A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

Gerald Myerson

Abstract

Given a subgroup G of the multiplicative group of a finite field, we investigate the number of representations of an arbitrary field element as a sum of elements, one from each coset of G. When G is of small index, the theory of cyclotomy yields exact results. For all other G, we obtain good estimates.

This paper formed a portion of the author's doctoral dissertation.

Let $p=2 n+1$ be an odd prime. Consider the 2^{n} sums represented by the expression

$$
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n
$$

How do these sums distribute themselves among the residue classes modulo p ? The answer is, as uniformly as possible; in fact, if we define $N(a)$ as the number of ways of choosing the signs so that $\pm 1 \pm 2 \pm \cdots \pm n \equiv a(\bmod p)$ then we have

Theorem 1.

$$
\begin{aligned}
& N(a)=\frac{1}{p}\left(2^{n}-\left(\frac{2}{p}\right)\right) \text { for } a \neq 0(\bmod p), \\
& N(0)=\frac{1}{p}\left(2^{n}-\left(\frac{2}{p}\right)\right)+\left(\frac{2}{p}\right)
\end{aligned}
$$

Here (2/p) is the Legendre symbol, that is,

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{l}
1 \text { if } 2 \text { is a quadratic residue }(\bmod p) \\
-1 \text { if } 2 \text { is not a quadratic residue }(\bmod p)
\end{array}\right.
$$

Our proof of Theorem 1 will rest on the following lemmas.
Lemma 2. If $a b \not \equiv 0(\bmod p)$ then $N(a)=N(b)$.
Proof. Assume $\sum_{k=1}^{n} u_{k} k \equiv a(\bmod p)$, with $u_{k} \in\{1,-1\}$. Since $a b \not \equiv 0(\bmod p)$ there is a c such that $a c \equiv b(\bmod p)$. Thus we have $\sum_{k=1}^{n} u_{k} c k \equiv b(\bmod p)$. Now for $k=1,2, \cdots, n$, let $c k \equiv u_{k}^{\prime} m_{k}(\bmod p)$, where $1 \leqq m_{k} \leqq n, u_{k}{ }^{\prime} \in\{1,-1\}$; these conditions determine m_{k} and u_{k}^{\prime} uniquely. Thus,

$$
b \equiv \sum_{k=1}^{n} u_{k} c k \equiv \sum_{k=1}^{n} u_{k} u_{k}^{\prime} m_{k} \equiv \sum_{k=1}^{n} u_{k}^{\prime \prime} m_{k}(\bmod p),
$$

with

$$
u_{k}^{\prime \prime} \in\{1,-1\} .
$$

Now, the $m_{k c}$ are all distinct: if $m_{k}=m_{h}$, then $c k \equiv \pm c h(\bmod p)$, so $k \equiv \pm h(\bmod p)$, so $k=h($ since $1 \leqq k \leqq n, 1 \leqq h \leqq n)$. Therefore, $b \equiv \sum_{k=1}^{n} u_{k}^{\prime \prime} m_{k}(\bmod p)$ is a representation of b, corresponding to our original representation of a. Multiplication by c^{\prime}, where $c c^{\prime} \equiv 1$ $(\bmod p)$, returns us to the original representation of a. We have established a one-to-one correspondence between the set of representations of a and the set of representations of b, and this shows that $N(a)$ is independent of a for $a \not \equiv 0(\bmod p)$.

Now let N denote the common value of $N(\alpha), a \not \equiv 0(\bmod p)$, and note that

$$
N(0)+(p-1) N=2^{n}
$$

by counting the total number of expressions two different ways. We now obtain a second linear relation between $N(0)$ and N through the use of a generating function. Let θ be any primitive p th root of unity.

Lemma 3. $\quad \Pi_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)=\sum_{a=0}^{p-1} N(\alpha) \theta^{a}=N(0)-N$.

Proof. In expanding the product into a sum of powers of θ each term is of the form $\theta^{ \pm 1 \pm 2 \pm \cdots \pm n}$. The number of occurrences of $\theta^{a}, 0 \leqq a \leqq p-1$, is therefore the number of choices of signs for which $\pm 1 \pm 2 \pm \cdots \pm n \equiv a(\bmod p)$, which is $N(a)$. This proves the first equality. The second follows from Lemma 2 and the observation that $\sum_{a=0}^{p-1} \theta^{a}=0$.

If we can evaluate $\prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)$ then we will have two equations for $N(0)$ and N.

Lemima 4.

$$
\prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)=\left(\frac{2}{p}\right)
$$

Proof. $\theta+\theta^{-1}$ is a unit in the ring of integers in $Q(\theta)$; in fact, $\left(\theta+\theta^{-1}\right)\left(\theta+\theta^{5}+\theta^{9}+\cdots+\theta^{2 p-1}\right)=1$. The numbers $\theta^{k}+\theta^{-k}$ are conjugate to $\theta+\theta^{-1}$, thus are also units; hence, $\prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)$ is a unit. By Lemma 3 this product is a rational integer, hence it must be 1 or -1 . We have

$$
\begin{aligned}
& \prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)=N(0)-N, \quad(\text { Lemma } 3) \\
& N(0)-N \equiv N(0)+(p-1) N(\bmod p) \\
& N(0)+(p-1) N=2^{n} \\
& \left.2^{n} \equiv\left(\frac{2}{p}\right)(\bmod p) \quad \text { (Euler's criterion }\right) .
\end{aligned}
$$

Thus $\prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right) \equiv(2 / p)(\bmod p)$; but since the product must equal 1 or -1 , it follows that $\prod_{k=1}^{n}\left(\theta^{k}+\theta^{-k}\right)=(2 / p)$.

Proof of Theorem 1. We now have two linear equations in $N(0)$ and N;

$$
\begin{aligned}
& N(0)+(p-1) N=2^{n} \\
& N(0)-N=\left(\frac{2}{p}\right)
\end{aligned}
$$

where the second equation is a consequence of Lemmas 3 and 4. Simultaneous solution of these equations yields Theorem 1.

We now present a generalization of the problem solved above; the remainder of this paper is an attempt to solve the generalized problem. We fix the following notation: e and f are positive integers such that $e f+1=q=p^{\alpha}$ is a prime power, and \boldsymbol{F}_{q} is the field of q elements. The multiplicative group of units of \boldsymbol{F}_{q}, denoted \boldsymbol{F}_{q}^{x}, is generated by the primitive element g. The subgroup G, consisting of all the e th powers in \boldsymbol{F}_{q}^{x}, is generated by g^{e}. The cosets of G in F_{q}^{x} are denoted and defined by $G_{k}=g^{k} G, k=0,1, \cdots$, $e-1$. In particular, $G_{0}=G$. For each $x \in \boldsymbol{F}_{q}$ define $N(x)$ to be the number of solutions of $\sum_{k=0}^{e-1} s_{k}=x$, with $s_{k} \in G_{k}$; that is, $N(x)$ is the number of representations of x as a sum of elements, taking precisely one from each coset. $N(x)$ depends, of course, not only on x but on e and f as well; it is, however, independent of the choice of the generator for \boldsymbol{F}_{q}^{x}.

With this notation, our problem is, find $N(x)$.
We note that the case $e=(p-1) / 2, f=2$, where p is prime, is our original problem; if $e=(p-1) / 2$ then $g^{e}=-1, G=\{1,-1\}$, and the cosets of G are the sets $\{k,-k\}, k=1,2, \cdots,(p-1) / 2$.

We now try to solve our new problem by following the solution of the old one. We first note that if $s_{k} \in G_{k}$ and $s_{h} \in G_{h}$ then $s_{k}^{-1} \in$ G_{-k} and $s_{k} s_{h} \in G_{k+h}$, where the subscripts are to be reduced mode.

Lemma 5. If $x y \neq 0$, then $N(x)=N(y)$.

Proof. Assume $\sum_{k=1}^{e-1} s_{k}=x, s_{k} \in G_{k}$. Since $x y \neq 0$ there is a $z \in \boldsymbol{F}_{q}^{x}$ such that $x z=y$. Thus, $\sum_{k=0}^{e-1} z s_{k}=y$. But multiplication by z merely permutes the cosets G_{k}, so this gives a representation of y. Multiplication by z^{\prime}, where $z z^{\prime}=1$, returns us to the original representation of x, so we have a one-one correspondence between the two sets of representations.

Now let N denote the common value of $N(x), x \neq 0$, and note that

$$
\begin{equation*}
N(0)+(q-1) N=f^{e} \tag{1}
\end{equation*}
$$

by counting the number of sums $\sum_{k=0}^{e-1} s_{k}, s_{k} \in G_{k}$, in two different ways.

To generalize Lemma 3 we need an analogue for the expressions $\theta^{k}+\theta^{-k}$. Letting θ be a primitive complex p th root of unity we define the periods $\eta_{k}=\sum_{x \in G_{k}} \theta^{T r x}, k=0,1, \cdots, e-1$. Here $T r$ is the trace map, $T r: \boldsymbol{F}_{q} \rightarrow \boldsymbol{F}_{p}$; the elements of $\boldsymbol{F}_{p} \simeq Z / p Z$ are identified with representatives of the cosets of $p Z$ in Z; the value of $\theta^{T r x}$ is independent of the choice of representative since $\theta^{p}=1$. We note that η_{k} depends on the parameters e and f, and also on g : a different choice of g would permute the η_{k} among themselves. Note that in the case $q=p$ we can simply define $\eta_{k}=\sum_{a \in G_{k}} \theta^{a}, k=0,1, \cdots$, $e-1$. In particular, if $f=2$ the periods are seen upon renumbering to be the numbers $\eta_{k}=\theta^{k}+\theta^{-k}$ of our previous discussion.

Lemma 6. $\quad \Pi_{k=0}^{e-1} \eta_{k}=\sum_{x \in F_{q}} N(x) \theta^{T r x}=N(0)-N$.
Proof. In expanding the product into a sum of powers of θ each term is of the form, $\theta^{T r\left(s_{1}+s_{2}+\ldots+s_{e-1}\right)}, s_{k} \in G_{k}$. The number of occurrences of $\theta^{r r x}$ is therefore the number of representations of x as $\sum_{k=0}^{e-1} s_{k}, s_{k} \in G_{k}$, which is $N(x)$. This proves the first equality. The second follows from Lemma 5 and the observation that

$$
\sum_{x \in F_{q}} \theta^{T r x}=0
$$

Lemma 6 gives a linear relation between $N(0)$ and N which, together with (1), can be used to evaluate $N(0)$ and N if we can evaluate $\prod_{k=0}^{e-1} \eta_{k}$. For fixed values of e, it is often possible to obtain formulas for $\prod_{k=0}^{e-1} \eta_{k}$ using the theory of cyclotomy.

In the next section, we give the definitions and quote the theorems we need from cyclotomy. The reader is referred to [7] for a detailed exposition with proofs.

Cyclotomy. We begin by defining the cyclotomic constants.

Definition. The cyclotomic constant (k, h) is the number of elements $s \in G_{k}$ such that $1+s \in G_{h}$.

The constants (k, h) depend on our parameters e and f; also, a different choice of generator g, by permuting the cosets G_{k}, will permute the constants (k, h). Their importance in the problem under consideration stems from the next two propositions.

PROPOSITION 7. $\eta_{0} \eta_{k}=\sum_{h=0}^{e-1}(k, h) \eta_{h}+f n_{k}$, where n_{k} is defined by

$$
\begin{aligned}
& n_{0}=1 \text { if } f \text { is even } \\
& n_{0}=1 \text { if } p=2, \\
& n_{e / 2}=1 \text { if } f \text { and } p \text { are odd } \\
& n_{k}=0 \text { in all other cases }
\end{aligned}
$$

PROPOSITION 8. $\eta_{m} \eta_{m+k}=\sum_{h=0}^{e-1}(k, h) \eta_{m+h}+f n_{k}$, where the subscripts are to be interpreted modulo e.

Repeated applications of Propositions 7 and 8 will enable us to evaluate $\Pi \eta_{k}$, provided we know the constants (k, h).

The constants are given, in the cases $e=2,3$, and 4 , by the following theorems.

Proposition 9. (Dickson [3, p. 48]). Assume $e=2$.
If f is even, the cyclotomic matrix $M^{(2)}$ is given by $M^{(2)}=$ $\left(\begin{array}{ll}A & B \\ B & B\end{array}\right)$, where $4 A=q-5,4 B=q-1$.

If f is odd, $M^{(2)}=\left(\begin{array}{cc}A & B \\ A & A\end{array}\right)$, where $4 A=q-3,4 B=q+1$.

Proposition 10. (Storer [7, p. 35]). Let $e=3$. Let c and d be defined by $4 q=c^{2}+27 d^{2}, c \equiv 1(\bmod 3)$, and, if $p \equiv 1(\bmod 3)$, then $(c, p)=1$; these restrictions determine c uniquely, and $d u p$ to sign. Then

$$
M^{(3)}=\left(\begin{array}{lll}
A & B & C \\
B & C & D \\
C & D & B
\end{array}\right), \text { where } \begin{aligned}
& 9 A=q-8+c \\
& 18 B=2 q-4-c-9 d \\
& 18 C=2 q-4-c+9 d \\
& \\
& 9 D=q+1+c
\end{aligned}
$$

Proposition 11. (Storer [7, pp. 48, 51]). Let $e=4$. Let s and t be defined by $q=s^{2}+4 t^{2}, s \equiv 1(\bmod 4)$, and, if $p \equiv 1(\bmod 4)$, then $(s, p)=1$; these restrictions determine s uniquely, and t up to sign.

If f is even, then

$$
M^{(4)}=\left(\begin{array}{llll}
A & B & C & D \\
B & D & E & E \\
C & E & C & E \\
D & E & E & B
\end{array}\right) \quad \text { where } \quad \begin{aligned}
& 16 A=q-11-6 s \\
& 16 B=q-3+2 s+8 t \\
& 16 C=q-3+2 s \\
& 16 D=q-3+2 s-8 t \\
& 16 E=q+1-2 s
\end{aligned}
$$

If f is odd, then

$$
M^{(4)}=\left(\begin{array}{llll}
A & B & C & D \\
E & E & B & D \\
A & E & A & E \\
E & D & B & E
\end{array}\right) \quad \text { where } \quad \begin{aligned}
& 16 A=q-7+2 s \\
& 16 B=q+1+2 s+8 t \\
& 16 C=q+1-6 s \\
& 16 D=q+1+2 s-8 t \\
& 16 E=q-3-2 s
\end{aligned}
$$

Solutions in the cases $e=2,3,4$.
We can now evaluate $\Pi \eta_{k}, N(0)$, and N in the cases $e=2,3,4$.
Theorem 12. Let $e=2$. If f is even, then

$$
\eta_{0} \eta_{1}=-\frac{q-1}{4}, N(0)=0, N=\frac{q-1}{4} .
$$

If f is odd, then

$$
\eta_{0} \eta_{1}=\frac{q+1}{4}, \quad N(0)=\frac{q-1}{2}, \quad N=\frac{q-3}{4} .
$$

Theorem 13. Let $e=3$. Let c be defined by $4 q=c^{2}+27 d^{2}$, $c \equiv 1(\bmod 3)$, and, if $p \equiv 1(\bmod 3)$, then $(c, p)=1$. Then

$$
\begin{aligned}
\eta_{0} \eta_{1} \eta_{2} & =\frac{1}{27}((c+3) q-1), \\
N(0) & =\frac{1}{27}(q+1+c)(q-1), \\
N & =\frac{1}{27}\left(q^{2}-3 q-c\right) .
\end{aligned}
$$

Theorem 14. Let $e=4$. Let s be defined by $q=s^{2}+4 t^{2}, s \equiv$ $1(\bmod 4)$, and, if $p \equiv 1(\bmod 4)$, then $(s, p)=1$. If f is even, then

$$
\begin{aligned}
\eta_{0} \eta_{1} \eta_{2} \eta_{3} & =\frac{1}{256}\left(q^{2}-\left(4 s^{2}-8 s+6\right) q+1\right)=\frac{1}{256}\left((q-1)^{2}-4 q(s-1)^{2}\right) \\
N(0) & =\frac{1}{256}(q-1)(q-3+2 s)(q+1-2 s)
\end{aligned}
$$

$$
N=\frac{1}{256}\left(q^{3}-4 q^{2}+5 q+4 s^{2}-8 s+2\right)
$$

If f is odd, then

$$
\begin{aligned}
\eta_{0} \eta_{1} \eta_{2} \eta_{3} & =\frac{1}{256}\left(9 q^{2}-\left(4 s^{2}-8 s-2\right) q+1\right)=\frac{1}{256}\left((3 q+1)^{2}-4 q(s-1)^{2}\right) \\
N(0) & =\frac{1}{256}(q-1)(q+5-2 s)(q+1+2 s) \\
N & =\frac{1}{256}\left(q^{3}-4 q^{2}-3 q+4 s^{2}-8 s-6\right)
\end{aligned}
$$

Proof. Straightforward calculation yields the results on $\Pi \eta_{k}$. We present the case $e=3$ as an example.

By Propositions 7 and 10 , we have $\eta_{0} \eta_{1}=B \eta_{0}+C \eta_{1}+D \eta_{2}$, whence

$$
\begin{aligned}
\left(\eta_{0} \eta_{1}\right) \eta_{2} & =B\left(\eta_{0} \eta_{2}\right)+C\left(\eta_{1} \eta_{2}\right)+D\left(\eta_{2}\right)^{2} \\
& =B\left(C \eta_{0}+D \eta_{1}+B \eta_{2}\right)+C\left(D \eta_{0}+B \eta_{1}+C \eta_{2}\right)+D\left(B \eta_{0}+C \eta_{1}+A \eta_{2}+f\right) \\
& =(B C+C D+B D) \eta_{0}+(B D+B C+C D) \eta_{1}+\left(B^{2}+C^{2}+A D\right) \eta_{2}+f D
\end{aligned}
$$

Substituting for A, B, C, and D the values given in Proposition 10, and simplifying via $4 q=c^{2}+27 d^{2}$, we find

$$
\begin{aligned}
27 \eta_{0} \eta_{1} \eta_{2} & =\left(q^{2}-3 q-c\right)\left(\eta_{0}+\eta_{1}+\eta_{2}\right)+\left(q^{2}-1+c q-c\right) \\
& =-\left(q^{2}-3 q-c\right)+\left(q^{2}-1+c q-c\right) \\
& =(c+3) q-1
\end{aligned}
$$

The results an $N(0)$ and N then follow from the simultaneous solution of

$$
\begin{aligned}
& N(0)+(q-1) N=f^{e} \\
& N(0)-N=\prod_{k=0}^{e-1} \eta_{k}
\end{aligned}
$$

Some special results and some approximations. We present two results of a more specialized nature.

Theorem 15. If q and f are both odd then $N(0)>N$.
Proof. If q and f are both odd then $-1 \in G_{e / 2 .}$. Thus for any $k, 0 \leqq k<e / 2, x \in G_{k}$ if and only if $-x \in G_{k+e / 2}$. Then

$$
\eta_{k+e / 2}=\sum_{x \in G_{k+e / 2}} \theta^{T r x}=\sum_{x \in G_{k}} \theta^{T r(-x)}=\sum_{x \in \mathcal{G}_{k}} \theta^{-T r x}=\bar{\eta}_{k},
$$

where the overbar indicates complex conjugation. It follows that

$$
\prod_{k=0}^{c-1} \eta_{k}=\prod_{k=0}^{e / 2-1} \eta_{k} \bar{\eta}_{k}=\prod_{k=0}^{e / 2-1}\left|\eta_{k}\right|^{2}>0
$$

But by Lemma 6, $N(0)=N+\prod_{k=0}^{e-1} \eta_{k}$.
Theorem 16. Let $e=4$. If $q-1$ is a square, then $N(0)-N$ is a square.

Proof. By hypothesis, $q=1+4 t^{2}$: thus, we can take $s=1$ in Theorem 14. If f is even then

$$
N(0)-N=\prod_{k=0}^{3} \eta_{k}=\left(\frac{q-1}{16}\right)^{2} ;
$$

if f is odd then

$$
N(0)-N=\prod_{k=0}^{3} \eta_{k}=\left(\frac{3 q+1}{16}\right)^{2} .
$$

Estimates for $\Pi \eta_{k}$ and $N(x)$. Cyclotomy for $e>4$ has been of continuing interest to mathematicians. The reader is referred to [2] for the cases $e=5,6$, and 8; also to [9], [10], [4], [8], [1], and [5], for the cases $e=10,12,14,16,18$, and 20, respectively. In each of these only the case $q=p$ is discussed. When the problems of cyclotomy have been solved for a given value of e, the methods of the proof of Theorem 13 will evaluate $\Pi \eta_{k}$ - see, e.g., [6], for the case $e=5, q=p$. The computations involved are ghastly, as the reader can convince himself by inspecting the references cited above. The author feels that the importance of finding exact expressions for N and $N(0)$ is not sufficient to justify performing these computations. We present instead approximations to N and $N(0)$, based upon a lemma from cyclotomy.

Lemma 17. (a) If either f or p is even, then

$$
\sum_{k=0}^{e-1} \eta_{k}^{2}=q-f .
$$

(b) If f and p are both odd, then

$$
\sum_{k=0}^{e-1} \eta_{k} \eta_{k+e / 2}=q-f .
$$

Proof. These are both special cases of Lemma 9 in [7].
Lemma 18. (a) If either f or p is even then η_{k} is real, $k=$ $0,1, \cdots, e-1$.
(b) If f and p are both odd then $\eta_{k} \eta_{k+e / 2}$ is real and positive,
$k=0,1, \cdots, e-1$.
Proof. (a) If f is even then $-1 \in G_{0}$. Thus if $x \in G_{k}$ then $-x \in G_{k}$, and $x \neq-x$. Hence, if $\theta^{T r x}$ appears in η_{k}, so does $\theta^{T r(-x)}=\theta^{-T r x}$. Thus, η_{k} is real. If p is even then $p=2$. Thus $\theta=-1$ and η_{k} is real.
(b) This was shown in the proof of Theorem 15.

Theorem 19. $\left|\prod_{k=0}^{e-1} \eta_{k}\right| \leqq((q-f) / e)^{e / 2} ;\left|N(0)-f^{e} / q\right| \leqq((q-f) / e)^{e / 2} ;$ $\left|N-f^{e} / q\right| \leqq q^{-1}((q-f) / e)^{e / q}$.

Proof. If either f or p is even then $\sum_{k=0}^{e-1} \eta_{k}^{2}=q-f$. If both f and p are odd then $\sum_{k=0}^{e-1} \eta_{k} \eta_{k+e / 2}=q-f$. In either case we may, by Lemma 18, apply the inequality of the arithmetic and geometric means. We obtain $\Pi_{k=0}^{e-1} \eta_{k}^{2} \leqq((q-f) / e)^{e}$, or $\left|\Pi_{k=0}^{e-1} \eta_{k}\right| \leqq((q-f) / e)^{e / 2}$.

The other two inequalities follow from the first and from the relations $N(0)+(q-1) N=f^{e}, N(0)-N=\prod_{k=0}^{e-1} \eta_{k}$.

The reader is encouraged to compare the approximations of Theorem 19 with the exact results of Theorems $12,13,14$ bearing in mind that c in Theorem 13 and s in Theorem 14 can be as large as $2 \sqrt{q}$ or \sqrt{q}, respectively. The approximations are seen to be quite sharp.

The problem of evaluating $\Pi \eta_{k}$ as q varies with f, rather than e, held fixed requires very different methods from those of Theorems 12, 13, and 14. We treat this problem in [11].

References

1. L. D. Baumert and H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp., 21 (1967), 204-219.
2. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math., 57 (1935), 391-424.
3. Linear Groups, Dover 1958.
4. J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arithmetica, 11 (1965/6), 263-279.
5. J. B. Muskat and A. L. Whiteman, The cyclotornic numbers of order twenty, Acta Arith. 17 (1970), 185-216.
6. A. R. Rajwade, The period equation for primes p congruent to 1 (Mod 5), Proc. Camb. Phil. Soc., 69 (1971), 153-155.
7. T. Storer, Cyclotomy and Difference Sets, Markham 1967.
8. A. L. Whiteman, The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc., 86 (1957), 401-413.
9. -, The cyclotomic numbers of order ten, Proc. Symp. Appl. Math., 10, 95-111.
10. -, The cyclotomic numbers of order twelve, Acta Arith., 6 (1960), 53-76.
11. G. Myerson, A combinatorial problem in finite fields, II, to appear in Quarterly J. Math.

Received April 1, 1978.
Suny
Buffalo, NY 14214

