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SOME RELATIONSHIPS BETWEEN MEASURES

Roy A. JOHNSON

Suppose # and v are (nonnegative, countably additive)
measures on the same sigma-ring. We say that v is quasi-
dominant with respect to 2 if each measurable set contains
a subset with the same »-measure, where p is absolutely
continuous with respect to v on that subset. In particular,
v is quasi-dominant with respect to # if y# is sigma-finite.
We say that v is strongly recessive with respect to u if the
zero measure is the only measure that is quasi-dominant
with respect to 2 and less than or equal to v. Properties
of these relationships are investigated, and applications are
given to purely atomic measures, to the Radon-Nikodym
theorem and to a decomposition of product measures.

1. Weak singularity and absolute continuity. Let g and v
be (nonnegative, countably additive) measures on a sigma-ring .&°.
Recall that v is absolutely continuous with respect to g, denoted
v < e, if w(E) =0 whenever u(E) =0. If y< g and g< v, then g
and v are said to be equivalent and we write ¢t ~y. We say that v
is weakly singular with respect to g, denoted vSy, if given E in
&7, there exists F' in .&” such that v(E) = y(E N F) and u(F) = 0.

We shall make use of the following form of the Lebesgue De-
composition Theorem [3, Theorem 2.1 or 6, Theorem 1.1]:

THEOREM 1.1. (Lebesgue Decomposition Theorem). Suppose p¢
and v are measures on a sigma-ring .. Then there exist measures
v, and v, such that (1) v =y, + v,, (2) v, < ¢t and (3) v,Sp. The meas-
ure v, 18 uniqgue. We may arrange to have v,Sy,, and under that
requirement v, is umique also.

If v is a measure on & and Ae.&”, let v, be the measure
given by v, (E) =v(AN E) for all Ee .&”.

THEOREM 1.2. Suppose M,(S”) and M,(S”) are families of
measures on & such that the zero measure is the only measure
common to both families and such that v, is in ome of the families
whenever v is in that family and Ae S¥. Suppose, moreover, that
each measure vy on & can be written as the sum of measures v,
and v, such that v,e M,(S¥) and v,€ My(S”) and v,Sy,. Then ve
M%) if and only if v(A) = 0 whenever v, € M,(.5”).

Proof. Suppose yve M,(&¥). Then y,e M,(s”) for all Ae &¥. If
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y,e M,(s”), then v, = 0 so that y(4) = 0.

Suppose v(4) = 0 whenever v, e M,(.%”). In order to show that
ve M%), it suffices to show that v (&) = 0 for all £ in .. Sup-
pose, then, that K¢ $”. Since v,Sy,, there exists F'in & such that
v,(B)=v(ENF) and v,(F)=0. Necessarily, v, = (v,),. Since
W)re M, (S), we have v,e M(S”) so that v(F') =0 by hypothesis.
Then y(E) =v(ENF) < y(F) =0, and we are done.

The following results follow from the definitions or from
Theorems 1.1 and 1.2:

(1) If vwSpy, then v, Sy for all Ae &”.

(2) v,Sp if and only if v,Sp, if and only if vSy,.

(3) If v« p, then v, < .

(4) vy,< pif and only if v, < py.

(5) wSp if and only if y(A) = 0 whenever v, < .

(6) v< pif and only if v(A) = 0 whenever v, Sg.

The relationships of absolute continuity and weak singularity
between measures are determined by the null sets of the measures.
That is, suppose g, ~ ¢, and v, ~y,. Then y, < g, if and only if
y, < t,, and v, Sy, if and only if v,Sp,. We prove the nontrivial part
of these assertions.

THEOREM 1.3. If MSyt and » ~ v, then vSpe.

Proof. Suppose vy, < p. It suffices to show that y(4) = 0.
Since WSy, there exists F in &7 such that MA4) = M4 N F) and
p(F) = 0. Of course, v,(F)=0. Then since (A NF) =0, we have
MA) = MANF)=0. Hence, v(4) = 0.

If s« is a measure, then oo will denote that (necessarily equi-
valent) measure which is c when # is positive and 0 when g is 0.
Of course, g, ~ 5, if and only if copy, = copr,. In view of Theorem
1.3 and the preceding remarks, v € z¢ if and only if coy < oo, while
ySye if and only if cowSeo .

2. Quasi-dominance and strong recessiveness. We shall say
that v is quasi-dominant with respect to ¢, denoted vQp, if given
E in &7, there exists F' in .&” such that v(E) = y(ENF) and pg,<Kv.
It is evident that vQu if vSy or p <K v.

THEOREM 2.1.

(1) If v@Qn and p <N, then YR

(2) If vQp and pSy, then vSpe.

Ba) If vQu and v,Qu, then (v, + v,)Q¢.
(38b) If vQu, and vQu,, then vQ(ry, + &).
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(4) If vQu, then p can be written as the sum of p, and t,,
where 1, < v and vSp,. We may arrange to have p,Sy and .S,
and under those conditions y, and p, are unique.

(5) If MQu and N ~ v, then vQu.

(6a) If v,Qu and v,Qp, then (v, \V v,)Qp.

(6b) If vQu, and vQp,, then vQ(1 \V th).

(7) If p is sigma-finite, then YQu for any measure Yy on .

(8) If vQu, then v,Qu for all Ac 7.

Proof.

(1) Follows from definition of quasi-dominance.

(2) Given Ee.5”, there exists F'e . such that y(F) = w(ENF)
and g < v. Since pSy and p, < v, it follows that v(EN F) =0. In
other words, vSg.

(3a) Suppose Ee.%”. Then there exist F, and F, in S such
that v,(E) =v(ENF,) and y(E) =v,(ENF,), where p, <y, and
e, K Y. If F=F UF, then it can be seen that (v, + v,)(E)=
O+ 2)(ENF) and g < v, + v, ’

(83b) Suppose Ee.%”. Since vQq,, there exists F; in & such
that y(E) = vy(E N F,) and (¢)r, < v.  Since vQy,, there exists F, in
& such that v(ENF) = v(ENFYNF,) and (8,)z, < v. If F=FNF,
then ¥(E) = v(EN F) and (¢, + t)r < V.

(4) By the Lebesgue Decomposition Theorem, y can be written
as the sum of g and p,, where 1, < v and Sy and Sy, Since
vQu, by (1) and since p,Sy, we have vSy, by (2). Uniqueness under
the added conditions amounts to the uniqueness of the Lebesgue
Decomposition Theorem for the case £,St,.

(5) By (4), = p, + 4, where g, < » and ASp,. Since \ ~ v,
we have g, < v and vSy,. Then vQu by (3b).

(6a) Since (v, Vy,) ~ (V, +v,), the result follows from (3a) and
(5).

(6b) Since (£, V ) ~ (¢4, + ), the result follows from (3b) and
).

(7) By the Lebesgue Decomposition Theorem, g = 4, + t,
where g, < v and ,Sv. Since g, is sigma-finite, vSy, [3, Theorem
3.2]. Then vQu by (3b).

(8) Fix Ae.%” and suppose Ee.”. Since vQu, there exists
Fe & such that v, (E)=v(ANE)=v(ANE)N F) and such that
tr < v. Necessarily, p,nr < v,. Hence, v,(E) =v,(EN(ANF)) and
Hunm < Yy S0 that v,Qpe.

We say that v is strongly recessive with respect to p, denoted
v <gp, if N is the zero measure whenever A <y and AQu. Clearly,
Qe and y <gp if and only if v is the zero measure.
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THEOREM 2.2. The following are equivalent:
(1) If Ace & and v,Qu, then v(A) = 0.
(2) If »Zv and MQY, then » = 0.

(8) If A< v and MNQu, then N = 0.

(4) pSy and v < p.

(5) pSyand vy < p.

(6) (¢t+ v)Sv.

(7) pSy and v(A) = 0 whenever p(A) < co.

Proof.

(1) implies (7): Suppose g, € v. Assuming (1), we first show
that pSy by showing that p#(4) = 0. Since g, < v,, we have v,Qu,
so that y,Qp. Assuming (1), we have y(4) =0 so that p(A) =0.
Hence, #Sy. Now suppose ¢#(A) < . Assuming (1), we show that
v(4) = 0. We already know that gSy, so that p,Sv. Since g, is
finite, we have vSp, [3, Theorem 3.2] so that v,Sp. Hence, v,Qu
and assuming (1), we have y(4) = 0 as was to be shown.

(7) implies (6): Since y(4) = 0 whenever f(A) < -, we have
¢ =t +v. Hence, (¢ + v)Sy.

(6) implies (5): Clearly, v < ¢+ v. It suffices to show that
p=p+v. Suppose Ee.5”. Since (¢ + v)Sy, there exists F' in &
such that (¢#+v)(E)=(p+v)(ENF) and v(F)=0. Hence, (¢t+v)(&)=
(t+vNENF)=mENF)=<uE) so that (« + v)(E) = w(E).

(4) implies (8): Suppose ¢Sy and v < g. Suppose, moreover,
that A < v and AQu. It suffices to show that x = 0. Since #Sy and
A< v, we have #Sh. Since S\ and M@y, we have ASy by (2) of
Theorem 2.1. Since ASy and since A < vy, we have » = 0.

Clearly, (5) implies (4), (3) implies (2) and (2) implies (1).

We shall see that the second condition in (7) of Theorem 2.2 is
enough to insure that v < ¢ whenever g enjoys the property of
semifiniteness. We say that g is semifinite (or locally finite) if it
satisfies any of the following equivalent conditions [1, Exercise 25.9
or 9, Theorem 8.3]: (1) If Ee.”, then wuE) = sup{u(ENF):
M(F) < oo}, (2) Every measurable set of positive measure contains
a measurable set of finite positive measure. (8) Every measurable
set B/ contains a measurable set F' such that F has sigma-finite
p-measure and p(E) = p(F). A measure is called degenerate if the
only values taken on by the measure are 0 and oo.

Following [5, page 396], we shall say that v is totally imcom-
patible with g if p(&) >0 implies pu(F) = . Equivalently, v is
totally incompatible with g if ¢ + v = p. In view of Theorem 2.2,
v is totally incompatible with g whenever v < u. If vy is totally
incompatible with p, then clearly vy < p. If y< ¢ and g is degene-
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rate, then v is totally incompatible with ge.

THEOREM 2.3. If vy is totally imcompatible with p and p s
semifinite, then v <gp.

Proof. Evidently, v € ¢ and it suffices to show that #Sy. Given
E in &7, by virtue of the semifiniteness of g there exists F' in %
such that u(F) = p(EN F) and such that u(F') is sigma-finite. Since
v is totally incompatible with g and since p(F') is sigma-finite, we
have y(F') = 0.

THEOREM 2.4.

Qa) If vy N and »M<gp, them v <gp.

Ab) If y<gh and A<y, then v <gp.

(2) If vQu and n <gp, them vSA.

(Ba) Ifyv<s(t+ \) and vQX, then v <gpt. Hence, if v <s(tt + \)
and ySx, then v <gpt.

Bb) If v+ NQp and N <, then vQp.

(4) If (i) v<sp, (i) v@N and (iii) MQg, then vSA.

(5) If v,<gsp and v, <gp, then v, + v, <g

(6) If vy<gp, then v, <gst, for all A in &.

Proof.

(la) Since M <gy, we have S\ and M< ¢ by Theorem 2.2.
Since v < A, we have Sy and v . Hence, v <y ¢ by Theorem 2.2.

(1b) Suppose Ae.%” and y,Qu. Since M<K g, we have y,Q\.
Since vy <g\ and since v,QN, we have y(4) = 0. Therefore, v<gp
by Theorem 2.2.

(2) Suppose v, < . It suffices to show that v(4) = 0. Since
A <gp, we have v, <gu by (la) of this theorem. By (8) of Theorem
2.1, we have v,Qu. Hence, v, = 0 and v(4) = 0.

(8a) Suppose A€ .5 and y,Qu. It suffices to show that y(4) = 0.
Since v@Q\, we have v,@\ by (8) of Theorem 2.1. Then v,Q(¢ + N\),
so that v(4) = 0 by Theorem 2.2.

Bb) (@ + NSy by (2) of this theorem. Hence, M <gv and
Y + » =p by Theorem 2.2.

(4) Since MQp and vy <, we have ASy by (2) of this theorem.
Since v@» and ASy, we have vSh by (2) of Theorem 2.1.

(5) and (6) follow immediately from Theorem 2.2.

For reference and for comparison, we restate the Lebesgue De-
composition Theorem (Theorem 1.1). In stating this theorem, we
may replace the requirement that v,Sy, by v,Qv, because of (2) in
Theorem 2.1 and the fact that »,Sy,, We then prove an analogous
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decomposition theorem involving strong recessiveness and quasi-
dominance.

Lebesgue Decomposition Theorem. Suppose gt and v are meas-
ures on a sigma-ring .. Then vy can be written as v, + v,, where
v, < ¢t and v,Sp. Necessarily, v, is unique. We may arrange to have
v,Qy, (or v,Sy,), and in that case vy, is unique also.

THEOREM 2.5. Suppose pt and v are measures on a Sigma-ring
. Then v can be wriltten as v, +v,, where v, <st and v,Qu.
The measure v, is unique. We may arrange to have v,Qy, (or v,Sy,),
and under that requirement v, 1s unique also.

Proof. By the Lebesgue Decomposition Theorem, g can be
written as g, + ft,, where g, < v and £,Sy and £,Sy,. Again by the
Lebesgue Decomposition Theorem, v can be written as v, + v,, where
y, < 1, and v,Sy, and y,Sy,. Notice that y,Sy, since £,Sy, and v, < t,.
We show that v, and v, are the required measures.

Let us show that v, <gp. Of course, v, € ¢ since y, < g, and
s, < p. Since p,Sy, we have #,Sy,. Since Sy, and Sy, we have
1Sy, so that v, <gpu.

Now we show that y,Qu. Since g, < v, + v, and since £,Sy,, we
have 4 < v, [3, page 630]. Since 4, < v, and since v,Sy,, we have
v,Q .

To prove uniqueness of the decomposition, suppose v =y, + y,,
where v, < ¢t and v,Qu. Then p,Sy, by (2) of Theorem 2.4. Since
v, <y, +v, and since vy, Sy, we have vy, <vy,. Similarly, v, <y, so
that v, is unique.

Since v,Sy,, we have v,Qv,. Now suppose v =y, + v, Where
v, <g¢ and p,Qu¢ and vQv,. Then v,Sy, by (4) of Theorem 2.4.
Since v, <y, + v, and since v,Sy,, we have y, <vy,. Similarly, v, <v,,
so that v, is unique in this case.

We have already seen that v <gp if and only if v(4) = 0 when-
ever v,Qur. We now prove the corresponding result for »@Qp.

THEOREM 2.6. vQu if and only if v(A) = 0 whenever v, <g .

Proof. Let M, (.5”) be the family of measures on . which are
strongly recessive with respect to g, and let M,(.S”) be the family
of all measures on . which are quasi-dominant with respect to p.
The desired result follows from Theorem 1.2 and the decomposition
of Theorem 2.5.

As an application of Theorem 2.6 we have the following:

THEOREM 2.7. If (v + M)Qu and v@\, then vQpu.
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Proof. Suppose v, <g#. Then (v + A)Sy, by (2) of Theorem
2.4. Hence, (v, + )\,)Sv,, so that v, <\, by Theorem 2.2. Since
v,Qny,, and v, <g\,, we see that vy, is the zero measure. Hence,
y(A) = 0 so that vQu.

Suppose & is a sigma-ring and 7~ is a sigma-ring containing
<. We say that & is an ideal in 9 if EN Fe.% whenever
Eec 7 and Fe.&”. If & is a sigma-ring, let &4 denote the class
of locally measurable sets; that is, 4 = {E: EN Fe.% whenever
Fe.s”}. The class &4 is a sigma-algebra since it contains X, and
it is the largest sigma-ring having & -as an ideal. . If p¢ is a meas-
ure on & and . is an ideal in -7, define y; on I by m(E)=
sup{t(ENF): Fe &} for all Ee.7. Then p, is an extension of g
to a smallest measure on .7~ [1, Exercise 17.1].

THEOREM 2.8. Suppose the sigma-ring & is an ideal in the
sigma-ring 7 . Suppose, moreover, that p and v are measures on
& and that p, and v, are their respective extemsions to smallest
measures on 7 . Then:

(1) vSy if and only if v,\Spy,. Indeed, given E in 7, there
exists F in &7 such that v(E) = v E N F) and p(F) = 0.

(2) v pif and only if v; < .

(3) vQu if and only if v,Qu;. Indeed, given E in .7, there
exists F in &7 such that v(E) = v(ENF) and pr < v.

(4) v<gpt if and only if v, <st.

Proof. The relationships on 7~ clearly imply the same rela-
tionships on &. It suffices to prove the results which extend rela-
tionships on & to relationships on .7 .

(1) Suppose Ec.7". Theny,(E)=sup{¥(ENF). Fe %}. Hence,
there exists a sequence {£,} in & such that v,(&) = limv(E N E,).
For each n, there exists F, in & such that vENE,) =vENE,NF,)
and p(F,)=0. If F= UF,, then v(ENE, =vENE,NF) for all
n. Hence, v(E) =v(E N F) and pu(F) = 0.

(2) Suppose v < ¢ and suppose £;(E) =0. Then p((ENF) =0
for all F in .%”. Since y< y#, we have vy(EN F) =0 for all F in
& so that v(E) = 0.

(8) The proof is similar to that of (1). If g, < v for all n
and F'= UF,, then p, < v. Then (¢;); < v; by (2), and we use the
fact that (¢): = (#2)s-

(4) This result follows from (1) and (2) and the fact that xSy
and v < p.

3. Convergence of measures. In this section we examine the
extent to which quasi-dominance or strong recessiveness is preserved
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under convergence of measures. QOur notation is as follows: If g,
and g are measures such that p,(4) — u(4) for all Ae.S”, we write
s, — p. If p, and g are measures such that u,(A4) — p(A) for each
Ae.”, where the a’s are members of some directed set, we write
Ye— . If p, < p, whenever m < nlp, < ¢, whenever a < 8], then
we write g, 1 ¢ [resp., #¢.1T#]. An increasingly directed net of
measures always converges to a measure, namely its supremum, but
we have no need of this fact.

THEOREM 3.1. Suppose v,Qu for all n and v,—vY or suppose
vQu for all @ and v, Tv. Then vQu.

Proof. Suppose v, <gp. Since »,Qu for all »n [v,Qu for all aj,
we have v,Sy, for all » [resp., v,Sy, for all a] by (2) of Theorem
2.4. In either case, we have vSy, [3, page 630]. Necessarily, v(4)=0
so that vQu.

We cannot weaken the convergence in Theorem 3.1 to ordinary
convergence of a generalized sequence. That is, there exist meas-
ures v,, v and g such that v, Qg for all @ and v, — v, but it is false
that vQu. Indeed, we can have v <gy even though v is a finite,
nonzero measure and g is a semifinite measure.

Example 3.2. Let X be the set of ordinals less than or equal
to the first uncountable ordinal w,. Let .4 be the set of countable
subsets of X — {w,} or their complements in X. Let p(F) =0 if E
is countable and 1 if E is the complement of a countable set. For
each a < w,, let o (E) =1 if ac K and 0 otherwise. It is easy to
see that p, — p. Let &, be the Borel sets of the unit interval Y,
let » be Lebesgue measure on %%, and let & = &, x.5. If
Y, = P, XN\ and Y = pXN\, then it is clear that v, —v. Now let £ be
counting measure on &%, and let ¢ be the smallest measure on
X S, such that p(AxB) = p(A)k(B) [1, Theorem 39.1 and Ex-
ercise 39.18]. Then v,Sy¢ for all @ and v <gy. Since v is nonzero,
it is false that vQu.

THEOREM 3.3. If (1) »Qu, for all n»,(2) pr,— ¢ and (3) v is
semifinite, then vQpe.

Proof. If v(A) < o, we show that v,Qu. Suppose y(4) < oo.
Since vQp,, there exists F, in & such that v(¥) = v(E N F,), where
(¢)r, € v. We find, inductively, F, in . such that

(i) F, is contained in F,_,,

(ii) v(A)=v(ANF,), and
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(iii) (#)r, < V.
Let F= NF,. Then (#,)r < v for all n, and we have y, < v. Since
V(4) < «, we have y(4) =v(ANF) and v(A — F') = 0. Hence, v,Qu
if ¥(4) < c. Since vy is semifinite, ¥Qu by Theorem 3.1.

It is possible to have measures p,, ¢ and v such that vQpu, for
all @ and such that ¢, 7 ¢ and yet not have vQu. Indeed, we can
arrange to have v be finite, ¢ be semifinite, vSy, for each a and
have v <; ¢ where v is not the zero measure. Choose nonzero meas-
ures v and g such that v <yy, where g is semifinite (and where v
is finite, if desired). The measures {g¢,: #(A) < o} are directed in
the obvious sense and g, 1 p¢. If Ee.$” and p(A) < oo, then v(E)=
y(EE — A) and p(E — A) = 0. Hence, vSy, for each such A.

We now show that the semifiniteness of v cannot be dropped in
the statement of Theorem 3.3. We shall find a nonzero measure v
and an increasing sequence of measures g, such that v is quasi-
dominant with respect to each g, and such that v is not quasi-
dominant with respect to the limit of the g,’s.

Example 3.4. For each positive integer 7, let X, be a copy of
the unit interval, let .7, be the Borel sets of X, let £, be counting
measure on .7 ;, and let \; be Lebesgue measure on .7;. Let Y= x X,
and let .9 =x.7;. Let p, be the smallest product measure of the
form £, X «++ XK, XN, 1, X2+ . If desired, o, can be thought of as
the smallest product of x,x .-+ Xk, and N\, X---. Then p, <;p0,<js
0;<g+++. If p=supp,, then pSp, for all n.

Now let £ and A be counting measure and Lebesgue measure,
respectively, on the Borel sets . of the unit interval X. Let v
be the smallest measure on & x.7  such that y(AxB) = £(A)p(B)
[1, Theorem 39.1 and Exercise 39.18]. Let g, be the smallest meas-
ure on & x.7  such that p,(AxXB) = AMA)p.(B), and let y = sup 4,.
It is easy to see that uSp, for all » (and hence, vQu, for all n),
2. T, and y<gp. Since v =0, it is false that vQpu.

THEOREM 3.5. Suppose v <gsp, for all & and p,—p. If pis
semifinite or of p, T 1, them v <g .

Proof. If v(E) >0, then y,(E) = - for all «&. Hence, u(F) = «
if y(E)>0. If p is semifinite, then v <g;p¢ by Theorem 2.3. On
the other hand, suppose g, 1 z¢. It suffices to show that xSy, but
this is the case since p,Sy for all @ [3, Theorem 3.1].

If v<gp, for all ¢ and g, — g, it does not follow that v <y pu.
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Example 8.6. As in Example 3.2, let X be the set of ordinals
less than or equal to the first uncountable ordinal w,. Let &/, be
the class of countable subsets of X — {w,} or ‘their complements in
X. Let y(E) =0 if E is countable and 1 if E is the complement
of a countable set. For each a < w,, let p,(E) be the number of
points in E which are greater than «. Let g = ocoy. It is easy to
see that v <gp, for all @ and g, — g, but it is false that v < p.
Indeed, vQu in this case.

THEOREM 3.7. If (1) v, <gp for all a, (2) v,— v and (3) ¢ or
v is semifinite, them v <g .

Proof. Since v, <gpt for all a and since vy, — v, it is easy to
see that u(F) = o whenever v(E) > 0. In other words, v is totally
incompatible with g#. By Theorem 2.3, we have v <gp if ¢ is semi-
finite. We will be able to use this part of the theorem to show
that vSy in the case that v is semifinite.

Suppose v is semifinite and suppose ¢, < v. Then (v,), <g . for
all «, and we have (v,), <gv for all @. Since (v,), — v,, we use the
first part of this theorem to assert that v, <gv. Necessarily, v(4)=0
so that p(4) = 0. Hence, xSy and we are done.

If v, <sp for all » and v, Ty, does it follow that v <gu? The
answer is no. Indeed, there exist nonzero measures p, and o such
that o, <spo for all » and such that p,1p. Use the measures p,
and o given in Example 3.4.

4, Atomic and nonatomic measures. A measurable set will
be called an atom for g if it has positive p-measure and does not
contain two disjoint sets of positive p-measure. We say that a
measure is purely atomic if every chunk (measurable set of positive
measure) contains an atom. We say that a measure is monatomic
if it has no atoms. Using these definitions, it is easy to see that a
measure is purely atomic [nonatomic] if an equivalent measure is
purely atomic [resp., nonatomic]. In Theorem 4.2 and Corollary 4.3
we consider some ways in which quasi-dominance plays a role in
the study of purely atomic measures and nonatomic measures.

THEOREM 4.1.

(1) If p is purely atomic, them so is p, for each A in .

(2) If p is monatomic, then so is pt, for each A in .

(8) u is purely atomic if and only if p(A) =0 whenever p,
is momatomic.

(4) p is nonatomic if and only if p(A) =0 whenever (, 1is
purely atomic.
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Proof.

(1) If p (E)>0, then (AN E)>0. Hence, AN E contains a
set F' which is an atom for g. It is easy to see that F' is an atom
for p, also.

(2) If E were an atom for p,, then AN E would be an atom
for p.

(8) and (4). By [4, Theorem 2.1], ¢ can be written as g, + t,,
where g, is purely atomic, g, is nonatomie, Sy, and (,Sp,. The
assertions of (3) and (4) then follow from Theorem 1.2.

THEOREM 4.2. Suppose v < ¢ and vQpu.
(1) If p is purely atomic, then so is v.
(2) If p is nonatomic, then so is v.

Proof. We first notice that v,Qu for all A in & by (8) of
Theorem 2.1. To prove (1), suppose f#, is nonatomic. Since v, < g
and since g is purely atomic, we have uSy, by [4, Theorem 2.3].
In other words, v, <gg¢. Since v,Qu, we have v(4) = 0. Hence, v
is purely atomic by (3) of Theorem 4.1.

To prove (2), suppose vy, is purely atomiec. Since v, < ¢ and
since g is nonatomic, we have xSy, by [4, Theorem 1.6]. In other
words, v, <gg. Since v,Qu, we have v(4) = 0. Hence, v is non-
atomic by (4) of Theorem 4.1.

COROLLARY 4.3. (Cf. [4, Theorem 1.5]). Suppose ¢t =p + N and
VRN,

(1) If p is purely atomic, then so is v.

(2) If p is monatomic, then so is .

Proof. Suppose ¢ =y -+ A and v@Qr. Of course, vQv so that
vQ® + A). That is, vQu. Then since v < g, the conclusions follow
from Theorem 4.2.

5. Quasi-dominance and the Radon-Nikodym theorem. If f
is a real-valued function on X, we say that f is locally measurable
if the inverse image of each Borel set is a locally measurable set.
Equivalently, f is locally measurable if and only if {x:f(x) >a} N F
is in &7 for all real numbers a and all F in &,

THEOREM 5.1. Suppose there exists a momnegative locally meas-
urable function f such that v(H) = S S dp for all E in 7. Then
E
vy < poand vQpu.

Proof. It is evident and well-known that v< g. Now let
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F={x:f(x)>0}. It is easy to see that v(F — F)=0 so that
VE)=vENF) for all E€.%”. We show that p, < v. If »(@) =0,

then 0 = S fdp= S f dp. Since f(x) >0 for all z in FNG, we
G NG
have 0 = (F N G) = px(G). Hence, vQpu.

THEOREM 5.2. Suppose v is finite, ¢ 1is semifinite, v < tt and
vQu. Then there exists a nonmegative measurable function f such

that wE) = | 7 dp for all B in 5.

Proof. Since v is finite, we can find a set E, in S such that
v(E,) = v(E) for all EF in &”. Since vQu, there exists F' in % such
that v(&,) = v(E,N F) and p, < v. Since y is finite and p, is semi-
finite, it is easy to see that p, is sigma-finite. By the usual Radon-
Nikodym theorem, there is a nonnegative measurable function f such

that v(F) = S f dp for all measurable sets F contained in F. If we
E

let f be zero on the complement of F, then it is clear that w(H)=

g fdg for all B in &.

E

If v bas a Radon-Nikodym derivative with respect to g, then v
enjoys a strong form of quasi-dominance in that the set F' does not
depend on E and that v(H) = v(EN F) can be replaced by v(E — F) =0
for all E in &. It is easy to see that if v is finite and vQ, then
v enjoys this strong form of quasi-dominance with respect to p. We
might ask if a Radon-Nikodym derivative exists for semifinite
measures in the presence of absolute continuity and strong quasi-
dominance, and the answer is no. Indeed, even if g and v are
equivalent semifinite measures, a standard example shows that it
may be impossible to find a nonnegative function f such that X,f is

measurable and y(E) = g fdp whenever p(E) < . (It can be seen
E

that two equivalent semifinite measures have the same sets of sigma-
finite measure. Consequently, the Radon-Nikodym theorem holds for

such measures if Y(H) = S fdp whenever p(E) < o [5, Theorem 3.1).)
E

Example 5.3. [Cf 2, Exercise 31.9]. Let A and B be uncount-
able sets such that card A <card B. Let X=A4AxB. A set
{(a, b): @ = a,} is a vertical line and {(a, b): b = b,} is a horizontal line.
Let & be the smallest sigma-algebra containing vertical lines, hori-
zontal lines and countable sets. Let (&) be the number of hori-
zontal lines L such that L — E is countable, and let B(E) be the
number of vertical lines L such that L — E is countable. Let
p=a+ pBand yv=a+ 268. Then v< ¢ and v is strongly quasi-
dominant over g since g < y. Although g and v are semifinite, it
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can be seen that no function f exists such that y(E) = S fap for all
E
E in &7 such that p(F) < .

THEOREM 5.4. Suppose v is a degenerate measure such that
v p. Suppose, moreover, that there exists a locally measurable
set F' such that v(E — F) =0 for all E in & and such that p, < v.

If f= coXp, then W(E) = S fdg for all B in <.
E

Proof. Suppose Ee.&”. We wish to show that y(&) = S fdu.
E
It is easy to see that v(E) = v(E N F') and that S fdp = o (BN F).
E

If y(E) =0, then (BN F) = so that p(ENF)>0and copu(EN F) = co.
If v(E) =0, then p,(E) =0 so that ((ENF) =0 and o p(ENF)=0.

We now look at the Radon-Nikodym theorem from a slightly
different point of view. In keeping with [5, page 395], we say
that v is compatible with ¢ if 0 <y(E) < o implies there exists F
in & such that W (EN F)>0 and p(F)< . Let us say that v is
strongly compatible with p if v(E)>0 implies there exists F in &
such that y(EN F)>0 and p(F) < . For example, v is strongly
compatible with 2 whenever vSu. Of course, if v is strongly com-
patible with g, then v is compatible with g If v is (strongly)
compatible with f, then clearly v, is (strongly) compatible with g
or ft,.

Recall that v is totally incompatible with g if ((E) = « when-
ever v(E)>0. If y is compatible with ¢ and if v is totally incom-
patible with g, then it is easy to see that v is degenerate (i.e., has
a subset of {0, o} for its range). A degenerate measure is clearly
compatible with any measure.

THEOREM 5.5. If v is strongly compatible with e, then vQge.

Proof. Suppose v, <gp. We want to show v(4) = 0. Suppose,
to the contrary, that v(4) > 0. Then there exists F' in .5 such that
V(AN F)>0and u(F) < 0. In other words v, (F') >0 and p(F) <eoo,
which is impossible since v, is totally incompatible with g by
Theorem 2.2.

THEOREM 5.6. If v is semifinite and v is compatible with (e,
then v is strongly compatible with p. Hence, vQp in this case.

Proof. The result follows immediately from the definitions.

If vQpu, it does not follow that vy is even compatible with g.



130 ROY A. JOHNSON

For example, let v be Lebesgue measure on the Borel sets of [0, 1]
and let ¢ be v. However, we have the following result if g is
semifinite:

THEOREM 5.7. If vQu and p is semifinite, then v 1is strongly
compatible with (.

Proof. Suppose 0 < v(E). Since vQp, there exists F in & such
that v(E) =v(ENF) and g, <v. If p(ENF)<e, we are done.
Otherwise, there exists a measurable set G contained in N F such
that 0 < p(G) < . Since p.(G@) >0, we have ¥(G) > 0, so that v is
strongly compatible with .

We may combine Theorems 5.5, 5.6 and 5.7 as follows:

COROLLARY 5.8. Suppose p and v are semifinite. Then the
Jollowing are equivalent:

(1) v is compatible with p.

(2) v is strongly compatible with .

(3) v is quasit-dominant with respect to p.

If f is a real-valued function on X, let us say that f is g-meas-
urable if {x: f(x) >a}N F is in & for all real numbers o and all
measurable F' such that p(F') < . Let .&4, = {E: EN Fe.%” when-
ever Fe % and p(F)< «}. Define py,, on .%; by p,(E)=sup
{(F): Fe.” and FCE and p#(F') < «} for all £ in &, If pis
semifinite, it is easy to see that y,, is an extension of ¢ to a small-
est measure on .54, [cf. 1, Exercise 17.1]. We shall use these ideas
in our next theorem, which is a variation of Theorem 5.1.

THEOREM 5.9. (Cf. [5, Theorem 2.1].) Suppose p 1is semi-
finite and suppose there exists a monnegative pu-measurable function

f such that v(&) = S fdp,, for all E in 7. Then v < p and vQpu.
E

Proof. It is easy to see that vy < . We show that vy is strongly
compatible with p¢. Suppose 0 < vy(E), and let A = {x: f(x) > 0}.
Since y(E) >0, it follows that pg.,,(AN E)>0. Hence, there exists
F in & such that F is a subset of ANE and 0 < p(F) < . Since
f is positive on F and since p(F') >0, we have v(F) > 0. Hence, v
is strongly compatible with respect to g, and we have vQu by
Theorem 5.5.

If desired, an alternate proof of Theorem 5.2 is possible. Since
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L is semifinite and since yQu, we have v is compatible with g by
Theorem 5.7. Then the existence of the Radon-Nikodym derivative
follows from [5, Theorem 2.2].

6. Largest product measures. Suppose p and v are semifinite
measures on sigma-rings & and .9, respectively. We say that a
measure 0 on X7 is a product of g with v if p(AXB)=
H(A)v(B) whenever Ac.%” and Be.9". More than one product of
t with v may exist. Nevertheless, there is always a largest pro-
duct of ¢ with v given by outer measure extension [7, page 265].

In order to see something of the role quasi-dominance and strong
recessiveness can play in the study of largest product measures,
we state some results without proof. In Theorem 6.2 we see that
things work out well if y is quasi-dominant or strongly recessive
with respect to v'.

THEOREM 6.1. Suppose

(1) p and tf are semifinite measures on the sigma-ring &,

(2) yand vV are semifinite measures on the sigma-ring .7
and vy <Y,

(3) p is the largest product of p with v, and

(4) o 1is the largest product of p' with V. _

Then o can be written as the sum of measures P, and O, such
that 0, < 0" and 0,S0’, where 0, is a product of some measure
with v and p, is a product of some measure M, with v.

THEOREM 6.2. Assume the hypotheses of Theorem 6.1, and sup-
pose, im addition, that v is quasi-dominant with respect to V' or
that v is strongly recessive with respect to V. Then the measure p,
of Theorem 6.1 can be taken to be the largest product of some
measure p, with v.

In general, the measure p, of Theorem 6.1 cannot be expressed
as the largest product of g, with y. For example, let & be the
Borel sets of the unit interval and let .7~ be the Borel sets of the
product of the unit interval with the two-point set {0, 1}. Define
prand ¢ on & by = and g =\, where £ is counting measure
and )\ is Lebesgue measure. Define v and v on .9~ by

v(B) = M{y: (¥, 0)e BY) + AM{y: (y, ) e B})
and

V(B) = M{y: (¥, 0)e BY) + £({y: (y, L) e B}) .
Let o be the largest product of g with v, and let o’ be the largest
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product of ¢ with . By Theorem 6.1, we may write 0 as a sum
of product measures p, and o, such that o, < 0’ and p,Se’. It can
be seen that

o.({(x, (¥, 0)): 2 =9}) =0
and
o.({(x, (¥, ):x =y}) = oo

If p, could be expressed as the largest product of some measure t
with vy, we would have the impossible conclusion that

tXM{@, y):x=9}) =0
and
X M{(@, y): 2 =y} = oo,

where g, X\ is the largest product of g, and ) in each case.

We close by stating a theorem with the same hypotheses as
Theorem 6.1 but with a conclusion that uses Theorem 2.5 to de-
compose vy with respect to v'.

THEOREM 6.3. Assume the hypotheses of Theorem 6.1. Then p
can be writlen as the sum of measures p, 0, and 0, such that
0+ 0. K 0 and p,Sp', where ofp,] is the largest product of some p,
with v, [resp., some p, with v,] and 0, 1s a product of some p, with
Y.
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