THE SPACE OF ANR's OF A CLOSED SURFACE

LaURence Boxer

Abstract

We study the hyperspace (denoted 2_{h}^{M}) of ANR's of a (polyhedral) closed surface M. The topology of 2_{h}^{M} is induced by Borsuk's homotopy metric. We show the subpolyhedra of M are dense in 2_{h}^{M}. We obtain a necessary and sufficient condition for an arc in 2_{h}^{M} joining two points. We show that 2_{h}^{M} is an ANR ($\left.\mathscr{M}\right)$. We prove that the subspace of 2_{h}^{M} whose members are AR's has the homotopy type of M.

O. Introduction. For a finite-dimensional compactum X with metric ρ, let 2_{h}^{X} denote the space of nonempty compact ANR subsets of X. The topology of 2_{h}^{X} is induced by the metric ρ_{h} defined by Borsuk [3]. In [1] and [2], Ball and Ford studied several properties of 2_{h}^{X}, particularly for the case $X=S^{2}$. In this paper we generalize several of their results.

Throughout this paper, M will denote a (polyhedral) closed surface. We show the nonempty polyhedral subcompacta of M are dense in 2_{h}^{M}. We give a necessary and sufficient condition for the existence of an arc in 2_{h}^{M} joining two given members of 2_{h}^{M}. We show 2_{h}^{K} is an absolute neighborhood retract for metrizable spaces (ANR (\mathscr{l})) and that the subspace of 2_{h}^{M} whose members are the compact AR subsets of M has the homotopy type of M.

Most of the results of this paper appeared in the author's doctoral thesis at the University of Illinois, Urbana-Champaign. The author wishes to thank his advisor, Mary-Elizabeth Hamstrom, for her guidance and encouragement. The author also wishes to thank B. J. Ball and the referee for several useful suggestions.

1. Preliminaries. Let ρ be a metric for M. We use the following notation: If $x \in M$ and $A \subset M$, then

$$
B(x, r)=\{y \in M \mid \rho(x, y)<r\} ;
$$

\bar{A}, Int A, and $\operatorname{Bd} A$ are the closure, interior, and boundary of A (in M) respectively.

Euclidean n-space is denoted R^{n}. The interval $[0,1]$ is denoted I. If $x, y \in R^{n}$ and $t \in R^{1}$, then $x+y$ will indicate the vector sum, and $t \cdot x$ will indicate scalar multiplication of x by t.

If A is a polyhedron, we will assume A is compact unless otherwise stated.

A $m a p$ is a continuous function.
We use the following notation and terminology of [1] and [2]:

A δ-set or a δ-arc is a set or arc of diameter less than δ. A δ-map or a δ-embedding is a map or embedding that moves no point by as much as δ. The words "every δ-subset of A contracts to a point in an ε-subset of $A^{\prime \prime}$ are denoted $s(A, \delta, \varepsilon)$.

Where more than one topology is considered on a set, the topology in which a sequence converges will be indicated by an obvious notation. For example, $a_{n} \underset{\rho}{\rightarrow} a_{0}$ indicates that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a_{0} in the topology of the metric ρ.

Let X be a finite-dimensional compactum. Let ρ be a metric for X. Let A and B be nonempty compact ANR subsets of X. The Hausdorff metric ρ_{s} is given by

$$
\rho_{\mathrm{s}}(A, B)=\max \{\sup \{\rho(a, B) \mid a \in A\}, \sup \{\rho(b, A) \mid b \in B\}\}
$$

The homotopy metric ρ_{h} is characterized in [3] by the following: Let A and $\left\{A_{n}\right\}_{n=1}^{\infty}$ be nonempty compact ANR subsets of a finitedimensional compactum X. Then $A_{n} \underset{\rho_{h}}{ } A$ if and only if
(a) $A_{n} \xrightarrow[\rho_{s}]{ } A$, and
(b) given $\varepsilon>0$, there is a $\delta>0$ such that for all $n, s\left(A_{n}, \delta, \varepsilon\right)$.

We denote by 2_{h}^{X} the topological space whose members are the nonempty compact ANR subsets of X and whose topology is induced by the metric ρ_{h}. It is shown in [3] that 2_{h}^{X} is complete and separable, and that 2_{h}^{X} is a topological invariant of X. We mention here other useful results of Borsuk: If $\rho_{h}(A, B)<\varepsilon$, then there are ε-maps $f: A \rightarrow B$ and $g: B \rightarrow A$. For $C \in 2_{h}^{x}$, let $[C]_{X}$ denote the collection of all members of 2_{h}^{X} that have the same homotopy type as C. Then $[C]_{X}$ is open in 2_{h}^{X}. Since these sets partition $2_{h}^{X},[C]_{X}$ is also closed.

The terms homotopy, deformation retraction, isotopy, etc. will be used in standard fashion, except that it will be convenient not to insist that the interval be I. For example, if $c<d$, a deformation retraction of A onto B is a map $H: A \times[c, d] \rightarrow A$ such that $H_{c}=\mathrm{Id}_{A}$ and H_{d} is a retraction of A onto B. (We use the notation $H_{t}(\alpha)=$ $H(a, t)$ for all $(a, t) \in A \times[c, d]$.) It will occasionally be convenient to refer to the map H_{d} as a deformation retraction. A map $H: A \times$ $[c, d] \rightarrow A$ is strongly contracting if $c \leqq u \leqq v \leqq d$ implies $H_{u} \circ H_{v}(A) \subset$ $H_{v}(A) \subset H_{u}(A)([1]$, p. 37).

The term surface will be used to refer to a (second countable) connected 2-manifold, with or without boundary. A closed surface is a compact surface without boundary. A bounded surface is a compact surface with boundary. We differ from [1] and [2] in that we will call an annulus any space homeomorphic to $\left\{(x, y) \in R^{2} \mid 1 \leqq\right.$ $\left.x^{2}+y^{2} \leqq 2\right\}$.

The following gives a useful criterion for convergence in 2_{h}^{X} :

Lemma 1.1 ([1], 3.4, p. 38). Let A and B be members of 2_{h}^{X} (X an arbitrary finite-dimensional compactum). Let $h: A \times I \rightarrow A$ be a strong deformation retraction of A onto B. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence in I converging to 1 . Suppose that for each $n, A_{n}=h_{t_{n}}(A)$ is an ANR. If
(a) h is strongly contracting, or
(b) for all $n, h \mid A_{n} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of A_{n} onto A_{n+1}, then $A_{n} \xrightarrow[\rho_{h}]{\rightarrow} B$.

Remarks. Case (b) above is not proved in [1], but the proof is identical to that of (a). We will use both cases.

The next two lemmas will be used in questions of arcs.
Lemma 1.2 ([1], 4.1, p. 43). If $A_{n} \overrightarrow{\rho_{h}} A$ in 2_{h}^{X} and if for each n there is an ε_{n}-embedding $g_{n}: A_{n} \rightarrow X$ of A_{n} into X, where $\varepsilon_{n} \rightarrow 0$, then $g_{n}\left(A_{n}\right) \xrightarrow[\rho_{h}]{ } A$.

Lemma 1.3 ([1], 4.2 and 4.3, p. 43). If $A \in 2_{h}^{X}$ and $f: A \times I \rightarrow X$ is an isotopy, then $\left\{f_{t}(A) \mid t \in I\right\}$ contains an arc in 2_{h}^{X} from A to $f_{1}(A)$.

The next two results will be used several times:
Theorem 1.4 ([11], 3.4, pp. 382-383). Let N be a compact surface with m boundary curves. Let L be a closed surface containing disjoint open disks D_{1}, \cdots, D_{m} such that $N=L \backslash \bigcup_{j=1}^{m} D_{j}$. Let $r: N \rightarrow N$ be a deformation retraction of N, and let $R=r(N)$. Then $L \backslash R$ is a union of m simply-connected components G_{1}, \cdots, G_{m}, with $D_{j} \subset G_{j}$ for $j=1, \cdots, m$.

An immediate consequence of the above is:
Corollary 1.5. Let N be a bounded surface. Let $R \subset \operatorname{Int} N$ be a bounded surface that is a deformation retract of N. Then each component of $\overline{N \backslash R}$ is an annulus.

In the following theorems of Epstein, N will denote a surface, with or without boundary, compact or not.

Theorem 1.6 ([8], 1.7, p. 85). If a simple closed curve $S \subset N$ contracts to a point in N then S bounds a disk in N.

Theorem 1.7 ([8], A2, p. 106) (stated in a different form). Sup-
pose N is a polyhedral surface and $f: I \rightarrow N$ is an embedding with $f^{-1}(\operatorname{Bd} N)=\{0,1\}$. Let U be a neighborhood of $f(I)$ in N. Then there is an ambient isotopy of N that is fixed on $\operatorname{Bd} N$ and outside U and that changes f to a piecewise linear embedding.

The following lemmas will be used in the next section.
Lemma 1.8. Let Y be a topological space, $L \subset Y$, and let β be an arc with endpoints u and v such that $\beta \subset L$. Suppose there is an open set D in $Y \backslash\{u, v\}$ and an arc $\bar{\gamma} \subset L$ with endpoints a and b such that $\{a, b\} \subset \operatorname{Bd} D$ and $\gamma=\bar{\gamma} \backslash\{a, b\}$ is a component of $L \cap D$. Then either $\gamma \cap \beta=\phi$ or $\bar{\gamma} \subset \beta$.

Proof. Let $p:(I, 0,1) \rightarrow(\beta, u, v)$ be a homeomorphism. (The notation means that p is a map from I to β such that $p(0)=u$ and $p(1)=v$.) Suppose $\gamma \cap \beta \neq \phi$. There is an $x \in \gamma$ and a $t_{0} \in(0,1)$ such that $p\left(t_{0}\right)=x$. Then $A=p^{-1}(\beta \cap D)$ is a nonempty open set in I contained in (0,1). Thus t_{0} lies in a component $\left(a_{0}, b_{0}\right)$ of A. We have $x \in p\left(\left(a_{0}, b_{0}\right)\right) \subset \beta \cap D \subset L \cap D$, so $p\left(\left(a_{0}, b_{0}\right)\right)$ is a connected subset of $L \cap D$ containing x. Thus $p\left(\left(a_{0}, b_{0}\right)\right) \subset \gamma$ and $\left\{p\left(a_{0}\right), p\left(b_{0}\right)\right\} \cap D=\phi$, so $\left\{p\left(a_{0}\right), p\left(b_{0}\right)\right\} \subset \operatorname{Bd} D$. The arc $B=p\left(\left[a_{0}, b_{0}\right]\right)$ has its interior in γ, but the endpoints of B are not in γ. Therefore $\bar{\gamma}=B \subset p(I)=\beta$.

The following is an immediate consequence of ([7], 4.2, p. 360):
Lemma 1.9. If A is an annulus with boundary curves T_{1} and T_{2}, let $H: T_{2} \times I \rightarrow A$ be a map such that $H_{0}=\operatorname{Id}_{T_{2}}$ and $H_{1}\left(T_{2}\right)=T_{1}$. Then $H\left(T_{2} \times I\right)=A$.

We say Y dominates X if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f$ is homotopic to Id_{X}. We write $\Delta X=\min \{\operatorname{dim} Y / Y$ is a finite simplicial complex that dominates X \}.
2. The role of the polyhedra. In [3], Borsuk asked the following questions: If X is a polyhedron, is the collection of all nonempty subpolyhedra of X dense in 2_{h}^{X} ? What is the category (in the sense of Baire) of the collection of all nonempty subpolyhedra of X in 2_{h}^{X} ? In [1], the first question was answered affirmatively for the case $X=S^{2}$, and the second question was given the following answer: If X is a connected polyhedron with no 1-dimensional open subset, the collection of all nonempty polyhedra properly contained in X is a first category subset of 2_{h}^{x}. It was also shown in [1] that the collection of nonempty topological polyhedra (i.e., homeomorphic images of polyhedra) properly contained in S^{2} is a dense G_{δ}, hence
second category, subset of $2_{h}^{S^{2}}$. We will extend the above to closed surfaces.

Lemma 2.1. If X is a finite-dimensional compactum and U is open in X, then $\mathscr{G}=\left\{C \in 2_{h}^{X} \mid C \subset U\right\}$ is open in 2_{h}^{X}.

Proof. Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset 2_{h}^{X} \backslash \mathscr{Z}$. Assume $A_{n} \underset{\rho_{h}}{ } A_{0}$. For each n there exists $x_{n} \in A_{n} \backslash U$. Since X is compact we may assume (by taking a subsequence if necessary) that $x_{n} \rightarrow x_{0} \in X \backslash U$. Since $A_{n} \rightarrow A_{0}$, we have $x_{0} \in A_{0}$. Therefore $A_{0} \notin \mathscr{U}$, so \mathscr{U} is open.

We prove a theorem about the Baire category of the collection of topological polyhedra in M as a subset of 2_{h}^{K}. (Recall M is a (polyhedral) closed surface.)

Theorem 2.2. Let \mathscr{T} be the collection of nonempty topological polyhedra properly contained in M. Then \mathscr{T} is a second category subset of 2_{h}^{M}.

Proof. Let D be a disk contained in M. By 2.1, $\mathscr{C}=$ $\left\{Y \in 2_{h}^{M} \mid Y \subset \operatorname{Int} D\right\}$ is open in 2_{h}^{M}, and thus is topologically complete. Let f : Int $D \rightarrow S^{2}$ be an embedding. Then the map $f_{*}: \mathscr{Z} \rightarrow 2_{h}^{S^{2}}$ given by $f_{*}(Y)=f(Y)$ is an open embedding ([3], p. 198). Since the collection of nonempty topological polyhedra contained in S^{2} is a dense $G_{\dot{o}}$ subset of $2_{h}^{S^{2}}$ ([1], 3.12, p. 42), it follows that $\mathscr{C} \backslash \mathscr{T}$ is a first category subset of \mathscr{U}. The classical Baire category theorem implies $\mathscr{C} \cap \mathscr{T}$ is a second category subset of \mathscr{C}, and thus of 2_{h}^{M}. Hence \mathscr{T} is a second category subset of 2_{h}^{M}.

The rest of this section is devoted to proving the following:
Theorem 2.3. The collection of nonempty subpolyhedra of M is dense in 2_{h}^{M}.

To prove 2.3, we show in 2.4 that for a given $C \in 2_{h}^{M}$ we can split M into two pieces that join along simple closed curves such that the intersection of C with each piece is an ANR. Each of the pieces of M embeds in S^{2}. In 2.5, we use the fact that the result is known for S^{2} to construct a sequence of polyhedra whose intersection is C satisfying the hypotheses of 1.1.

Lemma 2.4. Let q be a positive integer. Assume M is orientable with genus q or nonorientable with genus $2 q$. Let $C \in 2_{h}^{M}$. Then there are compact subsurfaces X_{1} and X_{2} of M and simple closed curves $\alpha_{1}, \cdots, \alpha_{q+1}$ in M such that:
(a) $M=X_{1} \cup X_{2}$.
(b) The α_{n} are pairwise disjoint.
(c) $\mathrm{Bd} X_{1}=\operatorname{Bd} X_{2}=X_{1} \cap X_{2}=\bigcup_{n=1}^{q+1} \alpha_{n}$.
(d) X_{1} and X_{2} both are homeomorphic to a sphere with $q+1$ disjoint open disks removed.
(e) $\bigcup_{n=1}^{q+1} \alpha_{n} \backslash C$ has finitely many components.

Proof. It is an easy consequence of the standard way to represent a surface that there are subsurfaces X_{1}^{\prime} and X_{2}^{\prime} of M and simple closed curves $\alpha_{1}^{\prime}, \cdots, \alpha_{q+1}^{\prime}$ in M satisfying (a) through (d). It follows that for each n there is a two-sided collar N_{n} of α_{n}^{\prime} in M such that the N_{n} are pairwise disjoint. For any n such that $\alpha_{n}^{\prime} \backslash C$ has finitely many components, set $\alpha_{n}=\alpha_{n}^{\prime}$. Thus we suppose α^{\prime} is any of the α_{n}^{\prime} such that $\alpha_{n}^{\prime} \backslash C$ has infinitely many components. We write $N=N_{n}$. Clearly we may write $\alpha^{\prime} \backslash C=\bigcup_{m=1}^{\infty} \gamma_{m}$, where the γ_{m} are distinct components of $\alpha^{\prime} \backslash C$ and each $\bar{\gamma}_{m}$ is an arc whose endpoints a_{m} and b_{m} lie in C.

Let $Z=\lim \sup \left\{\bar{\gamma}_{m}\right\}_{m=1}^{\infty}$, i.e., Z is the set of all $x \in \alpha^{\prime}$ such that every neighborhood of x meets infinitely many $\bar{\gamma}_{m}$. Then Z is closed (see [13], p. 10). Thus Z is a compact subset of α^{\prime}. It is easily seen that $Z \subset C$.

Let w_{0}, w_{1}, and w_{2} be distinct points of γ_{1} such that w_{0} lies in the arc $\overline{w_{1} w_{2}}$ of γ_{1} from w_{1} to w_{2}. Let $f_{0}:(I, 0,1) \rightarrow\left(\alpha^{\prime} \backslash\left(\overline{w_{1} w_{2}} \backslash\left\{w_{1}, w_{2}\right\}\right)\right.$, w_{1}, w_{2}) be a homeomorphism. Since N is an annulus,
(1) there is a disk $B \subset N$ such that $N \backslash B$ is homeomorphic to $I \times(0,1), w_{0} \in(N \backslash B) \cap \alpha^{\prime} \subset \overline{N \backslash B} \cap \alpha^{\prime} \subset \gamma_{1}$, and $Z \cup f_{0}(I) \subset$ Int B. Since ANR's are locally arcwise connected, (1) implies that for each $z \in Z$ there is a neighborhood U of z contained in $\operatorname{Int} B$ such that $U \cap C$ is arcwise connected. Since Z is compact,
(2) there are open sets U_{1}, \cdots, U_{p} such that $Z \subset \bigcup_{k=1}^{p} U_{k} \subset \operatorname{Int} B$ and each $U_{k} \cap C$ is arcwise connected.

It is easily seen that for almost all m there is a k such that $\bar{\gamma}_{m} \subset U_{k}$. We assume $\bar{\gamma}_{1}, \cdots, \bar{\gamma}_{m_{0}}$ are those $\bar{\gamma}_{m}$ that fail to lie in any U_{k}. Define $\Gamma_{0}=\phi$, and for $k \in\{0,1, \cdots, p-1\}$ define

$$
\Gamma_{k+1}=\left\{\bar{\gamma}_{m} \subset U_{k+1} \mid \bar{\gamma}_{m} \notin \bigcup_{j=0}^{k} \Gamma_{j}\right\}
$$

Define $\Gamma_{p+1}=\left\{\bar{\gamma}_{1}, \cdots, \bar{\gamma}_{m_{0}}\right\}$. For each j let $\Gamma_{j}^{\prime}=\left\{\gamma_{m} \mid \bar{\gamma}_{m} \in \Gamma_{j}\right\}$. Clearly $\Gamma_{0}, \Gamma_{1}, \cdots, \Gamma_{p+1}$ partition $\left\{\bar{\gamma}_{m}\right\}_{m=1}^{\infty}$. Let the endpoints a_{m} and b_{m} of $\bar{\gamma}_{m}$ satisfy $f_{0}^{-1}\left(a_{m}\right)<f_{0}^{-1}\left(b_{m}\right)$. For $m>1, \bar{\gamma}_{m}=f_{0}\left(\left[f_{0}^{-1}\left(a_{m}\right), f_{0}^{-1}\left(b_{m}\right)\right]\right)$.

We begin an induction argument by observing that for $k=0$ we have a $\operatorname{map} f_{k}:(I, 0,1) \rightarrow\left(\operatorname{Int} B, w_{1}, w_{2}\right)$ such that:
(3) If $t \in I$ and $f_{k}(t) \notin C$ then $f_{k}(t)=f_{0}(t)$.
(4) $f_{k}(I) \backslash C$ is a union of members of $\bigcup_{j=k+1}^{p+1} \Gamma_{j}^{\prime}$.

Suppose for some $k<p, f_{k}:(I, 0,1) \rightarrow\left(\operatorname{Int} B, w_{1}, w_{2}\right)$ is a map satisfying (3) and (4). If $f_{k}(I) \backslash C$ meets no member of Γ_{k+1}^{\prime} we define $f_{k+1}=f_{k}$; then (3) and (4) are satisfied when k is replaced by $k+1$. Otherwise we define $c_{k}=\inf \left\{t \in I \mid f_{k}(t)\right.$ belongs to a member of $\left.\Gamma_{k+1}^{\prime}\right\}$, and $d_{k}=\sup \left\{t \in I \mid f_{k}(t)\right.$ belongs to a member of $\left.\Gamma_{k+1}^{\prime}\right\}$. By (4) and our choice of $\left\{w_{1}, w_{2}\right\}, 0<c_{k}<d_{k}<1$. By (3) and (4), each of $f_{k}\left(c_{k}\right)=$ $f_{0}\left(c_{k}\right)$ and $f_{k}\left(d_{k}\right)=f_{0}\left(d_{k}\right)$ must be an endpoint of some $\bar{\gamma}_{m} \in \Gamma_{k+1}$ or a member of Z. It follows that $\left\{f_{k}\left(c_{k}\right), f_{k}\left(d_{k}\right)\right\} \subset \overline{U_{k+1}} \cap C$.

If $\left\{f_{k}\left(c_{k}\right), f_{k}\left(d_{k}\right)\right\} \subset U_{k+1}$ then (2) implies there is an arc γ_{k}^{\prime} in $U_{k+1} \cap C$ from $f_{k}\left(c_{k}\right)$ to $f_{k}\left(d_{k}\right)$.

If, say, $f_{k}\left(c_{k}\right) \notin U_{k+1}$ then there must be infinitely many members of Γ_{k+1}^{\prime} that meet $f_{k}(I)$, for otherwise (4) implies $f_{k}\left(c_{k}\right)$ is an endpoint a_{m} of some $\bar{\gamma}_{m} \in \Gamma_{k+1}$ and thus $f_{k}\left(c_{k}\right) \in U_{k+1}$, contrary to assumption. Thus $f_{k}\left(c_{k}\right) \in Z \cap U_{k_{1}}$ for some k_{1}. There is a sequence $\left\{a_{m_{r}}\right\}$ of endpoints of members $\overline{\gamma_{m_{r}}}$ of Γ_{k+1} such that $f_{k} \circ f_{0}^{-1} \overline{\left(\gamma_{m_{r}}\right)} \not \subset C$ and $a_{m_{r}} \rightarrow f_{k}\left(c_{k}\right)$. Hence there is an r such that $a_{m_{r}} \in U_{k_{1}}$. By (2) there are $\operatorname{arcs} \gamma^{\prime}$ in $U_{k_{1}} \cap C$ from $f_{k}\left(c_{k}\right)$ to $a_{m_{r}}$ and $\gamma^{\prime \prime}$ in $U_{k+1} \cap C$ from $a_{m_{r}}$ to $f_{k}\left(d_{k}\right)$. There is an arc $\gamma_{k}^{\prime} \subset \gamma^{\prime} \cup \gamma^{\prime \prime} \subset C \cap \operatorname{Int} B$ from $f_{k}\left(c_{k}\right)$ to $f_{k}\left(d_{k}\right)$.

The other cases are treated as above. So in any case, $C \cap \operatorname{Int} B$ contains an are γ_{k}^{\prime} from $f_{k}\left(c_{k}\right)$ to $f_{k}\left(d_{k}\right)$. Let $f_{k+1}:(I, 0,1) \rightarrow\left(\operatorname{Int} B, w_{1}, w_{2}\right)$ be determined by: $f_{k+1}\left[\left[c_{k}, d_{k}\right]\right.$ is a homeomorphism of ($\left.\left[c_{k}, d_{k}\right], c_{k}, d_{k}\right)$ onto $\left(\gamma_{k}^{\prime}, f_{k}\left(c_{k}\right), f_{k}\left(d_{k}\right)\right)$; and $f_{k+1}(t)=f_{k}(t)$ for $t \in I \backslash\left[c_{k}, d_{k}\right]$. Clearly f_{k+1} is continuous. The construction shows (3) and (4) are satisfied when k is replaced by $k+1$.

With the induction completed, we have by (4) a map $f_{p}:(I, 0,1) \rightarrow$ (Int B, w_{1}, w_{2}) such that $f_{p}(I) \backslash C$ is a union of members of the finite set Γ_{p+1}^{\prime}. Now $f_{p}(I)$ contains an arc β from w_{1} to w_{2}. Let γ_{m} be a component of $f_{p}(I) \backslash C$. Apply 1.8 , with $Y=M, L=f_{p}(I), D=$ $M \backslash\left(C \cup\left\{w_{1}, w_{2}\right\}\right), \bar{\gamma}=\bar{\gamma}_{m}: \quad$ We have $\bar{\gamma}_{m} \subset \beta$ or $\gamma_{m} \cap \beta=\phi$. Therefore $\beta \backslash C$ has finitely many components, and $\alpha=\beta \cup \overline{w_{1} w_{2}}$ is a simple closed curve such that $\alpha \backslash C$ has finitely many components.

Let $h:$ Int $B \rightarrow R^{2}$ be a homeomorphism. Let $h^{\prime}:(I, 0,1) \rightarrow\left(\beta, w_{1}, w_{2}\right)$ be a homeomorphism. Let $g:([-1,1], 0,\{-1,1\}) \rightarrow\left(\alpha^{\prime}, w_{1},\left\{w_{2}\right\}\right)$ be a relative homeomorphism such that $g(I) \subset \operatorname{Int} B$. Define $H: \alpha^{\prime} \times I \rightarrow$ Int N by

$$
H(g(s), t)=\left\{\begin{array}{l}
g(s) \text { if }-1 \leqq s \leqq 0 \\
h^{-1}\left[(1-t) \cdot h \circ g(s)+t \cdot h \circ h^{\prime}(s)\right] \quad \text { if } \quad 0 \leqq s \leqq 1
\end{array}\right.
$$

Clearly H is well-defined and continuous, $H_{0}=\operatorname{Id}_{\alpha^{\prime}}$, and H_{1} is a homeomorphism of α^{\prime} onto α. It follows from ([7], 2.1, p. 87) that there is a homeomorphism $T: N \rightarrow N$ such that $T\left(\alpha^{\prime}\right)=\alpha$ and $T(x)=x$ for all $x \in \operatorname{Bd} N$.

By applying this construction to each of the curves α_{n}^{\prime}, we easily obtain a homeomorphism $P: M \rightarrow M$ taking $X_{1}^{\prime}, X_{2}^{\prime}, \alpha_{1}^{\prime}, \cdots, \alpha_{q+1}^{\prime}$ onto sets satisfying (a) through (e).

Theorem 2.3 follows from 1.1 and the following:

Theorem 2.5. Let $C \in 2_{h}^{M}$ be a proper subset of M. Then there is a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ in 2_{h}^{M} such that for all n :
(a) Each component of A_{n} is a polyhedral bounded surface.
(b) $C \subset A_{n+1} \subset \operatorname{Int} A_{n}$.

Also there is a sequence $0=t_{1}<t_{2}<t_{3}<\cdots$ with $\lim t_{n}=1$ and a map $h: A_{1} \times I \rightarrow A_{1}$ such that:
(c) h is a strong deformation retraction of A_{1} onto C.
(d) For each $n, h \mid A_{n} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of A_{n} onto A_{n+1}.

Proof. We remark that the proof is long, so some of the technical details have been omitted. A more complete proof is in [5].

It is easy to see that there is no loss of generality in assuming C is connected. By sewing a Moebius band onto the boundary of a disk cut out of $M \backslash C$ if necessary, we can also assume that M is nonorientable of even genus, or orientable. In view of ([1], 3.2, 3.3, and 3.5 , pp. 36-39) we assume $M \neq S^{2}$.

For a given connected $C \in 2_{h}^{M}$ with $C \neq M$, let $\alpha_{1}, \cdots, \alpha_{q+1}$, $N_{1}, \cdots, N_{q+1}, X_{1}, X_{2}$ be as in 2.4 and its proof. It follows from 2.4(e) and ([4], 2.12, p. 102) that $\hat{X}_{1}=X_{1} \cap C$ and $\hat{X}_{2}=X_{2} \cap C$ are ANR's. We may assume $\hat{X}_{1} \neq \phi$. For $k=1,2, X_{k} \cup \bigcup_{j=1}^{q+1} N_{j}$ is homeomorphic to X_{k}, which is embeddable in S^{2}. If $\hat{X}_{2} \subset \operatorname{Int}\left(\bigcup_{j=1}^{q+1} N_{j}\right)$ then $C \subset$ Int ($X_{1} \cup \bigcup_{j=1}^{q+1} N_{j}$), in which case we are done, by [1]. Thus we assume
(1) $\hat{X}_{2} \not \subset \operatorname{Int}\left(\bigcup_{j=1}^{q+1} N_{j}\right)$.

Let Γ be the set of components γ of $\bigcup_{j=1}^{q+1} \alpha_{j} \backslash C$ such that $\gamma \subset \alpha_{j}$ implies $\gamma \neq \alpha_{j}$. From 2.4(e), Γ is a finite set. We argue by induction on the number of members of Γ.

If $\Gamma=\phi$ then for each $j \in\{1,2, \cdots, q+1\}$ either $\alpha_{j} \subset C$ or $\alpha_{j} \subset$ $M \backslash C$. Since C is connected and $\hat{X}_{1} \neq \phi$, if no α_{j} lies in C we have $C=\hat{X}_{1}$, contrary to (1). We assume
(2) $\bigcup_{j=1}^{p} \alpha_{j} \subset C$ for some p with $1 \leqq p \leqq q+1$, and if $p<q+1$ then $\bigcup_{j=p+1}^{q+1} \alpha_{j} \subset M \backslash C$.

Neither \hat{X}_{1} nor \hat{X}_{2} need be connected; nevertheless, the theorems of [1] cited above (and their proofs) imply there are sequences $\left\{B_{n}^{k}\right\}_{n=1}^{\infty}(k=1,2)$ such that for all n :
(3) Each component of B_{n}^{k} is a polyhedral surface.
(4) $\hat{X}_{k} \subset B_{n+1}^{k} \subset \operatorname{Int} B_{n}^{k} \subset B_{n}^{k} \subset \operatorname{Int}\left(X_{k} \cup \bigcup_{j=1}^{q+1} N_{j}\right)$. Also there are
maps $h^{k}: B_{1}^{k} \times I \rightarrow B_{1}^{k}$ and a sequence $0=t_{1}<t_{2}<t_{3}<\cdots$ such that $\lim t_{n}=1$,
(5) h^{k} is a strong deformation retraction of B_{1}^{k} onto \hat{X}_{k}, and for each n :
(6) $h^{k} \mid B_{n}^{k} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of B_{n}^{k} onto B_{n+1}^{k}.
(7) $h^{k} \mid\left(\mathrm{Bd} B_{n}^{k}\right) \times\left[t_{n}, t_{n+1}\right]$ is an isotopy of $\mathrm{Bd} B_{n}^{k}$ onto $\mathrm{Bd} B_{n+1}^{k}$.
(8) If $y \in \operatorname{Bd} B_{n}^{k}$ and $x \in h^{k}\left(\{y\} \times\left[t_{n}, t_{n+1}\right]\right)$, then $h^{k}\left(\{x\} \times\left[t_{n}, t_{n+1}\right]\right) \subset$ $h^{k}\left(\{y\} \times\left[t_{n}, t_{n+1}\right]\right)$ and $h^{k}(x, t)=h^{k}(y, t)$ for $t \in\left[t_{n+1}, 1\right]$.
(9) For all $x \in \operatorname{Bd} B_{n}^{k}, h^{k}(\{x\} \times I)$ is an arc and $h^{k}(\{x\} \times[0,1))$ is a (noncompact) polyhedron.
(10) If D is a component of $B_{n}^{k} \backslash \hat{X}_{k}$ and E is a component of Bd D such that $E \subset \hat{X}_{k}$, then there is a boundary curve β of B_{n}^{k} such that $\beta \subset D$ and $h_{1}^{k}(\beta)=E$.

From (2) and (4) we may assume for all n and for $k=1,2$,
(11) $\bigcup_{j=1}^{p} \alpha_{j} \subset$ Int B_{n}^{k} and $B_{n}^{k} \cap \bigcup_{j=p+1}^{q+1} \alpha_{j}=\phi$.

For all n, let $A_{n}=\left(B_{n}^{1} \cap X_{1}\right) \cup\left(B_{n}^{2} \cap X_{2}\right)$. We define a map h on $A_{1} \times I$ by

$$
h(x, t)=\left\{\begin{array}{lll}
h^{1}(x, t) & \text { if } & x \in B_{1}^{1} \cap X_{1} \\
h^{2}(x, t) & \text { if } & x \in B_{1}^{2} \cap X_{2}
\end{array}\right.
$$

If $x \in\left(B_{1}^{1} \cap X_{1}\right) \cap\left(B_{1}^{2} \cap X_{2}\right)=\bigcup_{j=1}^{p} \alpha_{j}=\hat{X}_{1} \cap \hat{X}_{2}$, then (5) implies $h^{1}(x, t)=$ $x=h^{2}(x, t)$ for all $t \in I$. Therefore h is well-defined and continuous. It is easily seen that
(12) if $x \in B_{1}^{k} \cap X_{k}$ then $h(x, t) \in B_{1}^{k} \cap X_{k}$. It follows that $h\left(A_{1} \times I\right)=A_{1}$.

By (11), if β is a boundary curve of B_{n}^{k} then $\beta \subset \operatorname{Int} X_{1}$ or $\beta \subset$ Int X_{2}. The union of those boundary curves of B_{n}^{k} that lie in Int X_{k} is ($\left.\operatorname{Bd} A_{n}\right) \cap X_{k}$. It follows that A_{n} is a polyhedral bounded surface.

For all $n, C \subset A_{n+1}=\left(B_{n+1}^{1} \cap X_{1}\right) \cup\left(B_{n+1}^{2} \cap X_{2}\right) \subset\left[\left(\operatorname{Int} B_{n}^{1}\right) \cap X_{1}\right] \cup$ $\left[\left(\operatorname{Int} B_{n}^{2}\right) \cap X_{2}\right]=\operatorname{Int}\left(B_{n}^{1} \cap X_{1}\right) \cup \bigcup_{j=1}^{p} \alpha_{j} \cup \operatorname{Int}\left(B_{n}^{2} \cap X_{2}\right)=\operatorname{Int} A_{n}$.

It is clear that $h_{0}=\operatorname{Id}_{A_{1}}$ and $h_{t} \mid C=\operatorname{Id}_{c}$ for all $t \in I$. Also $h_{1}\left(A_{1}\right)=$ $h_{1}^{1}\left(B_{1}^{1} \cap X_{1}\right) \cup h_{1}^{2}\left(B_{1}^{2} \cap X_{2}\right)=\left(\right.$ by (5) and (12)) $\hat{X}_{1} \cup \hat{X}_{2}=C$. Thus h is a strong deformation retraction of A_{1} onto C.

For all n, we see by (6) and (12) that $h \mid A_{n} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of A_{n} onto A_{n+1}.

By (12), analogues of (7) through (9) hold when we replace $\left(\hat{X}_{k},\left\{B_{n}^{k}\right\}_{n=1}^{\infty}, h^{k}\right)$ with ($\left.C,\left\{A_{n}\right\}_{n=1}^{\infty}, h\right)$.

If D is a component of $A_{n} \backslash C$ then by (11) D is a component of $B_{n}^{k} \backslash \hat{X}_{k}$ for some k. Then (10) and the construction imply ($\left.C,\left\{A_{n}\right\}_{n=1}^{\infty}, h\right)$ satisfies the analogue of (10). This concludes our discussion of the case $\Gamma=\dot{\phi}$.

Suppose the theorem is true whenever Γ has less than r members
$(r>0)$. Now let Γ have r distinct members, $\gamma_{1}, \cdots, \gamma_{r}$. Topologically γ_{r} is an open interval in some α_{j}, say $\gamma_{r} \subset \alpha_{1}$. Let $\left\{z_{1}, z_{2}\right\}$ be the endpoints of $\gamma_{r}\left(z_{1}=z_{2}\right.$ if $\left.\bar{\gamma}_{r}=\alpha_{1}\right)$. Let $C^{\prime}=C \cup \bar{\gamma}_{r}$. Clearly C^{\prime} is a connected ANR, and $\Gamma^{\prime}=\left\{\gamma_{1}, \cdots, \gamma_{r-1}\right\}$ is the set of all components γ of $\bigcup_{j=1}^{q+1} \alpha_{j} \backslash C^{\prime}$ such that $\gamma \subset \alpha_{j}$ implies $\gamma \neq \alpha_{j}$. The inductive hypothesis gives a sequence $\left\{B_{n}\right\}_{n=1}^{\infty} \subset 2_{h}^{M}$ such that for all n :
(13) B_{n} is a polyhedral bounded surface.
(14) $C^{\prime} \subset B_{n+1} \subset$ Int B_{n}.

Also there is a map $\psi: B_{1} \times I \rightarrow B_{1}$ and a sequence $0=t_{1}<t_{2}<t_{3}<\cdots$ such that $\lim t_{n}=1$,
(15) ψ is a strong deformation retraction of B_{1} onto C^{\prime}, and for all n :
(16) $\psi / B_{n} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of B_{n} onto B_{n+1}.
(17) $\psi /\left(\mathrm{Bd} B_{n}\right) \times\left[t_{n}, t_{n+1}\right]$ is an isotopy of $\mathrm{Bd} B_{n}$ onto $\mathrm{Bd} B_{n+1}$.
(18) If $y \in \operatorname{Bd} B_{n}$ and $x \in \psi\left(\{y\} \times\left[t_{n}, t_{n+1}\right]\right)$ then $\psi\left(\{x\} \times\left[t_{n}, t_{n+1}\right]\right) \subset$ $\psi\left(\{y\} \times\left[t_{n}, t_{n+1}\right]\right)$ and $\psi(x, t)=\psi(y, t)$ for $t \in\left[t_{n+1}, 1\right]$.
(19) For all $x \in \operatorname{Bd} B_{n}, \psi(\{x\} \times I)$ is an arc and $\psi(\{x\} \times[0,1))$ is a (noncompact) polyhedron.
(20) If D is a component of $B_{n} \backslash C^{\prime}$ and E is a component of Bd D such that $E \subset C^{\prime}$, then there is a boundary curve β of B_{n} such that $\beta \subset D$ and $\psi_{1}(\beta)=E$.

For all n we define $\varepsilon_{n}=\sup \left\{\operatorname{diam} \psi(\{x\} \times I) / x \in B_{n}\right\}$. By compactness, ε_{n} is finite, and we easily see
(21) $\lim \varepsilon_{n}=0$.

Let D be a component of $B_{1} \backslash C^{\prime}$ such that $\bar{\gamma}_{r}$ lies in a boundary component E of D. From (20) there is a boundary curve β of B_{1} such that $\beta \subset D$ and $\bar{\gamma}_{r} \subset \psi_{1}(\beta)$. It can be shown that:
(22) β contains a continuum β^{\prime} such that $\psi_{1}\left(\beta^{\prime}\right)=\bar{\gamma}_{r}$. If β^{\prime} is an arc whose endpoints are e_{1} and e_{2} then $\psi_{1}\left(\left\{e_{1}, e_{2}\right\}\right)=\left\{z_{1}, z_{2}\right\}$ and $\psi_{1}\left(\beta^{\prime} \backslash\left\{e_{1}, e_{2}\right\}\right)=\gamma_{r}$.

Further, we show:
(23) If U is an open set contained in D such that $E \cap \operatorname{Bd} U \neq \dot{\phi}$, then $U \cap \psi(\beta \times I) \neq \phi$.
For U meets a component U_{n} of $\bar{B}_{n} \backslash B_{n+1}$ for some n. By (14), (16), and 1.5, U_{n} is an annulus. From (16), (17), (18), and 1.9, $U_{n}=$ $\psi\left(\beta \times\left[t_{n}, t_{n+1}\right]\right)$, and (23) follows.

Let $y_{0} \in \gamma_{r}$. By (23) there are continua $P_{k}(k=1,2)$ such that $\beta^{\prime}=P_{k}$ satisfies (22) and $P_{k} \cap\left(\operatorname{Int} X_{k}\right) \cap B\left(y_{0}, \varepsilon_{1}\right) \neq \phi$. It can be shown that $P_{1} \cap P_{2}=\phi . \quad$ By (17), for all n,
(24) $\psi\left(P_{1} \times\left\{t_{n}\right\}\right) \cap \psi\left(P_{2} \times\left\{t_{n}\right\}\right)=\phi$.

It can be shown that not both of P_{1} and P_{2} are simple closed curves. Hence we assume P_{1} is an arc. Then P_{2} is an arc or a simple closed curve.

By (22) we may assume the endpoints a_{1}^{1} and b_{1}^{1} of P_{1} satisfy $\dot{\psi}_{1}\left(a_{1}^{1}\right)=z_{1}, \psi_{1}\left(b_{1}^{1}\right)=z_{2}$. If P_{2} is an arc then we may assume its endpoints a_{1}^{2} and b_{1}^{2} satisfy $\psi_{1}\left(a_{1}^{2}\right)=z_{1}, \psi_{1}\left(b_{1}^{2}\right)=z_{2}$. If P_{2} is a simple closed curve then $z_{1}=z_{2}$, and by analogy with the above we choose $a_{1}^{2}=b_{1}^{2} \in P_{2} \cap \psi_{1}^{-1}\left(z_{1}\right)$.

By (19), $\eta^{k}=\psi\left(\left\{a_{1}^{k}\right\} \times I\right)$ and $\xi^{k}=\psi\left(\left\{b_{1}^{k}\right\} \times I\right)$ are arcs. By (17) and (18) we have
(25) $\eta^{1} \backslash\left\{z_{1}\right\}, \eta^{2} \backslash\left\{z_{1}\right\}, \xi^{1} \backslash\left\{z_{2}\right\}$ (and $\xi^{2} \backslash\left\{z_{2}\right\}$ if $\xi^{2} \neq \eta^{2}$) are pairwise disjoint.

Let $p_{k} \in P_{k} \cap \psi_{1}^{-1}\left(y_{0}\right), k=1,2$. Let P_{a}^{1} be the arc of P_{1} from a_{1}^{1} to p_{1}. Let P_{b}^{1} be the arc of P_{1} from p_{1} to b_{1}^{1}. If $a_{1}^{2} \neq b_{1}^{2}$, let P_{a}^{2} and P_{b}^{2} be the arcs of P_{2} from a_{1}^{2} to p_{2} and from p_{2} to b_{1}^{2}, respectively. If $a_{1}^{2}=b_{1}^{2}$ then $z_{1}=z_{2}$. Then let P_{a}^{2} be the arc of p_{2} from a_{1}^{2} to p_{2} contained in $P_{2} \cap \psi_{1}^{-1}\left(\psi_{1}\left(P_{a}^{1}\right)\right)$ and let P_{b}^{2} be the other arc of P_{2} from a_{1}^{2} to p_{2}.

Clearly $T_{1}=\bigcup_{k=1}^{2}\left[\eta^{k} \cup P_{a}^{k} \cup \psi\left(\left\{p_{k}\right\} \times I\right)\right]$ and $T_{2}=\bigcup_{k=1}^{2}\left[\xi^{k} \cup P_{b}^{k} \cup\right.$ $\left.\psi\left(\left\{p_{k}\right\} \times I\right)\right]$ are simple closed curves that are deformed by ψ into proper subsets of α_{1}. By 1.6, T_{1} and T_{2} bound disks M_{1} and M_{2} respectively in B_{1}. Clearly $M_{k}=\psi\left(T_{k} \times I\right)$.

There is an arc λ_{1}^{\prime} in $M_{1} \cap B\left(z_{1}, \varepsilon_{1}\right)$ from a_{1}^{1} to a_{1}^{2} such that $\left\{a_{1}^{1}, a_{1}^{2}\right\}=$ $\lambda_{1}^{\prime} \cap \operatorname{Bd} M_{1}$. Then $\lambda_{1}^{\prime} \subset B_{1} \cap B\left(z_{1}, \varepsilon_{1}\right)$ and $\lambda_{1}^{\prime} \cap \operatorname{Bd} B_{1}=\left\{a_{1}^{1}, a_{1}^{2}\right\}$. By (19), $M_{1} \backslash\left\{z_{1}, y_{0}\right\}$ is a (noncompact) polyhedron, so by 1.7 there is an ambient isotopy of M_{1} that is fixed on $\left(M_{1} \backslash B\left(z_{1}, \varepsilon_{1}\right)\right) \cup \mathrm{Bd} M_{1}$ and that carries λ_{1}^{\prime} onto a polyhedral arc λ_{1}. Similarly, there is a polyhedral are μ_{1} in $M_{2} \cap B\left(z_{2}, \varepsilon_{1}\right)$ from b_{1}^{1} to b_{1}^{2} such that $\left\{b_{1}^{1}, b_{1}^{2}\right\}=\mu_{1} \cap \mathrm{Bd} B_{1}$.

For all n, let $a_{n}^{k}=\psi\left(a_{1}^{k}, t_{n}\right) \in \operatorname{Bd} B_{n}$, and let $b_{n}^{k}=\psi\left(b_{1}^{k}, t_{n}\right) \in \operatorname{Bd} B_{n}$. Let $\eta_{0}^{k}=\eta^{k}, \xi_{0}^{k}=\xi^{k}, \eta_{n}^{k}=\psi\left(\left\{a_{n}^{k}\right\} \times\left[t_{n+1}, 1\right]\right)$ (the arc of η^{k} from α_{n+1}^{k} to $\left.z_{1}\right), \xi_{n}^{k}=\psi\left(\left\{b_{n}^{k}\right\} \times\left[t_{n+1}, 1\right]\right)$ (the arc of ξ^{k} from b_{n+1}^{k} to $\left.z_{2}\right)$. Note that we have begun an induction argument by showing that for $n=1$, the following statements (26) through (29) are valid:
(26) There are polyhedral arcs $\lambda_{n} \subset M_{1} \cap B_{n} \cap B\left(z_{1}, \varepsilon_{n}\right)$ from a_{n}^{1} to $a_{n}^{2}, \mu_{n} \subset M_{2} \cap B_{n} \cap B\left(z_{2}, \varepsilon_{n}\right)$ from b_{n}^{1} to b_{n}^{2} such that:
(27) $\left\{a_{n}^{1}, a_{n}^{2}\right\}=\lambda_{n} \cap \operatorname{Bd} B_{n}=\lambda_{n} \cap \mathrm{Bd} M_{1}$.

$$
\left\{b_{n}^{1}, b_{n}^{2}\right\}=\mu_{n} \cap \mathrm{Bd} B_{n}=\mu_{n} \cap \mathrm{Bd} M_{2} .
$$

(28) $\quad \lambda_{n} \cap\left(\eta_{n}^{1} \cup \eta_{n}^{2}\right)=\phi=\mu_{n} \cap\left(\xi_{n}^{1} \cup \xi_{n}^{2}\right)$.
(For $n=1$, (27) and (28) follow from observing which points are left fixed by the ambient isotopies.)
(29) $\lambda_{n} \cap \lambda_{j}=\phi=\mu_{n} \cap \mu_{j}$ for $j<n$.

Suppose $m>0$ and (26) through (29) are valid for $n=1, \cdots, m$. The inductive step is done as above, with obvious modifications. For example, to obtain λ_{m+1} satisfying (26) through (29), we work in the disk bounded not by T_{1}, but by the simple closed curve

$$
\overline{u_{m} v_{m}} \cup \overline{u_{m} a_{m+1}^{1}} \cup \eta_{m}^{1} \cup \eta_{m}^{2} \cup \overline{v_{m} a_{m+1}^{2}},
$$

where $\overline{u_{m} v_{m}}$ is the arc of λ_{m} whose endpoints u_{m} and v_{m} satisfy $u_{m} \in \psi\left(P_{1} \times\left\{t_{m}\right\}\right), v_{m} \in \psi\left(P_{2} \times\left\{t_{m}\right\}\right), \overline{u_{m} v_{m}} \backslash\left\{u_{m}, v_{m}\right\} \subset \operatorname{Int} B_{m+1} ; \overline{u_{m} a_{m+1}^{1}}$ is the arc of $\psi\left(P_{1} \times\left\{t_{m+1}\right\}\right)$ from u_{m} to a_{m+1}^{1}; and $\overline{v_{m} a_{m+1}^{2}}$ is the arc of $M_{1} \cap \psi\left(P_{2} \times\left\{t_{m+1}\right\}\right)$ from v_{m} to a_{m+1}^{2}. Thus (26) through (29) hold for all n.

Since $\lambda_{n} \subset M_{1}, \mu_{n} \subset M_{2}$, and $\left(\mathrm{Bd} M_{1}\right) \cap\left(\mathrm{Bd} M_{2}\right) \backslash \psi\left(\left\{p_{1}, p_{2}\right\} \times I\right)=$ $\eta^{2} \cap \xi^{2}$, (25) and (27) imply

$$
\lambda_{n} \cap \mu_{j}=\left\{\begin{array}{l}
\phi \text { if } n \neq j, \quad \text { or if } n=j \text { and } \eta^{2} \neq \xi^{2} ; \tag{30}\\
\left\{a_{n}^{2}=b_{n}^{2}\right\} \text { if } n=j \text { and } \eta^{2}=\xi^{2} .
\end{array}\right.
$$

For $k=1,2$, let Q_{k} be the boundary curve of B_{1} containing P_{k}. Let $Q_{k}^{n}=\psi\left(Q_{k} \times\left\{t_{n}\right\}\right), P_{k}^{n}=\psi\left(P_{k} \times\left\{t_{n}\right\}\right)$. Let $E_{n}=\left[\left(Q_{1}^{n} \cup Q_{2}^{n}\right) \backslash\left(P_{1}^{n} \cup P_{2}^{n}\right)\right] \cup$ $\lambda_{n} \cup \mu_{n}$. Clearly E_{n} is a polyhedron, and $E_{n} \cap E_{j}=\phi$ for $n \neq j$. If $Q_{1} \neq Q_{2}$, then (17), (24), (27), and (30) imply E_{n} is a simple closed curve. (Note (30) implies if $\lambda_{n} \cap \mu_{n}=\left\{a_{n}^{2}\right\}$ then $Q_{2}^{n}=P_{2}^{n}$, so $E_{n}=\left(Q_{1}^{n} \backslash P_{1}^{n}\right) \cup \lambda_{n} \cup \mu_{n}$.) Similarly, if $Q_{1}=Q_{2}$ then either E_{n} is a simple closed curve for all n or E_{n} is a disjoint union of two simple closed curves for all n.

For all n, let $J_{n} \subset M_{1}$ be the disk bounded by $\eta_{n-1}^{1} \cup \eta_{n-1}^{2} \cup \lambda_{n}$ and let $J_{n}^{\prime} \subset M_{2}$ be the disk bounded by $\xi_{n-1}^{1} \cup \xi_{n-1}^{2} \cup \mu_{n}$. Define $A_{n}=$ $\left[B_{n} \backslash\left(M_{1} \cup M_{2}\right)\right] \cup J_{n} \cup J_{n}^{\prime}$. To complete the proof, we must show (13) through (20) are satisfied when ($\left\{A_{n}\right\}_{n=1}^{\infty}, C$) replaces ($\left\{B_{n}\right\}_{n=1}^{\infty}, C^{\prime}$) and an appropriate map h replaces ψ.

We have

$$
\operatorname{Bd} A_{n}=E_{n} \cup\left[\left(\operatorname{Bd} B_{n}\right) \backslash\left(Q_{1}^{n} \cup Q_{2}^{n}\right)\right] \quad \text { and } \quad E_{n} \cap\left[\left(\operatorname{Bd} B_{n}\right) \backslash\left(Q_{1}^{n} \cup Q_{2}^{n}\right)\right]=\phi .
$$

Therefore A_{n} is a polyhedral bounded surface. The analogue of (13) is satisfied.

Since $E_{n} \cap E_{j}=\phi$ for $n \neq j,\left(\operatorname{Bd} A_{n}\right) \cap\left(\operatorname{Bd} A_{j}\right)=\phi . \quad$ Clearly $z_{1} \in$ $J_{n+1} \subset J_{n}$ and $z_{2} \in J_{n+1}^{\prime} \subset J_{n}^{\prime}$. It follows that $C \subset A_{n+1} \subset \operatorname{Int} A_{n}$. The analogue of (14) is satisfied.

It is easily seen that there are maps $h^{\prime}: J_{1} \times I \rightarrow J_{1}$ and $h^{\prime \prime}: J_{1}^{\prime} \times$ $I \rightarrow J_{1}^{\prime}$ such that for all $x \in \eta^{1} \cup \eta^{2}, y \in \xi^{1} \cup \xi^{2}, t \in I$,
(31) $h^{\prime}(x, t)=\psi(x, t) ; h^{\prime \prime}(y, t)=\psi(y, t)$; and such that h^{\prime} and $h^{\prime \prime}$ satisfy analogues of (15) through (19):
(15') h^{\prime} is a strong deformation retraction of J_{1} onto $\left\{z_{1}\right\}$, and for all n :
(16') $h^{\prime} \mid J_{n} \times\left[t_{n}, t_{n+1}\right]$ is a strong deformation retraction of J_{n} onto J_{n+1}.
(17) $h^{\prime} \mid \lambda_{n} \times\left[t_{n}, t_{n+1}\right]$ is an isotopy of λ_{n} onto λ_{n+1}.
(18') If $x \in h^{\prime}\left(\{y\} \times\left[t_{n}, t_{n+1}\right]\right)$ for $y \in \lambda_{n}$, then $h^{\prime}\left(\{x\} \times\left[t_{n}, t_{n+1}\right]\right) \subset h^{\prime}(\{y\} \times$ $\left.\left[t_{n}, t_{n+1}\right]\right)$ and $h^{\prime}(x, t)=h^{\prime}(y, t)$ for $t \in\left[t_{n+1}, 1\right]$.
(19') For all $x \in \lambda_{n}, h^{\prime}(\{x\} \times I)$ is an arc and $h^{\prime}(\{x\} \times[0,1))$ is a (noncompact) polyhedron.

Similar versions of (15^{\prime}) through (19^{\prime}) hold upon replacing $\left(h^{\prime},\left\{J_{n}\right\}_{n=1}^{\infty}, z_{1},\left\{\lambda_{n}\right\}_{n=1}^{\infty}\right)$ by $\left(h^{\prime \prime},\left\{J_{n}^{\prime}\right\}_{n=1}^{\infty}, z_{2},\left\{\mu_{n}\right\}_{n=1}^{\infty}\right)$.

Define a map h on $A_{1} \times I$ by

$$
h(x, t)=\left\{\begin{array}{lll}
h^{\prime}(x, t) & \text { if } & x \in J_{1} ; \\
h^{\prime \prime}(x, t) & \text { if } & x \in J_{1}^{\prime} ; \\
\psi(x, t) & \text { otherwise } .
\end{array}\right.
$$

By (31), h is well-defined and continuous. From (17) and (18),
(32) if $x \in B_{n} \backslash\left(M_{1} \cup M_{2}\right)$ then $\psi(\{x\} \times I) \subset B_{n} \backslash\left(M_{1} \cup M_{2} \backslash\left\{z_{1}, z_{2}\right\}\right)$.

By (15), (15'), and (32), $h\left(A_{1} \times I\right)=A_{1}$. Clearly $h(x, t)=x$ for all $(x, t) \in C \times I$, and $h_{1}\left(A_{1}\right)=C$. Thus h satisfies the analogue of (15).

For all n :
By (16), (16'), and (32), h satisfies the analogue of (16).
By (17), (17), and (32), h satisfies the analogue of (17).
By (18) and (18'), h satisfies the analogue of (18).
By (19) and (19'), h satisfies the analogue of (19).
By (20) and our construction of E_{n}, h satisfies the analogue of (20). The proof of Theorem 2.5 is completed.
3. Arcs. Let X be a finite-dimensional compactum and let $\left\{C_{0}, C_{1}\right\} \subset 2_{h}^{X}$. Under what circumstances is there an arc in 2_{h}^{X} from C_{0} to C_{1} ? In [1], it was found that a necessary but insufficient condition is that C_{0} and C_{1} have the same homotopy type; and a sufficient but unnecessary condition is that C_{0} and C_{1} be isotopic in X. For $X=M$, we obtain a condition that is both necessary and sufficient:

Theorem 3.1. Let $\left\{C_{0}, C_{1}\right\} \subset 2_{n}^{M} \backslash\{M\}$. By 2.5, there exist $A_{j} \in$ $2_{h}^{y}(j=0,1)$ such that each component of A_{j} is a bounded surface, $C_{j} \subset \operatorname{Int} A_{j}$, and C_{j} is a strong deformation retract of A_{j}. Then there is an are in 2_{n}^{h} from C_{0} to C_{1} if and only if there is an ambient isotopy of M taking A_{0} onto A_{1}.

First we prove:
Lemma 3.2. Suppose $C \in 2_{h}^{M} \backslash\{M\}$, and let $\left\{A_{n}\right\}_{n=1}^{\infty},\left\{t_{n}\right\}_{n=1}^{\infty}$, and h be as in 2.5. Then there is an arc \mathscr{A} in 2_{n}^{K} from A_{1} to C containing
each A_{n} such that if $A \in \mathscr{A} \backslash\{C\}$, each component of A is a bounded surface.

Proof. Recall the notation in the statement of Theorem 2.5. In the proof of 2.5 , we saw:
(1) $h \mid\left(\operatorname{Bd} A_{n}\right) \times\left[t_{n}, t_{n+1}\right]$ is an isotopy of $\mathrm{Bd} A_{n}$ onto $\mathrm{Bd} A_{n+1}$.

It follows from (16) and (18) of the proof of 2.5 that
(2) if $x \in \operatorname{Bd} A_{n}$ then $h\left(\{x\} \times\left[t_{n}, t_{n+1}\right]\right)=\gamma_{x}$ is an arc such that $\gamma_{x} \backslash\left\{x, h\left(x, t_{n+1}\right)\right\} \subset\left(\operatorname{Int} A_{n}\right) \backslash A_{n+1}$.

If $\varepsilon_{n}=\sup \left\{\operatorname{diam} h(\{x\} \times I) \mid x \in A_{n}\right\}$, then $\lim \varepsilon_{n}=0$, and by 1.1, $A_{n} \rightarrow C$, so it follows that there is a sequence of positive numbers δ_{n} such that
(3) $\lim \delta_{n}=0$, and for all $n, s\left(A_{n}, 6 \varepsilon_{n}, \delta_{n}\right)$.

Let P be a component of $\overline{A_{n} \backslash A_{n+1} \cdot}$ By $2.5(\mathrm{a}), 2.5(\mathrm{~b}), 2.5(\mathrm{~d})$, and $1.5, P$ is an annulus. Let the boundary curves of P be $\alpha_{n} \subset \operatorname{Bd} A_{n}$ and $\alpha_{n+1} \subset \mathrm{Bd} A_{n+1}$. There is a set $E=\left\{x_{0}, x_{1}, \cdots, x_{k-1}\right\} \subset \alpha_{n}$ of k distinct points numbered according to an orientation of α_{n} (let $x_{k}=x_{0}$) such that if β_{j} is the arc of α_{n} from x_{j-1} to x_{j} containing no other member of E, then $\operatorname{diam} \beta_{j}<\varepsilon_{n}$. For each j, let $y_{j}=h\left(x_{j}, t_{n+1}\right)$. By (2), $\gamma_{j}=h\left(\left\{x_{j}\right\} \times\left[t_{n}, t_{n+1}\right]\right)$ is an arc from x_{j} to y_{j} such that $\gamma_{j} \backslash\left\{x_{j}, y_{j}\right\} \subset \operatorname{Int} P$. By (1), the γ_{j} are pairwise disjoint for $j \in$ $\{0,1, \cdots, k-1\}\left(\gamma_{k}=\gamma_{0}\right)$ and (also by (1)) $\zeta_{j}=h\left(\beta_{j} \times\left\{t_{n+1}\right\}\right)$ is an arc of α_{n+1} from y_{j-1} to y_{j} not containing y_{m} if $y_{m} \notin\left\{y_{j-1}, y_{j}\right\}$. Clearly $\operatorname{diam} \gamma_{j} \leqq \varepsilon_{n}$.

Let $\left\{y, y^{\prime}\right\} \subset \zeta_{j}$. There exist $x, x^{\prime} \in \beta_{j}$ such that $y=h\left(x, t_{n+1}\right)$ and $y^{\prime}=h\left(x^{\prime}, t_{n+1}\right)$. Then $\rho\left(y, y^{\prime}\right) \leqq \rho(y, x)+\rho\left(x, x^{\prime}\right)+\rho\left(x^{\prime}, y^{\prime}\right) \leqq \varepsilon_{n}+$ $\operatorname{diam} \beta_{j}+\varepsilon_{n}<3 \varepsilon_{n}$. Therefore diam $\zeta_{j}<3 \varepsilon_{n}$.

Let S_{j} be the simple closed curve in P defined by $S_{j}=\gamma_{j-1} \cup$ $\beta_{j} \cup \gamma_{j} \cup \zeta_{j}$. Then diam $S_{j} \leqq \operatorname{diam} \gamma_{j-1}+\operatorname{diam} \beta_{j}+\operatorname{diam} \gamma_{j}+\operatorname{diam} \zeta_{j}<$ $\varepsilon_{n}+\varepsilon_{n}+\varepsilon_{n}+3 \varepsilon_{n}=6 \varepsilon_{n} . \quad$ By (3) and $1.6, S_{j}$ bounds a disk $K_{j} \subset A_{n}$ such that
(4) $\operatorname{diam} K_{j}<\delta_{n}$.

Indeed $K_{j} \subset P$, for if K_{j}^{\prime} is the disk in P bounded by S_{j} and $K_{j}^{\prime} \neq K_{j}$, then $K_{j} \cap K_{j}^{\prime}=S_{j}$ and $K_{j} \cup K_{j}^{\prime}$ is a 2 -sphere in A_{n}, which is impossible.

It is easily seen that there is a map $F: P \times I \rightarrow P$ that is a strongly contracting strong deformation retraction and a pseudoisotopy of P to α_{n+1} such that $F\left(K_{j} \times I\right) \subset K_{j}$ for all j. From (4) we have
(5) $\quad F_{t}$ is a δ_{n}-embedding for $0 \leqq t<1$.

Apply the above construction to each component of $\overline{A_{n} \backslash A_{n+1}}$. In the above, $F_{t} \mid \alpha_{n+1}=\mathrm{Id}_{\alpha_{n+1}}$ for all $t \in I$, so we may extend each F_{t} via the identity to obtain a map $F^{n}: A_{n} \times I \rightarrow A_{n}$ that is a strongly contracting strong deformation retraction and a pseudoisotopy of
A_{n} onto A_{n+1} moving no point by as much as δ_{n}. Let $a_{n}: I \rightarrow 2_{n}^{n}$ be defined by $a_{n}(t)=F^{n}\left(A_{n} \times\{t\}\right)$. By 1.3, a_{n} is continuous for $0 \leqq t<1$. By 1.1, a_{n} is continuous for $t=1$.

Let $L: I \rightarrow 2_{n}^{\mu}$ be defined by

$$
L(t)= \begin{cases}a_{n}\left[\frac{t-t_{n}}{t_{n+1}-t_{n}}\right] & \text { if } t_{n} \leqq t \leqq t_{n+1} \\ C & \text { if } t=1\end{cases}
$$

Since $a_{n}(1)=A_{n+1}=a_{n+1}(0), L$ is well-defined; and L is continuous for $0 \leqq t<1$. From (3), (5), and 1.2, L is continuous for $t=1$. Since $L(0)=A_{1}$ and $L(1)=C, L(I)$ contains an arc in 2_{h}^{H} from A_{1} to C. The second conclusion of the lemma follows from the fact that for all n, F^{n} is a pseudoisotopy of A_{n} onto A_{n+1}.

We show the existence of a basis with useful properties.
Lemma 3.3. Let $C \in 2_{n}^{H} \backslash\{M\}$ and let $\varepsilon>0$. By 1.1 and 2.5 , there exists A such that $\rho_{h}(A, C)<\varepsilon$, each component of A is a bounded surface, $C \subset \operatorname{Int} A$, and C is a strong deformation retract of A. There is a neighborhood \mathscr{U} of C in 2_{h}^{H} such that $X \in \mathscr{C}$ implies $\rho_{h}(X, C)<\varepsilon, X \subset \operatorname{Int} A$, and X is a strong deformation retract of A. Further, if each component of $X \in \mathscr{U}$ is a bounded surface, then there is an ambient isotopy of M that carries A onto X.

Proof. We may assume A is a polyhedron, and that ε is so small that two maps $f_{0}, f_{1}: C \rightarrow A$ such that $\rho\left(f_{0}, f_{1}\right)<\varepsilon$ are homotopic in A. Recall $[C]_{\mu}=\left\{X \in 2_{h}^{H} \mid X\right.$ and C have the same homotopy type $\}$ is open. From 2.1 it follows that

$$
\mathscr{U}=[C]_{\mu} \cap\left\{X \in 2_{h}^{H} \mid X \subset \operatorname{Int} A\right\} \cap\left\{X \in 2_{n}^{n} \mid \rho_{h}(X, C)<\varepsilon\right\}
$$

is an open set in 2_{h}^{H} containing C.
We may assume C and A are connected (otherwise we apply the following by components). Let $X \in \mathscr{K}$. There is an ε-map $g: C \rightarrow X$. Let $i: C \rightarrow A, j: X \rightarrow A$ be inclusion maps. By choice of $\varepsilon, i_{*}=j_{*} \circ g_{*}$: $\Pi_{1} C \rightarrow \Pi_{1} A$. By choice of A, i_{*} is an isomorphism. Therefore $j_{*}: \Pi_{1} X \rightarrow \Pi_{1} A$ is a surjective homomorphism. But $\{X, A\} \subset[C]_{\mu}$, so $\Pi_{1} X$ and $\Pi_{1} A$ are isomorphic. Since A is a bounded surface, $\Pi_{1} A$ is a finitely generated free group. Therefore j_{*} is an isomorphism (see [10], p. 59).

Recall the definition of ΔX given in $\S 1$. Since X and A have the same homotopy type, $\Delta X=\Delta A$. But $\Delta A \leqq 1$, since if A is a disk it has the homotopy of a point, while otherwise A has the homotopy type of a wedge of finitely many simple closed curves. With $N=\Delta A \leqq 1$, we apply Whitehead's theorem ([12], 1, p. 1133)
and conclude $j: X \rightarrow A$ is a homotopy equivalence.
By 1.1 and 2.5 there is a polyhedral bounded surface $B \in \mathscr{U}$ such that $X \subset \operatorname{Int} B$ and X is a strong deformation retract of B. Applying the above to B, we conclude the inclusion of B into A is a homotopy equivalence. Hence B is a strong deformation retract of A (see [6], 3.2, p. 6). Thus X is a strong deformation retract of A.

If $X \in \mathscr{U}$ is a bounded surface, then by 1.5 each component of $\overline{A \backslash X}$ is an annulus. Let S be a component of $\operatorname{Bd} A$. Let A^{\prime} be the component of $\overline{A \backslash X}$ containing S. Let S^{\prime} be the component of $\operatorname{Bd} A^{\prime}$ that lies in X. There are annuli A_{1} and A_{2} that collar S in $\overline{M \backslash A}$ and $S^{\prime \prime}$ in X respectively. Then $A^{\prime \prime}=A_{1} \cup A^{\prime} \cup A_{2}$ is an annulus. There is an isotopy $h: A^{\prime \prime} \times I \rightarrow A^{\prime \prime}$ of $A^{\prime \prime}$ onto itself such that $h_{1}\left(A^{\prime} \cup A_{2}\right)=A_{2}, h_{1}\left(A_{1}\right)=A^{\prime} \cup A_{1}$, and $h(z, t)=z$ for all $(z, t) \in\left(\operatorname{Bd} A^{\prime \prime}\right) \times I$. Apply this construction to each component of $\overline{A \backslash X}$ and extend via the identity on $M \backslash(\overline{A \backslash X})$ to get an ambient isotopy of M that carries A onto X.

Proof of Theorem 3.1. Suppose there is an ambient isotopy of M taking A_{0} onto A_{1}. By 1.3, there is an arc in 2_{h}^{M} from A_{0} to A_{1}. By 3.2, there are arcs in 2_{h}^{M} from A_{0} to C_{0} and from A_{1} to C_{1}. Hence there is an arc in 2_{h}^{M} from C_{0} to C_{1}.

Conversely, suppose there is an embedding $p: I \rightarrow 2_{h}^{M}$ such that $p(0)=C_{0}$ and $p(1)=C_{1}$. Since $p(I)$ is compact, 3.3 implies that there exist $0 \leqq t_{0}<t_{1}<\cdots<t_{m} \leqq 1 ; A_{t_{n}} \in 2_{h}^{M}$ such that each component of $A_{t_{n}}$ is a bounded surface; and neighborhoods \mathscr{U}_{n} of $p\left(t_{n}\right)$ in 2_{h}^{M} such that if $X \in \mathscr{U}_{n}$ and each component of X is a bounded surface then there is an ambient isotopy of M taking $A_{t_{n}}$ onto X, and such that $\mathscr{U}_{n} \cap \mathscr{U}_{n+1} \neq \phi$ and $p(I) \subset \bigcup_{n=0}^{m} \mathscr{U}_{n}$. Further, 3.3 enables us to assume that $A_{0}=A_{t_{0}}$ and $A_{1}=A_{t_{m}}$.

By 1.1 and 2.5, for each $n<m$ there exists $B_{n} \in \mathscr{U}_{n} \cap \mathscr{U}_{n+1}$ such that each component of B_{n} is a bounded surface. There are ambient isotopies of M taking $A_{t_{n}}$ and $A_{t_{n+1}}$ onto B_{n}. Therefore there is an ambient isotopy of M taking $A_{t_{n}}$ onto $A_{t_{n+1}}$. Hence there is an ambient isotopy of M taking $A_{0}=A_{t_{0}}$ onto $A_{t_{m}}=A_{1}$.
4. Global properties. The spaces $D(N)$ and $L(N)$ of deformation retracts (respectively, compact AR subsets) of a compact 2 -manifold N were studied by Wagner in [11]. The topologies of these spaces may be described thus: $A_{n} \xrightarrow[D(N)]{\longrightarrow} C\left(A_{n} \xrightarrow[L(N)]{ } C\right)$ if and only if there are maps $r_{0}: N \rightarrow N, r_{n}: N \rightarrow N$ that are deformation retractions (that are retractions) of N onto C and A_{n} respectively such that $r_{n} \rightarrow r_{0}$ uniformly on N. We show these spaces are closely related to 2_{h}^{M}.

We will need the following lemma. In both its statement and its proof, it is similar to ([2], 3.1, pp. 212-213).

Lemma 4.1. If $C \in 2_{h}^{M} \backslash\{M\}, C$ is connected, and $\varepsilon>0$, there is $a \delta>0$ and a neighborhood \mathscr{U} of C in 2_{h}^{M} such that if $\{A, B\} \subset \mathscr{U}$, $B \subset A$, and A is a bounded surface, then every pair of points in $\mathrm{Bd} A$ that can be joined by a δ-arc in $M \backslash B$ can be joined by an ε are in $\mathrm{Bd} A$.

Proof. By 3.3, there is a neighborhood \mathscr{U}_{1} of C in 2_{h}^{M} and a bounded surface $N \subset M$ such that for all $X \in \mathscr{U}_{1}$ we have $X \subset \operatorname{Int} N$ and X is a strong deformation retract of N.

Since M is an ANR, there exists $\eta>0$ such that $s(M, \eta, \varepsilon / 4)$. Also there is a $\delta>0$ such that:
(1) If N has more than one boundary curve then
$\delta<\min \{\rho(S, T) \mid S$ and T are distinct boundary curves of $N\}$.
(2) $\delta<1 / 2 \min \{\eta, \varepsilon\}$.
(3) There is a neighborhood \mathscr{U}_{2} of C in 2_{h}^{M} such that if $X \in \mathscr{H}_{2}$ then $s(X, \delta, \eta / 2)$.

Let $\mathscr{U}_{3}=\left\{X \in 2_{h}^{H} \mid \rho_{h}(X, C)<\delta / 2\right\}$. Let $\mathscr{U}=\mathscr{U}_{1} \cap \mathscr{U}_{2} \cap \mathscr{U}_{3}$. Clearly \mathscr{W} is a neighborhood of C in 2_{h}^{M}.

Suppose $\{A, B\} \subset \mathscr{U}$ such that $B \subset A$ and A is a bounded surface. From 1.4 (with $R=B$) it follows that B separates each pair of boundary curves of N in N. Since each component of $\overline{N \backslash A}$ is an annulus, it follows that
(4) B separates each pair of distinct boundary curves of A in A.

Let p and q be distinct points of $\operatorname{Bd} A$ such that there is a δ-arc β from p to q in $M \backslash B$.

Suppose β meets distinct boundary curves T_{1} and T_{2} of A. It follows from (4) that β must contain a δ-arc β^{\prime} from $p^{\prime} \in T_{1}$ to $q^{\prime} \in T_{2}$ such that $\beta^{\prime} \cap A=\left\{p^{\prime}, q^{\prime}\right\}$. For $n=1,2$, let B_{n} be the annular component of $\overline{N \backslash A}$ containing T_{n} and let T_{n}^{\prime} be the component of $\mathrm{Bd} N$ that is contained in B_{n}. By 1.4, $T_{1}^{\prime} \neq T_{2}^{\prime}$. By (4) and 1.4, there are distinct components B_{n}^{\prime} of $N \backslash B$ such that Int $B_{n} \subset B_{n}^{\prime}$. Then $T_{n} \subset B_{n} \subset \overline{B_{n}^{\prime}}$, so we must have $\beta^{\prime} \cap \operatorname{Bd} B_{n}^{\prime} \neq \phi$. Since $\operatorname{Bd} B_{n}^{\prime} \subset T_{n}^{\prime} \cup$ $\operatorname{Bd} B$ and $\beta^{\prime} \cap \operatorname{Bd} B \subset \beta^{\prime} \cap B=\phi$, we have $\beta^{\prime} \cap T_{n}^{\prime} \neq \phi$ for $n=1,2$. The latter contradicts (1). We conclude that $\beta \cap \operatorname{Bd} A$ is contained in a single component J of $\mathrm{Bd} A$.

By $N_{s}(\beta)$ we will mean the set of all points in M whose distance from β is less than s. Since $\operatorname{diam} \beta<\delta$, there is an $s>0$ such that $\operatorname{diam} N_{s}(\beta)<\delta$. By the proof of 2.4 , we may assume $\beta \cap J$ has finitely many components. If γ is a component of $\beta \cap J$
that is not a single point, then γ is an arc with endpoints b, c. There is an arc $\gamma^{\prime} \subset N_{s}(\beta) \backslash B$ from b to c such that $\gamma^{\prime} \cap J=\{b, c\}$. If $\gamma_{1}, \cdots, \gamma_{m}$ are the components of $\beta \cap J$ that are arcs, then $\beta_{1}=$ $\left(\beta \backslash \bigcup_{n=1}^{m} \gamma_{n}\right) \cup \bigcup_{n=1}^{m} \gamma_{n}^{\prime}$ meets J in but finitely many points and (by choice of s) contains a δ-arc β_{2} from p to q. Thus (by replacing β by β_{2} if necessary) we may assume $\beta \cap J$ is a finite set.

Suppose $\beta \cap J=\{p, q\}$. We consider two cases:
(I) Suppose $\beta \backslash\{p, q\} \subset M \backslash A$. Since diam $\beta<\delta$, (3) implies there is an $\eta / 2$-arc ξ in A from p to q. We assume $\xi \backslash\{p, q\} \subset \operatorname{Int} A$. Then $K=\beta \cup \xi$ is a simple closed curve and $\operatorname{diam} K<\delta+\eta / 2<\eta$ (by (2)). By 1.6 and our choice of η, K bounds a disk $L \subset M$ with diam $L<\varepsilon / 4$.

Let $x \in \beta \backslash\{p, q\}, y \in \xi \backslash\{p, q\}$. For any fixed $r>0, B(x, r) \cap(M \backslash A) \neq$ $\phi \neq B(y, r) \cap \operatorname{Int} A$. Suppose L fails to contain an arc of J from p to q. Our choices of β and ξ imply $J \cap K=J \cap \operatorname{Bd} L=\{p, q\}$, so the assumption implies $J \cap L=\{p, q\}$. Thus $\phi=J \cap \operatorname{Int} L=(\operatorname{Bd} A) \cap \operatorname{Int} L$. Since $\phi \neq B(y, r) \cap \operatorname{Int} A$ meets $\operatorname{Int} L \cap \operatorname{Int} A$ and $\dot{\phi} \neq B(x, r) \cap(M \backslash A)$ meets Int $L \cap(M \backslash A)$, it follows that $\operatorname{Int} L=(\operatorname{Int} L \cap \operatorname{Int} A) \cup$ (Int $L \cap(M \backslash A)$) is disconnected. This is impossible, so L contains an arc of J from p to q that lies in $N_{\varepsilon / 4}(\beta)$ (since $\beta \subset L$ and $\operatorname{diam} L<\varepsilon / 4)$.
(II) Suppose $\beta \backslash\{p, q\} \subset \operatorname{Int} A$. Then $A=A_{1} \cup A_{2}$, where A_{1} is a bounded surface containing B, A_{2} is (by (4) and the fact that $\beta \subset M \backslash B)$ a bounded surface whose boundary is the union of β and an arc of J from p to q, and $A_{1} \cap A_{2}=\beta$. By choice of \mathscr{U}_{3}, there is a δ-map $f: A \rightarrow B$. If $z \in A_{2}$ then $f(z) \in B \subset A_{1}$, so by (3) there is an $\eta / 2$-arc $\zeta \subset A$ from z to $f(z)$. Clearly ζ meets β. Hence $A_{2} \subset$ $N_{\eta / 2}(\beta)$. In particular, the arc of J from p to q that lies in $\operatorname{Bd} A_{2}$ must lie in $N_{\eta / 2}(\beta)$.

Our choice of η implies $\eta / 2<\varepsilon / 4$. In both (I) and (II), J contains an arc from p to q that lies in $N_{\varepsilon / 4}(\beta)$.

More generally, if $\beta \cap J=\left\{p=p_{1}, \cdots, p_{k}=q\right\}$ where the p_{n} are numbered in order from p to q along β, then each subarc $\overline{p_{n} p_{n+1}}$ of β satisfies the condition of (I) or (II). For each $n<k$ there is an arc ζ_{n} of J from p_{n} to p_{n+1} in $N_{s / 4}(\beta)$. There is an $\operatorname{arc} \zeta_{0} \subset \bigcup_{n=1}^{k-1} \zeta_{n} \subset N_{s / 4}(\beta)$ of J from p to q. Observe diam $\zeta_{0} \leqq \operatorname{diam} N_{\varepsilon / 4}(\beta) \leqq \varepsilon / 2+\operatorname{diam} \beta<$ $\varepsilon / 2+\delta<\varepsilon$ (by (2)).

We now strengthen 3.3.
Lemma 4.2. Let $C \in 2_{h}^{M} \backslash\{M\}, \varepsilon>0$. Then there exist $N \in 2_{h}^{M}$ and a neighborhood \mathscr{U} of C in 2_{h}^{M} such that each component of N is a bounded surface and such that for all $X \in \mathscr{U}, \rho_{h}(X, C)<\varepsilon, X \subset \operatorname{Int} N$, and there is a strong deformation retraction $h: N \times I \rightarrow N$ of N onto X such that for each $t \in I, h_{t}$ is an ε-map.

Proof. It follows from ([2], 2.1, p. 210) that there is no loss of generality in assuming C is connected.

There is a neighborhood \mathscr{U}_{1} of C in 2_{h}^{M} and a $\delta>0$ such that
(1) if $X \in \mathscr{U}_{1}$ then $s(X, \delta, \varepsilon / 2)$.

There are positive numbers δ_{1} and δ_{2} such that
(2) $17 \delta_{1}+\delta_{2}<\delta$
and (by 4.1) such that
(3) there is a neighborhood \mathscr{U}_{2} of C in 2_{h}^{M} such that if $\{X, Y\} \subset \mathscr{C}_{2}, X \subset Y$, and Y is a bounded surface, then each pair of points in $\mathrm{Bd} Y$ joined by a $7 \delta_{1}$-arc in $M \backslash X$ can be joined by a δ_{2}-arc in $\mathrm{Bd} Y$.

Clearly
(4) there is a neighborhood \mathscr{C}_{3} of C in 2_{h}^{M} and a $\delta_{3}>0$ such that if $X \in \mathscr{U}_{3}$ then $s\left(X, \delta_{3}, \delta_{1}\right)$.

Let $\mathscr{U}_{4}=\left\{X \in 2_{h}^{M} \mid \rho_{h}(X, C)<(1 / 2) \delta_{3}\right\}$. By 3.3 there exist a bounded surface $N \in \bigcap_{n=1}^{4} \mathscr{U}_{n}$ and a neighborhood \mathscr{C}_{5} of C in 2_{h}^{M} such that $X \in \mathscr{U}_{5}$ implies $X \subset \operatorname{Int} N$ and X is a strong deformation retract of N.

Let $\mathscr{U}=\bigcap_{n=1}^{5} \mathscr{U}_{n}$. Clearly \mathscr{U} is a neighborhood of C in 2_{h}^{K}. Fix $X \in \mathscr{C}$. By 1.1 and 2.5 there is a bounded surface $B \in \mathscr{U}$ such that $X \subset \operatorname{Int} B$ and there is a strong deformation retraction $g: B \times I \rightarrow B$ of B onto X such that g_{t} is an $\varepsilon / 2$-map for all $t \in I$. Thus it suffices to show the existence of a strong deformation retraction $H: N \times I \rightarrow N$ of N onto B such that H_{t} is an $\varepsilon / 2-\mathrm{map}$ for all $t \in I$.

By choice of \mathscr{C}_{4} we have $\rho_{h}(N, B)<\delta_{3}$. It follows from (4) and our choice of \mathscr{U}_{5} that for all $x \in \operatorname{Bd} N$ there is a δ_{1}-arc in N from x to some $y \in \operatorname{Bd} B$. By 1.5, each component P of $\overline{N \backslash B}$ is an annulus. Let $\operatorname{Bd} P=S \cup S^{\prime}$, where S and S^{\prime} are boundary curves of N and B respectively. It follows from 1.4 that B separates distinct boundary curves of N in N. Thus
(5) for all $x \in S$, there is a δ_{1}-arc β from x to some $y \in S^{\prime}$, and we may assume $\beta \backslash\{x, y\} \subset \operatorname{Int} P$.

Suppose $\operatorname{diam} S<\delta$. By (1) and 1.6, S bounds a disk of diameter less that $\delta / 2$ in N. Since N is connected, the disk must be N itself. In this case it is clear that we have a strong deformation $H: N \times$ $I \rightarrow N$ of N onto B such that H_{t} is an $\varepsilon / 2$-map for all $t \in I$. Thus we assume
(6) $\operatorname{diam} S \geqq \delta$.

There is a set $G=\left\{x_{1}, \cdots, x_{k}\right\} \subset S$ of k distinct points numbered according to an orientation of S (let $x_{0}=x_{k}$) such that if α_{p} is the arc of S from x_{p-1} to x_{p} containing no other member of G, then
(7) $2 \delta_{1}<\rho\left(x_{p-1}, x_{p}\right)$ and $\operatorname{diam} \alpha_{p}<5 \delta_{1}$.

By (2) and (6), $k>1$.
By (5), for each p there exists $y_{p} \in S^{\prime}\left(y_{0}=y_{k}\right)$ and a $\delta_{1}-\operatorname{arc} \beta_{p}\left(\beta_{0}=\beta_{k}\right)$ in P from x_{p} to y_{p} such that $\beta_{p} \backslash\left\{x_{p}, y_{p}\right\} \subset \operatorname{Int} P$. By (7), $\beta_{p-1} \cap \beta_{p}=\phi$.

Since P is an annulus, it follows that the β_{p} are pairwise disjoint. By choice of $B, \beta_{p-1} \cup \alpha_{p} \cup \beta_{p}$ is an arc in $M \backslash X$ from $y_{p-1} \in S^{\prime}$ to $y_{p} \in S^{\prime \prime}$, and (7) implies
(8) $\operatorname{diam}\left(\beta_{p-1} \cup \alpha_{p} \cup \beta_{p}\right)<\delta_{1}+5 \delta_{1}+\delta_{1}=7 \delta_{1}$.

By (3), there is a $\delta_{2}-\operatorname{arc} \gamma_{p}$ of $S^{\prime \prime}$ from y_{p-1} to y_{p}.
We claim γ_{p} does not contain y_{q} if $y_{q} \notin\left\{y_{p-1}, y_{p}\right\}$. For it follows from the disjointness of the β_{p} that the points y_{1}, \cdots, y_{k} are numbered according to an orientation of S^{\prime}. If some γ_{p} contains y_{q} for $y_{q} \notin$ $\left\{y_{p-1}, y_{p}\right\}$, then $\left\{y_{1}, \cdots, y_{k}\right\} \subset \gamma_{p}$. Let $x \in \alpha_{n} \neq \alpha_{p}$. Then $\rho\left(x, \gamma_{p}\right) \leqq$ $\rho\left(x, y_{n}\right) \leqq \rho\left(x, x_{n}\right)+\rho\left(x_{n}, y_{n}\right) \leqq \operatorname{diam} \alpha_{n}+\operatorname{diam} \beta_{n}<5 \delta_{1}+\delta_{1}=6 \delta_{1}$. It follows that $\operatorname{diam} S \leqq \operatorname{diam} \alpha_{p}+\operatorname{diam}\left(S \backslash \alpha_{p}\right)<5 \delta_{1}+\operatorname{diam} N_{6 \delta_{1}}\left(\gamma_{p}\right) \leqq$ $5 \delta_{1}+12 \delta_{1}+\operatorname{diam} \gamma_{p}<17 \delta_{1}+\delta_{2}<\delta$ (by (3)), contrary to (6). The claim is established.

Then $L_{p}=\beta_{p-1} \cup \alpha_{p} \cup \beta_{p} \cup \gamma_{p}(p=1, \cdots, k)$ is a simple closed curve in N. By (8) and our choice of γ_{p}, diam $L_{p}<7 \delta_{1}+\delta_{2}$. By (1), (2), and 1.6, L_{p} bounds a disk D_{p} in N with $\operatorname{diam} D_{p}<\varepsilon / 2$. As in the proof of 3.2, D_{p} is the disk of P bounded by L_{p}.

As in 3.2, there is a strong deformation retraction $K: P \times I \rightarrow P$ of P onto S^{\prime} such that $K\left(D_{p} \times I\right)=D_{p}$ for all p. Thus K_{t} is an $\varepsilon / 2$-map for all $t \in I$. As in 3.2, K can be extended to a strong deformation retraction $H: N \times I \rightarrow N$ of N onto B such that H_{t} is an $\varepsilon / 2$-map for all $t \in I$.

Theorem 4.3. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ and C be points of $2_{n}^{M} \backslash\{M\}$. Then $A_{n} \rightarrow C$ if and only if there exists $N \in 2_{h}^{M}$ such that each component of $\stackrel{\rho_{h}}{N}$ is a bounded surface and $A_{n} \xrightarrow[D(N)]{\longrightarrow}$.

Proof. By 3.3, there is a compact 2 -manifold with boundary $N \in 2_{h}^{K}$ and a neighborhood \mathscr{U} of C in 2_{h}^{K} such that if $X \in \mathscr{U}$ then $X \subset \operatorname{Int} N$ and X is a strong deformation retract of N.

Suppose $A_{n} \xrightarrow[\rho_{h}]{ } C$. Let $\varepsilon>0$. By 4.2 there is a compact 2 manifold with boundary $B \in \mathscr{C}$ and a neighborhood \mathscr{V} of C in 2_{h}^{H} with $\mathscr{V} \subset \mathscr{C}$ such that if $X \in \mathscr{V}$ then $X \subset \operatorname{Int} B$ and there is an $\varepsilon / 2$-map $r: B \rightarrow B$ that is a strong deformation retraction of B onto X. Choose an m such that $n>m$ implies $A_{n} \in \mathscr{V}$.

Let $f: N \rightarrow N$ be a deformation retraction of N onto B. Let $f_{n}: B \rightarrow B$ be an $\varepsilon / 2$-map that is a deformation retraction of B onto A_{n} for $n>m$. Let $f_{0}: B \rightarrow B$ be an $\varepsilon / 2$-map that is a deformation retraction of B onto C. Define $r_{n}: N \rightarrow N$ for $n=0, n>m$ by $r_{n}(x)=$ $f_{n}(f(x))$. For all $x \in N$ and $n>m, \rho\left(r_{n}(x), r_{0}(x)\right)<\varepsilon$. Hence $A_{n} \xrightarrow[D(N)]{ } C$.

Conversely, suppose $A_{n} \xrightarrow[D(N)]{ } C$. There exist deformation retractions $r_{n}: N \rightarrow N$ of N onto $A_{n^{\prime}}, r_{0}: N \rightarrow N$ of N onto C such that $r_{n} \rightarrow r_{0}$ uniformly on N.

If $x \in C, \rho\left(x, r_{n}(x)\right) \rightarrow \rho\left(x, r_{0}(x)\right)=0$. Hence $\rho\left(x, A_{n}\right) \rightarrow 0$.
If $x_{n} \in A_{n}, \rho\left(x_{n}, r_{0}\left(x_{n}\right)\right)=\rho\left(r_{n}\left(x_{n}\right), r_{0}\left(x_{n}\right)\right) \rightarrow 0$. Hence $\rho\left(x_{n}, C\right) \rightarrow 0$. We conclude $A_{n} \xrightarrow[\rho_{s}]{ } C$.

Let $\varepsilon>0$. Let $\delta>0$ be such that if $\{x, y\} \subset N$ and $\rho(x, y)<\delta$ then $\rho\left(r_{0}(x), r_{0}(y)\right)<\varepsilon / 6$. Let $\delta^{\prime}>0$ be such that $s\left(N, \delta^{\prime}, \delta\right)$. Let $m>0$ be such that $n>m$ implies that for all $x \in N, \rho\left(r_{n}(x), r_{0}(x)\right)<$ $\varepsilon / 6$.

If $\{x, y\} \subset N, \rho(x, y)<\delta$, and $n>m$, then $\rho\left(r_{n}(x), r_{n}(y)\right) \leqq \rho\left(r_{n}(x)\right.$, $\left.r_{0}(x)\right)+\rho\left(r_{0}(x), r_{0}(y)\right)+\rho\left(r_{0}(y), r_{n}(y)\right)<\varepsilon / 6+\varepsilon / 6+\varepsilon / 6=\varepsilon / 2$.

Let $K \subset A_{n} \subset N$, diam $K<\delta^{\prime}$. There is a contraction $h: K \times I \rightarrow N$ of K to a point such that $\operatorname{diam} h(K \times I)<\delta$. Therefore, for $n>m$, $r_{n} \circ h: K \times I \rightarrow N$ is a contraction of K to a point such that $r_{n} \circ h(K \times I) \subset A_{n}$ and $\operatorname{diam}\left(r_{n} \circ h(K \times I)\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon$. Hence $s\left(A_{n}, \delta^{\prime}, \varepsilon\right)$ for $n>m$, so $A_{n} \xrightarrow[\rho_{h}]{ } C$.

Theorem 4.4. 2_{n}^{M} is an ANR (all).
Proof. If N and \mathscr{C} are as above, the previous theorem implies the inclusion of the set \mathscr{C} into $D(N)$ is an open embedding. Since $D(N)$ is an ANR (\mathscr{C}) ([11], 5.5, p. 389), it follows ([9], 3.1, p. 391) that \mathscr{U} is an $\operatorname{ANR}(\mathscr{M})$. Since M is an isolated point of 2_{h}^{M} (because $[M]_{M}=\{M\}$) the assertion follows from the fact that a local ANR (\mathscr{M}) is an $\operatorname{ANR}(\mathscr{C})$ ([9], 3.3, p. 392).

Theorem 4.5. Let $A R_{h}^{M}=\left\{X \in 2_{h}^{I K} \mid X\right.$ is an AR $\}$. Then $A R_{h}^{H}$ is a component of 2_{h}^{H}.

Proof. Since $A R_{h}^{M}$ is the set of all members of 2_{h}^{M} with the homotopy type of a point, $A R_{h}^{M}$ is open and closed in 2_{h}^{M}, and thus is a union of components of 2_{h}^{K}. We must show $A R_{h}^{M}$ is connected.

Let $C_{n} \in A R_{h}^{H}(n=0,1)$. By 3.2 there is an arc in $A R_{h}^{M}$ from C_{n} to N_{n}, where N_{n} is a disk. Let $p_{n} \in N$ and let $h^{n}: N_{n} \times I \rightarrow N_{n}$ be a pseudoisotopy of N_{n} onto p_{n}. Then (using 1.3) $\left\{h^{n}\left(N_{n} \times\{t\}\right) \mid t \in I\right\}$ contains an arc in $A R_{h}^{M}$ from N_{n} to $\left\{p_{n}\right\}$. Let $h: I \rightarrow M$ be a map such that $h(0)=p_{0}$ and $h(1)=p_{1}$. By $1.3,\{\{h(t)\} \mid t \in I\}$ contains an arc in $A R_{h}^{M}$ from $\left\{p_{0}\right\}$ to $\left\{p_{1}\right\}$. Thus there is an arc in $A R_{h}^{M}$ from C_{0} to C_{1}.

THEOREM 4.6. $A R_{h}^{M}=L(M)$ as topological spaces.
Proof. Clearly they are equal as sets. Let $C \in A R_{h}^{M}$. As above, there is a disk $N \subset M$ such that $C \subset \operatorname{Int} N$ and C is a strong deformation retract of N. We know $A_{n} \xrightarrow[\rho_{h}]{ } C$ if and only if $A_{n} \xrightarrow[D(N)]{ } C$.

But $A_{n} \xrightarrow[D(N)]{ } C$ if and only if $A_{n} \xrightarrow[L(M)]{ } C$ ([11], 5.4, p. 388).
Clearly the map $j: M \rightarrow A R_{h}^{V}$ defined by $j(x)=\{x\}$ is an embedding. We have the following:

Corollary 4.7. $j(M)$ is a deformation retract of $A R_{h}^{M}$. Thus $A R_{h}^{M}$ has the same homotopy type as M.

Proof. This follows from Theorem 4.6 and ([11], 5.5, p. 389).

References

1. B. J. Ball and Jo Ford, Spaces of ANR's, Fund. Math., 77 (1972), 33-49.
2. -, Spaces of ANR's. II, Fund. Math., 78 (1973), 209-216.
3. K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math., 41 (1954), 168-202.
4. , Theory of Retracts, Polish Scientific Publishers, Warsaw, 1967.
5. L. Boxer, The Space of Absolute Neighborhood Retracts of a Closed Surface, Ph. D. Thesis, University of Illinois, 1976.
6. M. M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, New York, 1973.
7. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
8. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83107.
9. O. Hanner, Some theorems on absolute neighborhood retracts, Arkiv for Matematik, 1 (1951), 389-408.
10. A. G. Kurosh, The Theory of Groups, vol. II, Chelsea, New York, 1956.
11. N. R. Wagner, A continuity property with applications to the topology of 2manifolds, Trans. Amer. Math. Soc., 200 (1974), 369-393.
12. J. H. C. Whitehead, On the homotopy type of ANR's, Bull., Amer. Math. Soc., 54 (1948), 1113-1145,
13. G. T. Whyburn, Analytic Topology, Amer. Math. Soc., Providence, 1942.

Received April 26, 1977 and in revised form January 5, 1978.
University of Georgia
Current address: Salem College
Winston-Salem, NC 27108

