{\lambda}(z)}h_{\lambda}C_z$$
 ,

Consequently

$$egin{aligned} \langle M_{\chi_{\lambda}}f,\, (I+S_{\chi_{\lambda}})^{-_1}C_z
angle_T &= \langle M_{\chi_{\lambda}}f,\, \overline{H_{\lambda}(z)}h_{\lambda}C_z
angle_T \ &= H_{\lambda}(z)\langle M_{\chi_{\lambda}}f,\, h_{\lambda}C_z
angle_T \ &= H_{\lambda}(z)\langle f,\, \gamma_{\lambda}h_{\lambda}C_z
angle_T \ . \end{aligned}$$

Since the operators involved are defined and continuous on $H^p(T)$, and since $H^p(T)$ is dense in $H^p(T)$, the relations (4.6.1) and (4.6.2) imply

$$\langle (I+S_{\chi})^{-1}S_{\chi},f,C_{z}\rangle_{T}=H_{\lambda}(z)\langle f,\chi_{\lambda}h_{\lambda}C_{z}\rangle_{T}$$

for all $f \in H^p(T)$. Therefore

$$egin{aligned} G_{\!\scriptscriptstyle \lambda}\!(z) &= H_{\!\scriptscriptstyle \lambda}\!(z) \langle g, \, \chi_{\!\scriptscriptstyle \lambda} h_{\!\scriptscriptstyle \lambda} C_z
angle_{\scriptscriptstyle E} &= H_{\!\scriptscriptstyle \lambda}\!(z) \langle f, \, \chi_{\!\scriptscriptstyle \lambda} h_{\!\scriptscriptstyle \lambda} C_z
angle_{\scriptscriptstyle T} \ &= \langle (I+S_{\scriptscriptstyle \mathcal{X}_{\scriptscriptstyle \lambda}})^{-1} S_{\scriptscriptstyle \mathcal{X}_{\scriptscriptstyle \lambda}} f, \, C_z
angle_{\scriptscriptstyle T} \; , \end{aligned}$$

which establishes G_{λ} as the holomorphic extension (the "Cauchy integral") of $(I+S_{\chi_2})^{-1}S_{\chi_2}f$ to the disc U.

REFERENCES

1. P. L. Duren, Theory of H^p Spaces, Pure and Applied Math., 38 Academic Press, New York and London, (1970).

 D. J. Patil, Representation of H^p-functions, Bull. Amer. Math. Soc., 4 (1972), 617-620.

Received September 28, 1977.

University of Florida Gainesville, FL 32611