PACIFIC JOURNAL OF MATHEMATICS
Vol. 82, No. 1, 1979

A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

GERALD MYERSON

Given a subgroup G of the multiplicative group of a
finite field, we investigate the number of representations
of an arbitrary field element as a sum of elements, one
from each coset of G. When G is of small index, the theory
of cyclotomy yields exact results. For all other G, we obtain
good estimates.

This paper formed a portion of the author’s doctoral
dissertation.

Let » =2n + 1 be an odd prime. Consider the 2" sums repre-
sented by the expression
+1+2+8F£ s £m.

How do these sums distribute themselves among the residue classes
modulo »p? The answer is, as uniformly as possible; in fact, if we
define N(a) as the number of ways of choosing the signs so that
+1+2+ ... +n = q (mod p) then we have

THEOREM 1.

N(a) = %(2” — (%)) for a = 0 (mod p) ,

w0 =1 - (2) 4 (2).

Here (2/p) is the Legendre symbol, that is,

(2> _ {1 if 2 is a quadratic residue (mod p)

; —1 of 2 48 not a quadratic residue (mod p) .

Our proof of Theorem 1 will rest on the following lemmas.
LEMMA 2. If ab = 0 (mod p) then N(a) = N(b).

Proof. Assume 3, uk = a(mod p), with u,c{l, —1}. Since
ab # 0 (mod p) there is a ¢ such that ac = b (mod p). Thus we have
S wek = b (mod p). Now for k=1,2, ---, n, let ck=w,/m, (mod p),
where 1 < m, < n, u,/€{l, —1}; these conditions determine m, and
u;, uniquely. Thus,

il

b g ek = kz,luku;m,, = kg,luk"mk (mod p) ,

k=1
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with
wle(l, —1} .

Now, the m, are all distinet: if m, = m,, then ¢k = =+ ch (mod p), so
k= +h(modp), so k=h (since L=<k =<n,1<h<n). Therefore,
b= >r, uym, (mod p) is a representation of b, corresponding to our
original representation of «. Multiplication by ¢', where c¢' =1
(mod p), returns us to the original representation of a. We have
established a one-to-one correspondence between the set of represen-
tations of o and the set of representations of b, and this shows
that N(a) is independent of a for a = 0 (mod p).

Now let N denote the common value of N(a), a = 0 (mod p),
and note that

N() + (p — )N = 2"

by counting the total number of expressions two different ways.
We now obtain a second linear relation between N(0)'and N through
the use of a generating function. Let ¢ be any primitive pth root
of unity.

LEMMA 8. T[I7..(6* + 67%) = S22t N(a)f* = N(0) — N .

Proof. In expanding the product into a sum of powers of ¢
each term is of the form @#**** %", The number of occurrences
of 6°,0 < a < p—1, is therefore the number of choices of signs for
which +£14+ 24 --- & » = a (mod p), which is N(a). This proves
the first equality. The second follows from Lemma 2 and the ob-
servation that >22560° = 0.

If we can evaluate T[7_, (6* + 67%) then we will have two equa-
tions for N(0) and N.

LEMMA 4.

110"+ 07 = (%) .

Proof. 6 -+ 67! is a unit in the ring of integers in @Q(6); in fact,
O+600+6+06+ -+ +62')=1. The numbers 6%+ 0% are
conjugate to 0 4 67, thus are also units; hence, [[7_,(6* + 67%) is a
unit. By Lemma 8 this product is a rational integer, hence it
must be 1 or —1. We have
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If;(ak 4+ 67% = N(0) — N, (Lemma 3)

N(0) — N = N(0) + (p — 1)N (mod p) ,
N@O) +(p —1)N =27,

2" = <3> (mod p) (Euler’s criterion).
p

Thus Iz, (@* + 67%) = (2/p) (mod p); but since the product must
equal 1 or —1, it follows that Iy, (6* + 67%) = (2/p).

Proof of Theorem 1. We now have two linear equations in
N(0) and N;

N@O) + (» — DN =2,

N(0) — N = (%) ,

where the second equation is a consequence of Lemmas 8 and 4.
Simultaneous solution of these equations yields Theorem 1.

We now present a generalization of the problem solved above;
the remainder of this paper is an attempt to solve the generalized
problem. We fix the following notation: e¢ and f are positive inte-
gers such that ef +1=¢q = p* is a prime power, and F, is the
field of g elements. The multiplicative group of units of F,, denot-
ed F?, is generated by the primitive element g. The subgroup G,
consisting of all the eth powers in F?, is generated by g¢g°. The
cosets of G in F? are denoted and defined by G, =¢*G,k=0,1, ---,
e —1. In particular, G, =G. For each zcF, define N(x) to be
the number of solutions of >izis, = 2, with s,e€@,; that is, N(x)
is the number of representations of z as a sum of elements, taking
precisely one from each coset. N(x) depends, of course, not only
on x but on ¢ and f as well; it is, however, independent of the
choice of the generator for F;.

With this notation, our problem is, find N(x).

We note that the case ¢ = (p — 1)/2, f = 2, where p is prime, is
our original problem; if ¢ =(p — 1)/2 then ¢°= —1, G = {1, —1},
and the cosets of G are the sets {k, —k}, £ =1,2, ---, (p — 1)/2.

We now try to solve our new problem by following the solution
of the old one. We first note that if s, €@, and s,eG, then s;'e
G_, and s;s, € G,,,, where the subscripts are to be reduced mod e.

LEMMA 5. If zy # 0, then N(x) = N(y).
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Proof. Assume >\¢ts,=2x,8,€G,. Since xy =0 there is a
2 € F; such that 2z = y. Thus, >z} #s, = y. But multiplication by
2z merely permutes the cosets G,, so this gives a representation of
y. Multiplication by 2, where 2z’ = 1, returns us to the original
representation of x, so we have a one-one correspondence between
the two sets of representations.

Now let N denote the common value of N(x),  + 0, and note
that

(1) N(©) + (¢ — DN = f,

by counting the number of sums >\}s, s,€G,, in two different
ways.

To generalize Lemma 8 we need an analogue for the expressions
0* + 07*. Letting 6 be a primitive complex pth root of unity we
define the periods 7, = >.,cq, 0" k=0,1,---,¢e —1. Here Tr is
the trace map, T7: F, — F,; the elements of F, ~ Z/pZ are identi-
fied with representatives of the cosets of pZ in Z; the value of
#7* is independent of the choice of representative since 6 = 1. We
note that 7, depends on the parameters e¢ and f, and also on g:a
different choice of g would permute the 7, among themselves. Note
that in the case ¢=p we can simply define 7,=3%,.¢, 6%, k=0, 1, ---,
e — 1. In particular, if f = 2 the periods are seen upon renumber-
ing to be the numbers 7, = 6* + 07* of our previous discussion.

LEMMA 6. 17 = Dper, N(@)0™™ = N(0) — N.

Proof. In expanding the product into a sum of powers of ¢
each term is of the form, g7rtrtset--+ied) g c@G,. The number of
occurrences of 477 is therefore the number of representations of x
as >uhs,, s,€G,, which is N(x). This proves the first equality.
The second follows from Lemma 5 and the observation that

S, 6t =10,
zEeF, )

Lemma 6 gives a linear relation between N(0) and N which,
together with (1), can be used to evaluate N(0) and N if we can
evaluate [[;2 7,. For fixed values of e, it is often possible to
obtain formulas for [[:=} 7, using the theory of cyclotomy.

In the next section, we give the definitions and quote the theo-
rems we need from cyclotomy. The reader is referred to [7] for
a detailed exposition with proofs.

Cyclotomy. We begin by defining the cyclotomic constants.
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DEFINITION. The cyclotomic constant (k, k) is the number of
elements s € G, such that 1 + seG,.

The constants (k, h) depend on our parameters e¢ and f; also, a
different choice of generator g, by permuting the cosets G,, will
permute the constants (%, #). Their importance in the problem under
consideration stems from the next two propositions.

PROPOSITION 7. %, = >i2h (k, h)y, + fn,, where n, is defined
by
n, =1 if f 1is even ,
n=11 p=2,
N, =1 tf f and p are odd ,
n, = 0 in all other cases .

PROPOSITION 8. 9,0mix = Duite (By B)Dpin + f1, where the sub-
scripts are to be interpreted modulo e.

Repeated applications of Propositions 7 and 8 will enable us to
evaluate II7,, provided we know the constants (%, k).

The constants are given, in the cases ¢ = 2,8, and 4, by the
following theorems.

PROPOSITION 9. (Dickson [3, p. 48]). Assume e = 2.
If f s even, the cyclotomic matric M 1is given by M® =
(A §>’ where 4A = q — 5, 4B =q — 1.

B
If f s odd, M® = (ﬁ f), where 4A = ¢ — 3,4B = ¢ + 1.

ProposSITION 10. (Storer [7,p. 85]). Let e =8. Let ¢ and d
be defined by 49 = c* + 27d*, ¢ = 1(mod 3), and, if » = 1(mod 3),
then (c, p) = 1; these restrictions determine ¢ uniquely, and d up
to sign. Then

ABC 9A=q¢-8+c,
M®=|BCD |, where 8B=2¢—4—c—9d,
D=q+1+c.

ProrosITION 11. (Storer [7, pp. 48, 51]). Let e = 4. Let s and
t be defined by q =s*+ 4¢%, s =1(mod4), and, if p =1 (mod4),
then (s, p) = 1; these restrictions determine s uniquely, and t up to
sign.
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If f is even, then
164 =q — 11 — 6s,

ABCD 16B=q — 3 + 2s + 8¢

M® = BDEE where 16C =q — 8 + 2s, ’
CHCE 16D =q — 3 + 2s — 8t,
DEERB

16 =q+1—2s.
If f 1s odd, then
164 =q — 7 + 2s,

ABCD
16B=q + 1+ 25+ 8,

E E BD

M® = where 16C=q + 1 — 6s,
AEAE 16D =q + 1 4 25 — 8t
EDBE — 4 '

16K =q —3 —2s.

Solutions in the cases e = 2, 3, 4.
We can now evaluate /17,, N(0), and N in the cases e = 2, 3, 4.

THEOREM 12. Let ¢ = 2. If f is even, then

= - 9=1 No =0 N=2=1
po’?l 4 ’ < ) ’ 4

If f is odd, then

A MO 5 T

THEOREM 13. Let ¢ =38. Let ¢ be defined by 4q = ¢* + 27d?,
¢ = 1(mod 3), and, if p =1 (mod 3), then (¢, ») = 1. Then

_ 1 _
N = 27((0 +3)g—1),

_ 1 _
N(0) = 2—7(q +14+¢e)g— 1),

1
= — 2 —_— 3 — .
N mm q— o)

THEOREM 14. Let e = 4. Let s be defined by q = s* + 43, s =
1(mod 4), and, if » = 1(mod 4), then (s, p) = 1. If f 1is even, then

1 2 1
= _—(¢* — 2 1)= — —1)2 — —1)
TN = 5ea(@t — (48" — 85 + 6)g + 1) = (g — 1) — dg(s 1)),

N(0) = 2—}6«1 —1)(g — 3+ 28)(g + 1 — 2s),
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=§;—6(q3—4q2+5q+482——8s+2).

If f is odd, then

IT = —=(9¢" — (45° — 85 — 2)g + 1) = 2—;—6«3:1 1) — dg(s — 1)),

256
NO) = L (g —1)q+5—25)g + 1+ 2s),
256
1
N=L(p—d¢—3¢+45°—85—6).
256(q ¢ — 3q + 4s s — 6)

Proof. Straightforward calculation yields the results on 177%,.
We present the case ¢ = 3 as an example.
By Propositions 7 and 10, we have 7,%,=Bn,+C%,+ Dy, whence

P7)%: = Ben,) + C(9,7,) + D(0,)
= B(Cn,+Dn,+ Bn,) + C(D9,+ B, + Cn,) + D(BNy+ Cy, + ANy + f)
= (BC+CD+ BD)y,+ (BD + BC+CD)y,+(B*+ C*+ AD)n,+ fD .

Substituting for A4, B, C, and D the values given in Proposition 10,
and simplifying via 4q = ¢* + 27d?, we find

21, = (@* — 39 — )M + N + M) + (¢ — 1 + ¢q — ¢)
=—(¢"—3¢—0¢)+(¢*—1+cq—c)
=(c+3)qg—1.

The results an N(0) and N then follow from the simultaneous
solution of

N©) + (¢ — DN =f°,
N@-N:ﬁm.

Some special results and some approximations. We present
two results of a more specialized nature.

THEOREM 15. If q and f are both odd then N(0) > N.

Proof. If q and f are both odd then —1e@,,. Thus for any
kE,0<Fk<e?2 zeG, if and only if —x€G,.,,. Then

7]k+e/2 — Z 0Trz — Z 6Tr(—z) — Z 0—-Trz — 77,‘ ,

2EG|+te/2 zeGp zeGy

where the overbar indicates complex conjugation. It follows that
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el2—1 el2—

e—1 _ 1

=1 70, =11 [ pF>0.
k=0 k=0 k=0

But by Lemma 6, N(0) = N + IT:=} 7.

THEOREM 16. Let e =4. If ¢ —1 is a square, then N(0) — N
18 a square.

Proof. By hypothesis, ¢ = 1 + 4¢* thus, we can take s =1 in
Theorem 14. If f is even then

NO - N =17 = (L1)

if f is odd then

o _ (3q+ 1\
NO =N =7 = (M) -

Estimates for II7, and N(x). Cyclotomy for ¢ > 4 has been of
continuing interest to mathematicians. The reader is referred to
[2] for the cases ¢ = 5,6, and 8; also to [9], [10], [4], [8], [1], and
[5], for the cases ¢ = 10, 12, 14, 16, 18, and 20, respectively. In each
of these only the case ¢ = p is discussed. When the problems of
cyclotomy have been solved for a given value of ¢, the methods of
the proof of Theorem 13 will evaluate /77, — see, e.g., [6], for the
case e = 5,q = p. The computations involved are ghastly, as the
reader can convince himself by inspecting the references cited
above. The author feels that the importance of finding exact ex-
pressions for N and N(0) is not sufficient to justify performing
these computations, We present instead approximations to N and
N(0), based upon a lemma from cyclotomy.

LemMMA 17. (a) If either f or » is even, then
Spi=q¢—f.
k=0
(b) If f and p are both odd, then
S\ Nren =0 — f -
Proof. These are both special cases of Lemma 9 in [7].
LEMMA 18. (a) If either f or p is even them 7, is real, k =

0,1,-+-,e—1.
(b) If f and p are both odd them 7,9,... is Teal and positive,



A COMBINATORIAL PROBLEM IN FINITE FIELDS, I 187

E=0,1,+:--,e—1.

Proof. (a) If fiseventhen —1e€@G,. Thusif xreG,then —xeG,,
and x # —x. Hence, if 6”° appears in 7,, so does 6"~ =@g~7=,
Thus, 7, is real. If piseven then p=2. Thus §=—1 and 7, is real.

(b) This was shown in the proof of Theorem 15.

THEOREM 19. [TTizi7.] = (@ —1)/e)*; IN(O)—f*/a| = (g — f)]e)”;
IN — f*lal = ¢7((q — f)le)”.

Proof. If either f or p is even then >t 7% =q — f. If both
f and p are odd then >iZi 774, .. = ¢ — f. In either case we may,
by Lemma 18, apply the inequality of the arithmetic and geometric
means. We obtain [iZt 7t = ((¢ — f)/e)’, or |IIizt 7| = ((@ — f)/e)”.
The other two inequalities follow from the first and from the

relations N(0) + (¢ — 1)N = £°, N(0) — N = IT;= 7.

The reader is encouraged to compare the approximations of
Theorem 19 with the exact results of Theorems 12, 18, 14 bearing in
mind that ¢ in Theorem 13 and s in Theorem 14 can be as large as
21 q or V' q, respectively. The approximations are seen to be

quite sharp.
The problem of evaluating /77, as q varies with f, rather than
e, held fixed requires very different methods from those of Theo-

rems 12,13, and 14. We treat this problem in [11].
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