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A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

GERALD MYERSON

Given a subgroup G of the multiplicative group of a
finite field, we investigate the number of representations
of an arbitrary field element as a sum of elements, one
from each coset of G. When G is of small index, the theory
of cyclotomy yields exact results. For all other (?, we obtain
good estimates.

This paper formed a portion of the author's doctoral
dissertation.

Let p — 2n + 1 be an odd prime. Consider the 2n sums repre-
sented by the expression

± 1 ± 2 ± 3 ± ••• ± n .

How do these sums distribute themselves among the residue classes
modulo p? The answer is, as uniformly as possible; in fact, if we
define N(a) as the number of ways of choosing the signs so that
± 1 ± 2 ± ±n ΞΞ a (mod p) then we have

THEOREM 1.

N(a) = -i(2 - (—)) for a Φ 0 (mod p)

Here (2/p) is the Legendre symbol, that is,

/ 2 \ (1 if 2 is a quadratic residue (mod p)

\p/ \ — l if 2 is not a quadratic residue (moάp) .

Our proof of Theorem 1 will rest on the following lemmas.

LEMMA 2. Ifab^O (mod p) then N(a) = N(b).

Proof. Assume ^Σk=1ukk ^ a (mod p)f with uke{l, — 1}. Since
ab Έ£ 0 (mod p) there is a c such that ac Ξ= 6 (mod p). Thus we have
Σ L i UkCk Ξ= 6 (mod p). Now for h = l,2, — ,n, let ck=uk'mk (mod p),
where 1 ^ mfc ^ n, uk'e{l, — 1}; these conditions determine mfc and
w£ uniquely. Thus,

n n n

b = ΣJ ukck = Σ UkU'kmk = Σ % " m
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with

Now, the mk are all distinct: if mk — mh, then ck == ± ch (modp), so
h ~ ±h (mod p), so k — h (since 1 <^ k <> n, 1 ^L h ̂  n). Therefore,
b = Σ*=i w"mfc (mod p) is a representation of 6, corresponding to our
original representation of α. Multiplication by c', where cc' = 1
(modp), returns us to the original representation of a. We have
established a one-to-one correspondence between the set of represen-
tations of a and the set of representations of 6, and this shows
that N(a) is independent of a for a ^ 0 (mod p).

Now let JV denote the common value of N(a), a φ. 0 (mod p),
and note that

iV(0) + (p - l)iV - 2̂

by counting the total number of expressions two different ways.
We now obtain a second linear relation between N(0) and N through
the use of a generating function. Let θ be any primitive pth root
of unity.

LEMMA 3. Πί=i (̂ fe + O = Σ?=S i^(α)^ - ΛΓ(0) - iV .

Proof. In expanding the product into a sum of powers of θ
each term is of the form β±1±2±'"±n. The number of occurrences
of θa, 0 <; a ^ p — 1, is therefore the number of choices of signs for
which ± 1 ± 2 ± ••• ± n = a (mod p), which is iSΓ(α). This proves
the first equality. The second follows from Lemma 2 and the ob-
servation that ΣJ-J θa = 0.

If we can evaluate Πί-=i (<̂ /c + ^~&) t ^ e n w e will have two equa-
tions for i\Γ(0) and N.

LEMMA 4.

Π (θ* + r*)
k = l

Proof, θ + # - 1 is a unit in the ring of integers in Q(θ); in fact,
(0 + 0-0(0 + 05 + 09 + + 02ί)""1) = 1. The numbers θk + θ~k are
conjugate to 0 + 0"1, thus are also units; hence, Π*=i (θk + ̂ ~fc) is a

unit. By Lemma 3 this product is a rational integer, hence it
must be 1 or — 1. We have
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Π (0* + Θ-") = N(0) - N , (Lemma 3)
k=l

JV(O) - N= N(0) + (p ~ l)N(moά p) ,

JV(O) + (p~ l)i\Γ = 2" ,

2" = (— ) (mod p) (Euler's criterion).
\p /

Thus ΠJU (0fc + θ~k) = (2/p) (mod p); but since the product must
equal 1 or - 1 , it follows that ΠlU (0* + #""*) = (2/p).

Proof of Theorem 1. We now have two linear equations in
JV(O) and N;

N(0) + (p - l)iSΓ = 2n ,

tf (0) - N = (A) ,

where the second equation is a consequence of Lemmas 3 and 4.
Simultaneous solution of these equations yields Theorem 1.

We now present a generalization of the problem solved above;
the remainder of this paper is an attempt to solve the generalized
problem. We fix the following notation: e and / are positive inte-
gers such that ef + 1 = q = p" is a prime power, and Fq is the
field of q elements. The multiplicative group of units of Fq, denot-
ed Fζ, is generated by the primitive element g. The subgroup G,
consisting of all the eth powers in F%, is generated by ge. The
cosets of G in F* are denoted and defined by Gk = gkG, k = 0,1, ,
e — 1. In particular, Go = G. For each x e Fq define N(x) to be
the number of solutions of Σ*=o sh = x, with sk e Gk; that is, N(x)
is the number of representations of a; as a sum of elements, taking
precisely one from each coset. N(x) depends, of course, not only
on x but on e and / as well; it is, however, independent of the
choice of the generator for F*.

With this notation, our problem is, find N(x).
We note that the case e — (p — l)/2, / = 2, where p is prime, is

our original problem; if e = (p — l)/2 then #e = — 1, G = {1, —1},
and the cosets of G are the sets {k, —k), k = 1, 2, , (p — l)/2.

We now try to solve our new problem by following the solution
of the old one. We first note that if sk e Gk and sh e Gh then si~1 e
G_fc and sksheGk+h, where the subscripts are to be reduced mode.

LEMMA 5. If xy Φ 0, then N(x) = N(y).
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Proof. Assume Σί=i sk — x9 ske Gk. Since xy Φ 0 there is a
z e Fff such that xz = #. Thus, Σfc=o «β* = 2/ But multiplication by
z merely permutes the cosets Gk, so this gives a representation of
y. Multiplication by z'f where zzf — 1, returns us to the original
representation of x9 so we have a one-one correspondence between
the two sets of representations.

Now let N denote the common value of N(x), x Φ 0, and note
that

(1) N(0) + (q - 1)N = Γ ,

by counting the number of sums Σl=o ^, sA € (•?&, in two different
ways.

To generalize Lemma 3 we need an analogue for the expressions
βk + β-k^ Letting θ be a primitive complex pth. root of unity we
define the periods ηk = *Σι**ak Q

Tr*> k = 0,1, , e — 1. Here Tr is
the trace map, Tr:Fq->Fp; the elements of Fp ~ Z/pZ are identi-
fied with representatives of the cosets of pZ in Z; the value of
θTrx is independent of the choice of representative since θp = 1. We
note that ηk depends on the parameters e and /, and also on g: a
different choice of g would permute the ηk among themselves. Note
that in the case q = p we can simply define % = Σαe<?fc#

α> fc = 0, 1, •••,
e — 1. In particular, if / = 2 the periods are seen upon renumber-
ing to be the numbers ηk — θk + θ~k of our previous discussion.

LEMMA 6. Π U yk = Σ eF, N(x)θTrx - iNΓ(O) - iSΓ.

Proof. In expanding the product into a sum of powers of θ
each term is of the form, #7'r(Sl+S2+...+8e_1^ SjeeGk. The number of
occurrences of θTrx is therefore the number of representations of x
as Σ t o Sfc> βfce Gfc, which is iSΓ(α;). This proves the first equality.
The second follows from Lemma 5 and the observation that

Σ θTrx = 0 .

Lemma 6 gives a linear relation between JV(O) and N which,
together with (1), can be used to evaluate JV(O) and N if we can
evaluate ΐ[k~J0Vk For fixed values of e, it is often possible to
obtain formulas for Π*=o% using the theory of cyclotomy.

In the next section, we give the definitions and quote the theo-
rems we need from cyclotomy. The reader is referred to [7] for
a detailed exposition with proofs.

Cyclotomy. We begin by defining the cyclotomic constants.



A COMBINATORIAL PROBLEM IN FINITE FIELDS, I 183

DEFINITION. The cyclotomic constant (k, h) is the number of
elements s e Gk such that 1 + s e Gh.

The constants (k, h) depend on our parameters e and /; also, a
different choice of generator g, by permuting the cosets Gk, will
permute the constants (k, h). Their importance in the problem under
consideration stems from the next two propositions.

PROPOSITION 7. ηj]k = Σi=o Φ, h)ηh + fnk, where nk is defined
by

nQ = 1 if f is even ,

no = l if p = 2 ,

ne/2 = 1 if f and p are odd ,

nk = 0 in all other cases .

PROPOSITION 8. rjmηmJrk = Σ J Ί J , (ft, fe)^w+fe + / n 4 , ^feβrβ the sub-

scripts are to be interpreted modulo e.

Repeated applications of Propositions 7 and 8 will enable us to
evaluate Πηk, provided we know the constants (k, h).

The constants are given, in the cases e = 2, 3, and 4, by the
following theorems.

PROPOSITION 9. (Dickson [3, p. 48]). Assume e = 2.
If f is even, the cyclotomic matrix Ml2) is given by M{2) =

(β is) ' w h e r e 4A = ĝ  - 5, 4JS = q - 1.

If f is odd, ikf(2) = ( ^ ^ ) , where 4A = q - 3,45 = g f l .

P R O P O S I T I O N 1 0 . (Storer [ 7 , p . 35]) . L e i e = 3 . L e i c αweZ d
be defined by Aq = c 2 + 27d 2 , c = 1 ( m o d 3 ) , a m i , ifp = l ( m o d 3) ,
ifoew (c, p) = 1; these restrictions determine c uniquely, and d up
to sign. Then

IABC\ 9A = q-8 + c,

AΠ« = \B C D , w Λ β r β 18B = 2q - 4 - c - 9d ,

\C D B I 1SC = 2 ^ ~ 4 - c + 9d ,

9D = q + 1 + c .

PROPOSITION 11. (Storer [7, pp. 48, 51]). Let e = 4. Lei s awώ
t be defined by q = s2 + At2, s = 1 (mod 4), and, ifp = l (mod 4),

then (s, p) — 1; ίfcese restrictions determine s uniquely, and t up to

sign.
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If f is even, then

lABCD

B D E E

C E C E

\D E E B

If f i>s odd, then

16ii = g - 11 - 6s ,

165 = q - 3 + 2s + 8ί ,

where 16C = q - 3 + 2s ,

16D - g - 3 + 2s - 8t ,

16E = g + 1 - 2s .

16A = g - 7 + 2s ,

16B = g + 1 + 2s + 8ί ,

where 16C = g + 1 — 6s ,

16D - g + 1 + 2s - 8ί ,

16JE = g - 3 - 2s .

Solutions in the cases e = 2, 3, 4.

jA B C D

E E B D

A E A E

\E D B E

We can now evaluate /7%, JV(O), and iV in the cases e — 2, 3, 4.

THEOREM 12. Lei e = 2. If f is even, then

-, N(0) = 0, N =

•if / is odcί, then

THEOREM 13. Let e = 3. Lβί c 6β defined by 4g = c2 + 27d2,
c = 1 (mod 3), and, ίfp = l (mod 3), then (c, p) = 1. Then

3)g ~

N(0) =

(
Δ ί

c)(g -

Zq-c).

THEOREM 14. Let e = 4. Lβί s δβ defined by q = s2 + 4t2, s =
1 (mod 4), α^cί, if p = 1 (mod 4), ίfeβ^ (s, p) = 1. // / is even, then

MM = ^
2θΌ

N(0) = -±-(g -
5b

-8s + 6)g •

- 3 + 2β)(«

- I)2 - 4g(s-l)2) ,

- 2s) ,
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If f is odd, then
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4g2 + 5q + 4s2 - 8s + 2) .

- Ss - 2)q + 1) -• JL((8ff + I)2 - 4g(s - I)2) ,

N(0) = JLfo - l)(g + 5 - 2β)(β + 1 + 2s) ,
Zoo

jy = JL(g8 - 4?2 - 3g + 4s2 - 8s - 6) .
Zb

Proof. Straightforward calculation yields the results on Πηk.
We present the case e = 3 as an example.

By Propositions 7 and 10, we have ^OVI^^VO+C^+DTJ^ whence

+Dηx+fty2) + C(ΰ^0+Bη,+C%) + D(Bη

Substituting for A, 1?, C, and D the values given in Proposition 10,
and simplifying via Aq = c2 + 27d2, we find

27%7i% = (Q2 - 3c? - c)(% + ̂ 7i + %) + (̂ 2 - 1 + eg - c)

= - to2 - 3g - c) + (g2 - 1 + cq - c)

= (c + 3)« - 1 .

The results an N(0) and JV then follow from the simultaneous
solution of

N(0) ~N=π

Some special results and some approximations. We present
two results of a more specialized nature.

THEOREM 15. If q and f are both odd then N(0) > N.

Proof. If q and / are both odd then — 1 e Ge/2. Thus for any
k,0£k< e/2, xeGk if and only if -a?eGk+e/2. Then

Vk+e/2 — 2J U — 2J & — 2J & — Vk f
xeG

k+e
/

2
 xzG

k
 xeG

k

where the overbar indicates complex conjugation. It follows that
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β-1 β/2-1 __ e/2-1

But by Lemma 6, JV(O) = JV + Πl=o%.

THEOREM 16. Lei e = 4. If q — 1 is a square, then N(0) — iV
is α square.

Proof. By hypothesis, g = 1 + 4ί2: thus, we can take s = 1 in
Theorem 14. If / is even then

- N = Π % =
16

if / is odd then

JV(O) - N = II % =
16

Estimates for Πτ]k and N(x). Cyclotomy for e > 4 has been of
continuing interest to mathematicians. The reader is referred to
[2] for the cases e = 5, 6, and 8; also to [9], [10], [4], [8], [1], and
[5], for the cases e = 10, 12, 14, 16,18, and 20, respectively. In each
of these only the case q = p is discussed. When the problems of
cyclotomy have been solved for a given value of e, the methods of
the proof of Theorem 13 will evaluate Πηk — see, e.g., [6], for the
case e — 5, q = p. The computations involved are ghastly, as the
reader can convince himself by inspecting the references cited
above. The author feels that the importance of finding exact ex-
pressions for N and JV(O) is not sufficient to justify performing
these computations. We present instead approximations to N and
N(0), based upon a lemma from cyclotomy.

LEMMA 17. (a) // either f or p is even, then

Σ7l ί/

(b) // / and p are both odd, then

Σ VkVk+e/2 = Q - f
fc=O

Proof. These are both special cases of Lemma 9 in [7].

LEMMA 18. (a) // either f or p is even then ηk is real, k —
0, 1, . . . , e - l .

(b) If f and p are both odd then %^+e/2 is real and positive,
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k = 0,1, .- ,e - 1.

Proof, (a) If / is even then - 1 e Go. Thus if x e Gk then -xeGk,
and a? Φ — a?. Hence, if θTrx appears in ηk9 so does θTr{~x) = θ~Trx.
Thus, ηk is real. If p is even then p = 2. Thus θ=—l and ^ is real.

(b) This was shown in the proof of Theorem 15.

THEOREM 19. I Π i ^ l ^ ((?-/)/e) e / 1; |iSΓ(O)-/ /?| ^ ((?-/)A0β / I;

Proof. If either / or p is even then Σί=o Vl = Q - /• If both
/ and p are odd then Σ^o VkVk+e/2 = ? - - / . In either case we may,
by Lemma 18, apply the inequality of the arithmetic and geometric
means. We obtain Π t t Vl ^ ((? ~ /)/*)% o r I ΠCί % I ̂  ((? - /)A0#/1.

The other two inequalities follow from the first and from the
relations N(0) + (g - ΐ)N = /e, tf(0) — 2SΓ = Π t i % .

The reader is encouraged to compare the approximations of
Theorem 19 with the exact results of Theorems 12,13,14 bearing in
mind that c in Theorem 13 and s in Theorem 14 can be as large as
2\Z~q~ or V q, respectively. The approximations are seen to be
quite sharp.

The problem of evaluating Πηk as q varies with /, rather than
e, held fixed requires very different methods from those of Theo-
rems 12, 13, and 14. We treat this problem in [11].
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