MULTIPLIERS FOR $|C, 1|$ SUMMABILITY
 OF FOURIER SERIES

G. S. Pandey

In the present paper we improve the conditions of all previously known theorems on the absolute $(C, 1)$ summability factors of Fourier series.

1. Let the formal expansion of a function $f(x)$, periodic with period 2π and integrable in the sense of Lebesgue over $[-\pi, \pi]$, in a Fourier-trigonometric series be given by

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) . \tag{1.1}
\end{equation*}
$$

We write

$$
\phi(u)=f(x+u)+f(x-u)-2 f(x)
$$

and throughout this paper A will denote a positive constant, not necessarily the same at each occurrence.

Whittaker [5], in 1930, proved that the series

$$
\sum_{n=1}^{\infty} A_{n}(x) / n^{\alpha}, \quad \alpha>0
$$

is summable $|A|$ almost everywhere.
Later, Prasad [4] demonstrated that the series

$$
\sum_{n=n_{0}}^{\infty} A_{n}(x) / \mu_{n}
$$

where

$$
\mu_{n}=\left(\prod_{\nu=1}^{k-1} \log ^{\nu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}, \quad \log ^{k} n_{0}>0, \quad \varepsilon>0
$$

and

$$
\log ^{k} n=\log \left(\log ^{k-1} n\right), \cdots, \log ^{2} n=\log \log n ;
$$

is summable $|A|$ almost everywhere.
Chow [2], on the other hand, has shown that the series $\sum \lambda_{n} A_{n}(x)$ is summable $|C, 1|$ almost everywhere, provided $\left\{\lambda_{n}\right\}$ is a convex sequence satisfying the condition $\sum n^{-1} \cdot \lambda_{n}<\infty$.

Cheng [1], in 1948, established the following:
Theorem A. If

$$
\Phi(t) \equiv \int_{0}^{t}|\phi(u)| d u=O(t)
$$

as $t \rightarrow 0$, then the series

$$
\sum_{n=2}^{\infty} A_{n}(x) /(\log n)^{1+\delta}, \quad \delta>0
$$

is summable $|C, \alpha|, \alpha>1$.
In a recent paper, Hsiang [3] has proved the following theorems:
Theorem B. $I f$

$$
\begin{equation*}
\Phi(t)=O(t) \quad(t \longrightarrow+0), \tag{1.2}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} A_{n}(x) / n^{\alpha}$ is summable $|C, 1|$ for every $\alpha>0$.
Theorem C. If

$$
\begin{equation*}
\Phi(t)=O\left\{t / \prod_{\nu=1}^{k} \log ^{\nu}(1 / t)\right\} \tag{1.3}
\end{equation*}
$$

as $t \rightarrow+0$, then the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}(x) /\left(\prod_{\nu=1}^{k-1} \log ^{\nu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon} \tag{1.4}
\end{equation*}
$$

is summable $|C, 1|$ for every $\varepsilon>0$.
In the present paper we prove the following theorem, which includes the theorem of Cheng and both the theorems of Hsiang:

Theorem. If

$$
\begin{equation*}
\varphi(t) \equiv \int_{t}^{\dot{\delta}} \frac{|\phi(u)|}{u} d u=O\left\{\left(\log ^{k}(1 / t)\right)^{\eta}\right\} \quad \text { as } \quad t \longrightarrow+0, \tag{1.5}
\end{equation*}
$$

$0<\delta \leqq \pi$, then the series (1.4) is summable $|C, 1|$ for $0<\eta<\varepsilon$.
The conditions of our theorem are less stringent than those of Cheng and Hsiang.
2. The proof of the theorem is based on the following lemmas:

Lemma 1. Let $S_{n}(x)$ be the nth partial sum of the series (1.1), then under the condition (1.5), we have

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|S_{\nu}(x)-f(x)\right|=O\left\{n\left(\log ^{k} n\right)^{\eta}\right\} \tag{2.1}
\end{equation*}
$$

Proof. Let $\varepsilon_{\nu}=\operatorname{sign}\left[S_{\nu}(x)-f(x)\right]$, so that $\varepsilon_{\nu}= \pm 1$ and it depends only upon x and ν, and is independent of t. Also, we write

$$
K_{n}(t)=\sum_{\nu=0}^{n} \varepsilon_{\nu} \sin \nu t
$$

Thus, we have

$$
\begin{aligned}
\sum_{j=0}^{n}\left|S_{v}(x)-f(x)\right| & =\frac{2}{\pi} \int_{0}^{\pi} \frac{\phi(t)}{t} K_{n}(t) d t+o(n) \\
& =\frac{2}{\pi}\left[\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{0}^{\pi}\right]+o(n) \\
& =I_{1}+I_{2}+I_{3}+o(n)
\end{aligned}
$$

say. Now,

$$
\begin{align*}
I_{1} & \leqq \int_{0}^{1 / n}|\phi(t)| \cdot O\left(n^{2}\right) d t \\
& =O\left(n^{2}\right) \int_{0}^{1 / n}-t \varphi^{\prime}(t) d t, \quad \varphi^{\prime}(t)=\frac{d}{d t} \varphi(t) \tag{2.3}\\
& =O\left(n^{2}\right)[-t \varphi(t)]_{0}^{1 / n}+O\left(n^{2}\right) \int_{0}^{1 / n} \varphi(t) d t \\
& =O\left\{n\left(\log ^{k} n\right)^{\eta}\right\}
\end{align*}
$$

Also, for $n t \geqq 1$, we have

$$
\begin{align*}
I_{2} & \leqq \int_{1 / n}^{\delta} \frac{|\phi(t)|}{t} \cdot n d t \tag{2.4}\\
& =O\left\{n\left(\log ^{k} n\right)^{\eta}\right\} .
\end{align*}
$$

Since, by Riemann-Lebesgue theorem,

$$
\int_{\partial}^{\pi} \frac{\phi(t)}{t} \sin n t d t=o(1),
$$

we have

$$
\begin{equation*}
I_{3}=O(n) . \tag{2.5}
\end{equation*}
$$

Combining (2.1), (2.2), \cdots, (2.5), the lemma follows.
Lemma 2. Let

$$
t_{n}(x)=\frac{1}{(n+1)} \sum_{\nu=1}^{n} \nu A_{\nu}(x) .
$$

Then

$$
T_{n}(x) \equiv \sum_{\nu=1}^{n}\left|t_{\nu}(x)\right|=O\left\{n\left(\log ^{k} n\right)^{\eta}\right\}
$$

and

$$
\sum_{n=n_{0}}^{\infty}\left(\mu_{n}\right)^{-1} \cdot n^{-1}\left|t_{\nu}(x)\right|<\infty .
$$

Proof. Let

$$
\sigma_{n}(x)=\frac{1}{(n+1)} \sum_{\nu=0}^{n} S_{\nu}(x)
$$

Thus, we have

$$
\begin{align*}
\sigma_{n}(x)-f(x)= & \frac{1}{(n+1)} \sum_{\nu=0}^{n}\left\{S_{\nu}(x)-f(x)\right\} \\
\Longrightarrow\left|\sigma_{n}(x)-f(x)\right| & \leqq \frac{1}{(n+1)} \sum_{\nu=0}^{n}\left|S_{\nu}(x)-f(x)\right| \tag{2.6}\\
& =O\left\{\left(\log ^{k} n\right)^{\eta}\right\}
\end{align*}
$$

by Lemma 1.
Therefore, we find that

$$
\begin{align*}
T_{n}(x) & =\sum_{\nu=1}^{n}\left|t_{\nu}(x)\right| \\
& =\sum_{\nu=1}^{n}\left|S_{\nu}(x)-\sigma_{\nu}(x)\right| \tag{2.7}\\
& \leqq \sum_{\nu=1}^{n}\left|S_{\nu}(x)-f(x)\right|+\sum_{\nu=1}^{n}\left|\sigma_{\nu}(x)-f(x)\right| \\
& =O\left[n\left(\log ^{k} n\right)^{\eta}\right]
\end{align*}
$$

by (2.6) and Lemma 1.
Finally, by Abel's transformation, we have

$$
\begin{aligned}
\sum_{n=m}^{M}\left(\mu_{n}\right)^{-1} \cdot n^{-1}\left|t_{n}(x)\right|= & \sum_{n=m}^{M-1} T_{n}(x) \Delta\left\{\left(\mu_{n}\right)^{-1} \cdot n^{-1}\right\} \\
& -\left(\mu_{m-1}\right)^{-1}(m-1)^{-1} T_{m-1}(n)+\mu_{M}^{-1} \cdot M^{-1} T_{M}(x) \\
= & \sum_{n=m}^{M-1} \Delta\left\{\left(\mu_{n}\right)^{-1}\right\} \cdot n^{-1} T_{n}(x) \\
& +\sum_{m=m}^{M-1}\left(\mu_{n+1}\right)^{-1} \cdot n^{-1}(n+1)^{-1} T_{n}(x)+O(1) \\
= & \sum_{n=m}^{M-1} \Delta\left\{\left(\mu_{n}\right)^{-1}\right\} \cdot\left(\log ^{k} n\right)^{\eta} \\
& +\sum_{n=m}^{M-1}\left(\mu_{n+1}\right)^{-1}(n+1)^{-1}\left(\log ^{k} n\right)^{\eta}+O(1) \\
\leqq & \sum_{n=m}^{M-1} \frac{A \cdot\left(\log ^{k} n\right)^{\eta}}{n\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}+O(1) \\
= & O(1)
\end{aligned}
$$

for $m \rightarrow \infty$ and $M \rightarrow \infty$.
In view of (2.7) and (2.8) the lemma is proved.
3. Proof of the theorem. Let $\tau_{n}(x)$ denotes the nth Cesàro mean of the sequence $\left\{n\left(\mu_{n}^{-1}\right) \cdot A_{n}(x)\right\}$.

By Abel's transformation, we have

$$
\begin{align*}
\tau_{n}(x) & =\frac{1}{(n+1)} \sum_{\nu=n_{0}}^{n} \nu\left(\mu_{\nu}\right)^{-1} \cdot A_{\nu}(x) \\
& =\frac{1}{(n+1)} \sum_{\nu=n_{0}}^{n-1} \Delta\left(\mu_{\nu}\right)^{-1} \cdot(\nu+1) t_{\nu}(x)+\left(\mu_{n}\right)^{-1} t_{n}(x) \tag{3.1}\\
& =J_{1}^{(n)}(x)+J_{2}^{(n)}(x),
\end{align*}
$$

say. Now, by Lemma 2, we find that

$$
\begin{aligned}
\sum_{n=m_{0}}^{m} J_{1}^{(n)}(x) / n & \leqq \sum_{n=m_{0}}^{m} n^{-1}(n+1)^{-1} \sum_{\nu=n_{0}}^{n-1} \Delta\left(\mu_{\nu}\right)^{-1}(\nu+1)\left|t_{\nu}(x)\right|, \quad \log ^{k} m_{0}>0 \\
& \leqq A \sum_{\nu=m_{0}}^{m} \Delta\left(\mu_{\nu}\right)^{-1}(\nu+1)\left|t_{\nu}(x)\right| \sum_{n=\nu+1}^{m} n^{-1}(n+1)^{-1} \\
& \leqq A \sum_{\nu=m_{0}}^{m} \Delta\left(\mu_{\nu}\right)^{-1}\left|t_{\nu}(x)\right| \\
& =A \sum_{\nu=m_{0}}^{m-1} \Delta^{2}\left[\left(\mu_{\nu}\right)^{-1}\right] \cdot T_{\nu}(x)+\Delta\left(\mu_{m}^{-1}\right) T_{m}(x)+O(1) \\
& =O(1)
\end{aligned}
$$

Also, we have

$$
\begin{align*}
\sum_{n=m_{0}}^{m} J_{2}^{(n)}(x) / n & \leqq \sum_{n=m_{0}}^{m}\left(\mu_{n}\right)^{-1} \cdot n^{-1} t_{n}(x) \mid \tag{3.3}\\
& =O(1)
\end{align*}
$$

From (3.1), (3.2), and (3.3), we have

$$
\sum_{n=m_{0}}^{m} \frac{\left|\tau_{n}(x)\right|}{n}=O(1) .
$$

This completes the proof of the theorem.

References

1. M. T. Cheng, Summability factors of Fourier series, Duke Math. J., 15 (1948), 17-27.
2. H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc., 16 (1941), 215-220.
3. F. C. Hsiang, On C, I summability factors of Fourier series at a given point, Pacific J. Math., 33 (1970), 139-147.
4. B. N. Prasad, On the summability of Fourier series and the bounded variation of power series, Proc. London Math. Soc., (2), 35 (1933), 407-424.
5. J. M. Whittaker, The absolute summability of Fourier series, Proc. Edinburgh Math. Soc., (2), 2 (1930), 1-5.

Received January 16, 1975 and in revised form April 3, 1978.
Mosul University
Mosul, Iraq

