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FIXED POINT THEOREMS IN LOCALLY
CONVEX SPACES

T. L. Hicks

Let C be a convex subset of a nuclear locally convex
space that is also an F-space. Suppose 7:C —C is non-
expansive and {v,} is given by the Mann iteration process.
It is shown that if {v,} is bounded, 7 has a fixed point.
Also, a sequence {y,} can be constructed such that y,—y
weakly where Ty =1y. If C is a linear subspace and 7 is
linear, then limy, = y.

1. Introduction. With a few exceptions, the nonnormable
locally convex spaces encountered in analysis are nuclear spaces.
Precupanu [8]-[11] studied those locally convex spaces whose locally
convex spaces whose generating family of seminorms satisfy the
parallelogram law, and he called them H-locally convexr spaces.
Precupanu [9] observed that they include all nuclear spaces. This
is immediate from Corollary 1, page 102 of [13]. Such a space that
is also complete will be called a generalized Hilbert space. Theorem
2 generalizes a theorem of Reich [12] which generalizes a result of
Dotson and Mann [2]. Reich’s ingenious proof is modified to apply
in this setting. Theorem 4 generalizes a result of Dotson [1]. His
approach to the proof is used, but substantial changes are needed
in the details.

Let X be a T, locally convex space generated by a family {0,: a € 4}
of continuous seminorms. The function p: X — R? is defined by

e@)(@) = pu(x), 2xeX, acd.

o satisfies the axioms of norm. The topology ¢, generated by p is
the original topology where a ¢, neighborhood of z is of the form

2z, U) = {y: p(x — y) e U}

where U is a neighborhood of zero in R‘. Thus p norms X over
R4, A mapping T from X into X is nonexpansive if o(Tx — Ty) <
o@—y) for all x, y € X; that is, 0,(Te—Ty)=<p.(x—y) for all z, ycX
and a e 4.

We look at the Mann iteration process. Let C be a convex
subset of X and suppose T maps C into C. Suppose 4 = [a,;] is
an infinite matrix satisfying:

=0 for all » and %,
., =0 for k>n,
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an}a"k =1 for all n, and
=1

lima,, =0 for all k.

7n -0

If 2,€C, v,=a,2, %, =Tv, V,=ay%, + Gy, x; = Tw, and, in
general,

”
UV, = Z QnicTre and Lny1 = T/Un .
k=1

Thus for n = 2,

n
Vyp = Oy + kz_zankT”k—l .

2. Results. In the remainder of this paper, C will denote a
convex subset of a T, locally convex space (X, %) and T:C — C is
nonexpansive.

THEOREM 1. If Tp = p for some p in C, the sequences {x,} and
{v,} are bounded.

Proof. tis given by the family {0,} of seminorms and it suffices
to show that for each acd, {0.(x,)} is bounded. The proof given
in [2] carries over if you replace ||z,|| by o.(z,).

THEOREM 2. Suppose that every closed bounded convex subset of
C has the fixed point property for monexpansive mappings. If for
some x, in C the sequence {v,} is bounded, then T has a fixed point.
Proof. Let yeC and set

R, = limsup p.(y — v,) .

R, is finite since {v,} is bounded. Let

K,={zeC:limsup 0.,(z — v,) = R} .

K, is a closed in t,, and, therefore, closed in ¢ for every ac4. Let

K= N{K, aed}
= {ze€C:lim sup p,(z — v,) < R, for all ac4}.

K+ ¢ since ye K. K is closed bounded and convex. If zeK
implies Tz e K, it follows that T has a fixed point. Let ze K and
acd. For each ¢>0, there exists N = N(e, a) such that p,(z—v,)<
R, + ¢ for all w=N. For n >N +1,
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pa(Tz - ’U,,,) = pa(kzzl ansz — Oy — kzzal:ankTvk-ﬂ)
= 0n0u(Tz — @) + kZ”; @ni0u(T2 — T,y)
é anlpa(Tz - xl) + kz:‘;anapk(z - vk—-l)

N
é anuoa( Tz — xl) + é ankpa(z - vk—l)

n

+ (Re +6€) = h(n) + R, + ¢

k=N+1

where lim, h(n) = 0. Hence Tz ¢ K, for each a and, therefore, Tz € K.

THEOREM 3. Suppose X is a nuclear locally convexr space that
1s also an F-space. If for some x, in C the sequence {v,} s bounded,
then T has a fixed point in C. In this case, Six, — Yy weakly where
Ty =y and S; =AM+ 1 —NT, 0 <A <1,

Proof. Let K be as in Theorem 2. K is a closed bounded
convex subset of C and, therefore, K is weakly sequentially compact.
Also, T(K) < K. By Theorem 2 of [4], T has a fixed point in K.
Applying Theorem 9 of [4] to K gives the last part of the theorem.

REMARK. Theorem 3 is valid in any generalized Hilbert space
in which closed, bounded, and convex subsets are weakly sequentially
compact. One would like to have strong convergence of some
sequence to a fixed point of T. The next theorem shows that if T
is linear and C is a linear subspace, you have the desired result.
One can not obtain strong convergence without some additional
conditions; however, one should be able to replace the linearity of
T by some less restrictive condition.

THEOREM 4. Suppose X is nuclear locally convexr space that is
also an F-space and C is a linear subspace of X. If for some x,
in C the sequence {v,} is bounded and T is linear, there exists x,
C such that lim, Stx, = y, where Ty, = ¥,.

Proof. Let x,€ K where K is as in Theorem 3. {S%(x,)} S K
and it has a subsequence that converges weakly to 9, in K. We
show that the sequence {S3}, of linear operators is a system of
almost invariant integrals for the semigroup {T™:m =0,1,2, ---}
and then apply the mean ergodic theorem of Eberlein [3] to obtain
lim, S?x, = y, with Ty, = v,.

(1) S7:C—C is linear.
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(2) For each n and each z, S%(x) is in the convex hull of
xz, Tx, --+, T™x, since T is linear gives

St=M+A—-NT]"= Zﬂ (?)M*J‘(l —x) T .

(83) We show that {S7} is an equicontinuous family. By a
theorem of Banach [5, p. 169], it suffices to prove that {S?(x): n =
0,1,2, ---} is bounded for every x in K. Thus it suffices to show
that {0,(S?(x)):n =1,2, ---} is bounded for every aec4. This is
true since

n

0(S71) = ;: ( ; )v*f(l — N pT%)

<3 ( ?)v-«l )

= 0.(2) .

From the proof of Theorem 3, T has a fixed point in K. From
Theorem 6 of [4], S7™'x — S%x — 0. Now

Sttix. — St = S(Stx) — St
=Mt + 1 — M) T(Stx) — St
= (1 — M(TStx — Stzx) .

Thus TS?x — Stz — 0. Since T is linear and continuous, T2S%x —
Stx = T(TStx — Stx) — (TSt — Stx) — T(0)+ 0 = 0. Using induction,
we have

(42) T™Stx — Stx— 0 as n — o for every x in C and all m =
0,1,2 ---.

Since S7 is a polynomial in T, T™S? = S*T™ and, using (4a), we
have

(4b) S?T™x — Stx — 0 as n — o« for every  in C and all m =
0,1,2 ---. Now, we apply the mean ergodic theorem to obtain the
desired result.

REMARK. {S7x,} is a special sequence {v,} given by the Mann
iteration process. Just let a,, =AY a,; = N1 —N) for 7=
2,3 ,m and a,; =0 for 7 >n,n=12,3, ---.
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