A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

GERALD MYERSON

Given a subgroup G of the multiplicative group of a finite field, we investigate the number of representations of an arbitrary field element as a sum of elements, one from each coset of G. When G is of small index, the theory of cyclotomy yields exact results. For all other G, we obtain good estimates.

This paper formed a portion of the author's doctoral dissertation.

Let p = 2n + 1 be an odd prime. Consider the 2^n sums represented by the expression

$$\pm 1 \pm 2 \pm 3 \pm \cdots \pm n$$
 .

How do these sums distribute themselves among the residue classes modulo p? The answer is, as uniformly as possible; in fact, if we define N(a) as the number of ways of choosing the signs so that $\pm 1 \pm 2 \pm \cdots \pm n \equiv a \pmod{p}$ then we have

THEOREM 1.

$$egin{aligned} N(a) &= rac{1}{p} \Big(2^n \ - \Big(rac{2}{p} \Big) \Big) \ for \ a
eq 0 \ (ext{mod} \ p) \ , \ N(0) &= rac{1}{p} \Big(2^n \ - \Big(rac{2}{p} \Big) \Big) + \Big(rac{2}{p} \Big) \ . \end{aligned}$$

Here (2/p) is the Legendre symbol, that is,

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } 2 \text{ is a quadratic residue (mod p)} \\ -1 & \text{if } 2 \text{ is not a quadratic residue (mod p)} \end{cases}.$$

Our proof of Theorem 1 will rest on the following lemmas.

LEMMA 2. If $ab \neq 0 \pmod{p}$ then N(a) = N(b).

Proof. Assume $\sum_{k=1}^{n} u_k k \equiv a \pmod{p}$, with $u_k \in \{1, -1\}$. Since $ab \not\equiv 0 \pmod{p}$ there is a c such that $ac \equiv b \pmod{p}$. Thus we have $\sum_{k=1}^{n} u_k ck \equiv b \pmod{p}$. Now for $k=1, 2, \dots, n$, let $ck \equiv u_k'm_k \pmod{p}$, where $1 \leq m_k \leq n$, $u_k' \in \{1, -1\}$; these conditions determine m_k and u'_k uniquely. Thus,

$$b\equiv\sum_{k=1}^n u_kck\equiv\sum_{k=1}^n u_ku'_km_k\equiv\sum_{k=1}^n u_k''m_k \pmod{p}$$
 ,

with

$$u_k'' \in \{1, -1\}$$
.

Now, the m_k are all distinct: if $m_k = m_h$, then $ck \equiv \pm ch \pmod{p}$, so $k \equiv \pm h \pmod{p}$, so $k = \pm h \pmod{p}$, so k = h (since $1 \le k \le n, 1 \le h \le n$). Therefore, $b \equiv \sum_{k=1}^{n} u'_k m_k \pmod{p}$ is a representation of b, corresponding to our original representation of a. Multiplication by c', where $cc' \equiv 1 \pmod{p}$, returns us to the original representation of a. We have established a one-to-one correspondence between the set of representations of a and the set of representations of b, and this shows that N(a) is independent of a for $a \neq 0 \pmod{p}$.

Now let N denote the common value of N(a), $a \not\equiv 0 \pmod{p}$, and note that

$$N(0) + (p-1)N = 2^n$$

by counting the total number of expressions two different ways. We now obtain a second linear relation between N(0) and N through the use of a generating function. Let θ be any primitive pth root of unity.

Lemma 3.
$$\prod_{k=1}^{n} (heta^k + heta^{-k}) = \sum_{a=0}^{p-1} N(a) heta^a = N(0) - N$$
 .

Proof. In expanding the product into a sum of powers of θ each term is of the form $\theta^{\pm_1\pm_2\pm\cdots\pm_n}$. The number of occurrences of θ^a , $0 \leq a \leq p-1$, is therefore the number of choices of signs for which $\pm 1 \pm 2 \pm \cdots \pm n \equiv a \pmod{p}$, which is N(a). This proves the first equality. The second follows from Lemma 2 and the observation that $\sum_{a=0}^{p-1} \theta^a = 0$.

If we can evaluate $\prod_{k=1}^{n} (\theta^k + \theta^{-k})$ then we will have two equations for N(0) and N.

LEMMA 4.

$$\prod_{k=1}^n \left(heta^k + heta^{-k}
ight) \, = \left(rac{2}{p}
ight) \, .$$

Proof. $\theta + \theta^{-1}$ is a unit in the ring of integers in $Q(\theta)$; in fact, $(\theta + \theta^{-1})(\theta + \theta^5 + \theta^9 + \cdots + \theta^{2p-1}) = 1$. The numbers $\theta^k + \theta^{-k}$ are conjugate to $\theta + \theta^{-1}$, thus are also units; hence, $\prod_{k=1}^{n} (\theta^k + \theta^{-k})$ is a unit. By Lemma 3 this product is a rational integer, hence it must be 1 or -1. We have

$$\prod_{k=1}^{n} (\theta^k + \theta^{-k}) = N(0) - N$$
, (Lemma 3)
 $N(0) - N \equiv N(0) + (p - 1)N \pmod{p}$,
 $N(0) + (p - 1)N = 2^n$,
 $2^n \equiv \left(\frac{2}{p}\right) \pmod{p}$ (Euler's criterion).

Thus $\prod_{k=1}^{n} (\theta^k + \theta^{-k}) \equiv (2/p) \pmod{p}$; but since the product must equal 1 or -1, it follows that $\prod_{k=1}^{n} (\theta^k + \theta^{-k}) = (2/p)$.

Proof of Theorem 1. We now have two linear equations in N(0) and N;

$$N(0)+(p-1)N=2^n$$
 , $N(0)-N=\left(rac{2}{p}
ight)$,

where the second equation is a consequence of Lemmas 3 and 4. Simultaneous solution of these equations yields Theorem 1.

We now present a generalization of the problem solved above; the remainder of this paper is an attempt to solve the generalized problem. We fix the following notation: e and f are positive integers such that $ef + 1 = q = p^{\alpha}$ is a prime power, and F_q is the field of q elements. The multiplicative group of units of F_q , denoted F_q^x , is generated by the primitive element g. The subgroup G, consisting of all the eth powers in F_q^x , is generated by g^e . The cosets of G in F_q^x are denoted and defined by $G_k = g^k G, k = 0, 1, \cdots$, e - 1. In particular, $G_0 = G$. For each $x \in F_q$ define N(x) to be the number of solutions of $\sum_{k=0}^{e-1} s_k = x$, with $s_k \in G_k$; that is, N(x)is the number of representations of x as a sum of elements, taking precisely one from each coset. N(x) depends, of course, not only on x but on e and f as well; it is, however, independent of the choice of the generator for F_q^x .

With this notation, our problem is, find N(x).

We note that the case e = (p-1)/2, f = 2, where p is prime, is our original problem; if e = (p-1)/2 then $g^e = -1$, $G = \{1, -1\}$, and the cosets of G are the sets $\{k, -k\}$, $k = 1, 2, \dots, (p-1)/2$.

We now try to solve our new problem by following the solution of the old one. We first note that if $s_k \in G_k$ and $s_k \in G_k$ then $s_k^{-1} \in G_{-k}$ and $s_k s_k \in G_{k+k}$, where the subscripts are to be reduced mod e.

LEMMA 5. If $xy \neq 0$, then N(x) = N(y).

GERALD MYERSON

Proof. Assume $\sum_{k=1}^{e-1} s_k = x$, $s_k \in G_k$. Since $xy \neq 0$ there is a $z \in F_q^x$ such that xz = y. Thus, $\sum_{k=0}^{e-1} zs_k = y$. But multiplication by z merely permutes the cosets G_k , so this gives a representation of y. Multiplication by z', where zz' = 1, returns us to the original representation of x, so we have a one-one correspondence between the two sets of representations.

Now let N denote the common value of N(x), $x \neq 0$, and note that

$$(1)$$
 $N(0) + (q-1)N = f^{e}$,

by counting the number of sums $\sum_{k=0}^{e-1} s_k, s_k \in G_k$, in two different ways.

To generalize Lemma 3 we need an analogue for the expressions $\theta^k + \theta^{-k}$. Letting θ be a primitive complex *p*th root of unity we define the *periods* $\eta_k = \sum_{x \in G_k} \theta^{Trx}$, $k = 0, 1, \dots, e-1$. Here Tr is the trace map, $Tr: F_q \to F_p$; the elements of $F_p \simeq Z/pZ$ are identified with representatives of the cosets of pZ in Z; the value of θ^{Trx} is independent of the choice of representative since $\theta^p = 1$. We note that η_k depends on the parameters e and f, and also on g: a different choice of g would permute the η_k among themselves. Note that in the case q = p we can simply define $\eta_k = \sum_{a \in G_k} \theta^a$, $k = 0, 1, \dots, e-1$. In particular, if f = 2 the periods are seen upon renumbering to be the numbers $\eta_k = \theta^k + \theta^{-k}$ of our previous discussion.

LEMMA 6.
$$\prod_{k=0}^{e-1} \eta_k = \sum_{x \in F_q} N(x) \theta^{Trx} = N(0) - N.$$

Proof. In expanding the product into a sum of powers of θ each term is of the form, $\theta^{Tr(s_1+s_2+\ldots+s_{e-1})}$, $s_k \in G_k$. The number of occurrences of θ^{Trx} is therefore the number of representations of x as $\sum_{k=0}^{e-1} s_k$, $s_k \in G_k$, which is N(x). This proves the first equality. The second follows from Lemma 5 and the observation that

$$\sum_{x \in F_q} \theta^{Trx} = 0 .$$

Lemma 6 gives a linear relation between N(0) and N which, together with (1), can be used to evaluate N(0) and N if we can evaluate $\prod_{k=0}^{e-1} \gamma_k$. For fixed values of e, it is often possible to obtain formulas for $\prod_{k=0}^{e-1} \gamma_k$ using the theory of cyclotomy.

In the next section, we give the definitions and quote the theorems we need from cyclotomy. The reader is referred to [7] for a detailed exposition with proofs.

Cyclotomy. We begin by defining the cyclotomic constants.

DEFINITION. The cyclotomic constant (k, h) is the number of elements $s \in G_k$ such that $1 + s \in G_k$.

The constants (k, h) depend on our parameters e and f; also, a different choice of generator g, by permuting the cosets G_k , will permute the constants (k, h). Their importance in the problem under consideration stems from the next two propositions.

PROPOSITION 7. $\eta_0\eta_k = \sum_{h=0}^{e-1} (k, h)\eta_h + fn_k$, where n_k is defined by

 $egin{aligned} n_{\scriptscriptstyle 0} &= 1 \ if \ f \ is \ even \ , \ n_{\scriptscriptstyle 0} &= 1 \ if \ p \ = 2 \ , \ n_{\scriptscriptstyle e/2} &= 1 \ if \ f \ and \ p \ are \ odd \ , \ n_{\scriptscriptstyle k} &= 0 \ in \ all \ other \ cases \ . \end{aligned}$

PROPOSITION 8. $\eta_m \eta_{m+k} = \sum_{k=0}^{e-1} (k, k) \eta_{m+k} + fn_k$, where the subscripts are to be interpreted modulo e.

Repeated applications of Propositions 7 and 8 will enable us to evaluate $\Pi\eta_k$, provided we know the constants (k, h).

The constants are given, in the cases e = 2, 3, and 4, by the following theorems.

PROPOSITION 9. (Dickson [3, p. 48]). Assume e = 2. If f is even, the cyclotomic matrix $M^{(2)}$ is given by $M^{(2)} = \begin{pmatrix} A & B \\ B & B \end{pmatrix}$, where 4A = q - 5, 4B = q - 1. If f is odd, $M^{(2)} = \begin{pmatrix} A & B \\ A & A \end{pmatrix}$, where 4A = q - 3, 4B = q + 1.

PROPOSITION 10. (Storer [7, p. 35]). Let e = 3. Let c and d be defined by $4q = c^2 + 27d^2$, $c \equiv 1 \pmod{3}$, and, if $p \equiv 1 \pmod{3}$, then (c, p) = 1; these restrictions determine c uniquely, and d up to sign. Then

PROPOSITION 11. (Storer [7, pp. 48, 51]). Let e = 4. Let s and t be defined by $q = s^2 + 4t^2$, $s \equiv 1 \pmod{4}$, and, if $p \equiv 1 \pmod{4}$, then (s, p) = 1; these restrictions determine s uniquely, and t up to sign.

If f is even, then

$$M^{\scriptscriptstyle(4)} = egin{pmatrix} A & B & C & D \ B & D & E & E \ C & E & C & E \ D & E & E & B \end{pmatrix} \hspace{1.5cm} egin{matrix} 16A = q - 11 - 6s \ , \ 16B = q - 3 + 2s + 8t \ , \ 16C = q - 3 + 2s \ , \ 16D = q - 3 + 2s - 8t \ , \ 16E = q + 1 - 2s \ . \end{cases}$$

If f is odd, then

$$M^{\scriptscriptstyle (4)} = egin{pmatrix} A & B & C & D \ E & E & B & D \ A & E & A & E \ E & D & B & E \end{pmatrix} \hspace{1.5cm} egin{matrix} 16A = q - 7 + 2s \;, \ 16B = q + 1 + 2s + 8t \;, \ 16B = q + 1 + 2s + 8t \;, \ 16D = q + 1 - 6s \;, \ 16D = q + 1 + 2s - 8t \;, \ 16E = q - 3 - 2s \;. \end{cases}$$

Solutions in the cases e = 2, 3, 4.

We can now evaluate $\Pi \eta_k$, N(0), and N in the cases e = 2, 3, 4. THEOREM 12. Let e = 2. If f is even, then

$$\eta_{_0}\eta_{_1}=\,-\,rac{q\,-\,1}{4},\,\,N(0)=0,\,\,N=rac{q\,-\,1}{4}\,\,.$$

If f is odd, then

$$\eta_{\scriptscriptstyle 0} \eta_{\scriptscriptstyle 1} = rac{q+1}{4}, \,\, N(0) = rac{q-1}{2}, \,\,\, N = rac{q-3}{4} \,\,.$$

THEOREM 13. Let e = 3. Let c be defined by $4q = c^2 + 27d^2$, $c \equiv 1 \pmod{3}$, and, if $p \equiv 1 \pmod{3}$, then (c, p) = 1. Then

$$egin{aligned} &\eta_{_0}\eta_{_1}\eta_{_2}=rac{1}{27}((c+3)q-1)\;,\ &N(0)=rac{1}{27}(q+1+c)(q-1)\;,\ &N=rac{1}{27}(q^2-3q-c)\;. \end{aligned}$$

THEOREM 14. Let e = 4. Let s be defined by $q = s^2 + 4t^2$, $s \equiv 1 \pmod{4}$, and, if $p \equiv 1 \pmod{4}$, then (s, p) = 1. If f is even, then

$$egin{aligned} &\eta_{_{0}}\eta_{_{2}}\eta_{_{3}}=rac{1}{256}(q^{2}-(4s^{2}-8s+6)q+1)=rac{1}{256}((q-1)^{2}-4q(s-1)^{2})\;,\ &N(0)=rac{1}{256}(q-1)(q-3+2s)(q+1-2s)\;, \end{aligned}$$

$$N = \frac{1}{256}(q^3 - 4q^2 + 5q + 4s^2 - 8s + 2) \; .$$

If f is odd, then

$$egin{aligned} &\eta_{0}\eta_{1}\eta_{2}\eta_{3}=rac{1}{256}(9q^{2}-(4s^{2}-8s-2)q+1)=rac{1}{256}((3q+1)^{2}-4q(s-1)^{2})\;,\ &N(0)=rac{1}{256}(q-1)(q+5-2s)(q+1+2s)\;,\ &N=rac{1}{256}(q^{3}-4q^{2}-3q+4s^{2}-8s-6)\;. \end{aligned}$$

Proof. Straightforward calculation yields the results on $\Pi \eta_k$. We present the case e = 3 as an example.

By Propositions 7 and 10, we have $\eta_0\eta_1 = B\eta_0 + C\eta_1 + D\eta_2$, whence

$$egin{aligned} &(\eta_{\mathfrak{0}}\eta_{\mathfrak{1}})\eta_{\mathfrak{2}} &= B(\eta_{\mathfrak{0}}\eta_{\mathfrak{2}}) + C(\eta_{\mathfrak{1}}\eta_{\mathfrak{2}}) + D(\eta_{\mathfrak{2}})^{\mathfrak{2}} \ &= B(C\eta_{\mathfrak{0}} + D\eta_{\mathfrak{1}} + B\eta_{\mathfrak{2}}) + C(D\eta_{\mathfrak{0}} + B\eta_{\mathfrak{1}} + C\eta_{\mathfrak{2}}) + D(B\eta_{\mathfrak{0}} + C\eta_{\mathfrak{1}} + A\eta_{\mathfrak{2}} + f) \ &= (BC + CD + BD)\eta_{\mathfrak{0}} + (BD + BC + CD)\eta_{\mathfrak{1}} + (B^{\mathfrak{2}} + C^{\mathfrak{2}} + AD)\eta_{\mathfrak{2}} + fD \;. \end{aligned}$$

Substituting for A, B, C, and D the values given in Proposition 10, and simplifying via $4q = c^2 + 27d^2$, we find

$$egin{aligned} &27\eta_0\eta_1\eta_2=(q^2-3q-c)(\eta_0+\eta_1+\eta_2)+(q^2-1+cq-c)\ &=-(q^2-3q-c)+(q^2-1+cq-c)\ &=(c+3)q-1\,. \end{aligned}$$

The results an N(0) and N then follow from the simultaneous solution of

$$egin{aligned} N(0) + (q-1)N &= f^{\,e} \ , \ N(0) - N &= \prod_{k=0}^{e-1} \eta_k \ . \end{aligned}$$

Some special results and some approximations. We present two results of a more specialized nature.

THEOREM 15. If q and f are both odd then N(0) > N.

Proof. If q and f are both odd then $-1 \in G_{e/2}$. Thus for any $k, 0 \leq k < e/2$, $x \in G_k$ if and only if $-x \in G_{k+e/2}$. Then

$$\eta_{k+e/2} = \sum_{x \in G_{k+e/2}} heta^{Trx} = \sum_{x \in G_k} heta^{Tr(-x)} = \sum_{x \in G_k} heta^{-Trx} = \overline{\eta}_k$$
,

where the overbar indicates complex conjugation. It follows that

$$\prod\limits_{k=0}^{e-1} \eta_k = \prod\limits_{k=0}^{e/2-1} \eta_k \overline{\eta}_k = \prod\limits_{k=0}^{e/2-1} |\eta_k|^2 > 0 \; .$$

But by Lemma 6, $N(0) = N + \prod_{k=0}^{e-1} \eta_k$.

THEOREM 16. Let e = 4. If q - 1 is a square, then N(0) - N is a square.

Proof. By hypothesis, $q = 1 + 4t^2$: thus, we can take s = 1 in Theorem 14. If f is even then

$$N(0) - N = \prod_{k=0}^{3} \eta_k = \left(rac{q-1}{16}
ight)^2$$
;

if f is odd then

$$N(0) \ - \ N = \prod_{k=0}^3 \eta_k = \left(rac{3q+1}{16}
ight)^{\mathtt{z}}$$
 .

Estimates for $\Pi\eta_k$ and N(x). Cyclotomy for e > 4 has been of continuing interest to mathematicians. The reader is referred to [2] for the cases e = 5, 6, and 8; also to [9], [10], [4], [8], [1], and [5], for the cases e = 10, 12, 14, 16, 18, and 20, respectively. In each of these only the case q = p is discussed. When the problems of cyclotomy have been solved for a given value of e, the methods of the proof of Theorem 13 will evaluate $\Pi\eta_k$ — see, e.g., [6], for the case e = 5, q = p. The computations involved are ghastly, as the reader can convince himself by inspecting the references cited above. The author feels that the importance of finding exact expressions for N and N(0) is not sufficient to justify performing these computations. We present instead approximations to N and N(0), based upon a lemma from cyclotomy.

LEMMA 17. (a) If either f or p is even, then

$$\sum\limits_{k=0}^{p-1}\eta_k^2=q-f$$
 .

(b) If f and p are both odd, then

$$\sum\limits_{k=0}^{e-1} \eta_k \eta_{k+e/2} = q\,-f$$
 .

Proof. These are both special cases of Lemma 9 in [7].

LEMMA 18. (a) If either f or p is even then η_k is real, $k = 0, 1, \dots, e-1$.

(b) If f and p are both odd then $\eta_k \eta_{k+e/2}$ is real and positive,

 $k = 0, 1, \dots, e - 1.$

Proof. (a) If f is even then $-1 \in G_0$. Thus if $x \in G_k$ then $-x \in G_k$, and $x \neq -x$. Hence, if θ^{Trx} appears in η_k , so does $\theta^{Tr(-x)} = \theta^{-Trx}$. Thus, η_k is real. If p is even then p=2. Thus $\theta = -1$ and η_k is real. (b) This was shown in the proof of Theorem 15

(b) This was shown in the proof of Theorem 15.

THEOREM 19. $|\prod_{k=0}^{e-1} \eta_k| \leq ((q-f)/e)^{e/2}; |N(0)-f^e/q| \leq ((q-f)/e)^{e/2}; |N - f^e/q| \leq q^{-1}((q-f)/e)^{e/2}.$

Proof. If either f or p is even then $\sum_{k=0}^{e-1} \eta_k^2 = q - f$. If both f and p are odd then $\sum_{k=0}^{e-1} \eta_k \eta_{k+e/2} = q - f$. In either case we may, by Lemma 18, apply the inequality of the arithmetic and geometric means. We obtain $\prod_{k=0}^{e-1} \eta_k^2 \leq ((q-f)/e)^e$, or $|\prod_{k=0}^{e-1} \eta_k| \leq ((q-f)/e)^{e/2}$.

The other two inequalities follow from the first and from the relations $N(0) + (q - 1)N = f^{e}$, $N(0) - N = \prod_{k=0}^{e-1} \eta_{k}$.

The reader is encouraged to compare the approximations of Theorem 19 with the exact results of Theorems 12, 13, 14 bearing in mind that c in Theorem 13 and s in Theorem 14 can be as large as $2\sqrt{q}$ or \sqrt{q} , respectively. The approximations are seen to be quite sharp.

The problem of evaluating $\Pi \eta_k$ as q varies with f, rather than e, held fixed requires very different methods from those of Theorems 12, 13, and 14. We treat this problem in [11].

References

2. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math., 57 (1935), 391-424.

3. ____, Linear Groups, Dover 1958.

4. J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arithmetica, 11 (1965/6), 263-279.

5. J. B. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216.

6. A. R. Rajwade, The period equation for primes p congruent to 1 (Mod 5), Proc. Camb. Phil. Soc., **69** (1971), 153-155.

7. T. Storer, Cyclotomy and Difference Sets, Markham 1967.

8. A. L. Whiteman, The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc., 86 (1957), 401-413.

9. _____, The cyclotomic numbers of order ten, Proc. Symp. Appl. Math., 10, 95-111.
10. _____, The cyclotomic numbers of order twelve, Acta Arith., 6 (1960), 53-76.

11. G. Myerson, A combinatorial problem in finite fields, II, to appear in Quarterly J. Math.

Received April 1, 1978.

SUNY BUFFALO, NY 14214

^{1.} L. D. Baumert and H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp., 21 (1967), 204-219.