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SOME RELATIONSHIPS BETWEEN MEASURES

ROY A. JOHNSON

Suppose μ and v are (nonnegative, countably additive)
measures on the same sigma-ring. We say that v is quasi-
dominant with respect to μ if each measurable set contains
a subset with the same y-measure, where μ is absolutely
continuous with respect to v on that subset. In particular,
v is quasi-dominant with respect to μ if μ is sigma-finite.
We say that v is strongly recessive with respect to μ if the
zero measure is the only measure that is quasi-dominant
with respect to μ and less than or equal to v. Properties
of these relationships are investigated, and applications are
given to purely atomic measures, to the Radon-Nikodym
theorem and to a decomposition of product measures.

1* Weak singularity and absolute continuity* Let μ and V
be (nonnegative, countably additive) measures on a sigma-ring Sf.
Recall that v is absolutely continuous with respect to μ, denoted
v < μ, if v{E) = 0 whenever μ(E) = 0. If v < μ and μ < v, then μ
and v are said to be equivalent and we write μ~v. We say that v
is weakly singular with respect to μ, denoted vSμ, if given E in
S?, there exists F in &> such that v(E) = v{E Π F) and μ{F) = 0.

We shall make use of the following form of the Lebesgue De-
composition Theorem [3, Theorem 2.1 or 6, Theorem 1.1]:

THEOREM 1.1. {Lebesgue Decomposition Theorem). Suppose μ
and v are measures on a sigma-ring Sf. Then there exist measures
vt and v2 such that (1) v = vι + v2, (2) v^μ and (3) v2Sμ. The meas-
ure v2 is unique. We may arrange to have vβv2, and under that
requirement vx is unique also.

If v is a measure on £f and A e S^} let vA be the measure
given by vA{E) = v(Λfl E) for all

THEOREM 1.2. Suppose M^Sf) and M2(S^) are families of
measures on S^ such that the zero measure is the only measure
common to both families and such that vA is in one of the families
whenever v is in that family and A e £f. Suppose, moreover, that
each measure v on & can be written as the sum of measures vx

and v2 such that v1eMι(S') and v2eM2(S^) and vβv2. Then ve
if and only if v(A) = 0 whenever vA

Proof. Suppose veM2{^). Then vAeM2(S^) for all 4 e y . If
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then vA = 0 so that v(A) = 0.
Suppose y(A) = 0 whenever i^eMΊG^). In order to show that

y e t f 2 ( y ) , it suffices to show that v,(E) = 0 for all E in ^ . Sup-
pose, then, that EeS^. Since vxSv2, there exists F in S* such that
vλ{E) = vx(E n i*7) and V2(JP) = 0. Necessarily, vF = OΛ)^. Since
(vJ^eΛf^^), we have ^ 6 ^ ) so that v{F) = 0 by hypothesis.
Then v,(E) = 1̂ (2? n ί 7 ) ^ K-F7) = 0, and we are done.

The following results follow from the definitions or from
Theorems 1.1 and 1.2:

(1) If vSμ, then vASμ for all i e ^ .
(2) vASμ if and only if vASμA if and only if vSμA.
(3) If v < /*, then ^ < μ.
( 4 ) vA < μ if and only if j ^ < μ .̂
(5) vSμ if and only if v(A) = 0 whenever vA < /̂ .
(6) v < μ if and only if y(A) — 0 whenever vASμ.
The relationships of absolute continuity and weak singularity

between measures are determined by the null sets of the measures.
That is, suppose μι ~ μ2 and v1 ~ v2. Then vt < μ1 if and only if
v2 < μ2, and vβμ^ if and only if vβμz. We prove the nontrivial part
of these assertions.

THEOREM 1.3. If XSμ and λ ~ v, then vSμ.

Proof. Suppose vA < μ. It suffices to show that v(A) = 0.
Since XSμ, there exists F in £f such that λ(A) — λ(A (Ί JP) and
μ(F) = 0. Of course, ^ ( F ) = 0. Then since v(Af)F) = 0, we have
λ(A) - λ(A n F) = 0. Hence, y(A) = 0.

If ^ is a measure, then ooμ will denote that (necessarily equi-
valent) measure which is °o when μ is positive and 0 when μ is 0.
Of course, μί — μ2 if and only if 0 0 ^ = 00 μ2. In view of Theorem
1.3 and the preceding remarks, v < μ if and only if coy < ooμ, while
vSμ if and only if coySeoμ.

2. Quasi"dominance and strong recessiveness* We shall say
that v is quasi-dominant with respect to μ, denoted vQμ, if given
E in S^, there exists F in ^ such that vCE7) = v(EΓ\F) and /^<y.
It is evident that vQμ if J S/̂  or μ < v.

THEOREM 2.1.

(1) If vQX and μ < λ, then vQμ.
( 2 ) // vQμ and μSv, then vSμ.
(3a) // vtQμ and v%Qμ, then (vx + vz)Qμ.
(3b) If vQμx and vQμ2, then vQ(μt + μ2).
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(4) If vQμ, then μ can be written as the sum of ft and μ2,
where ft < y and vSμ2. We may arrange to have μβv and ftSft,
and under those conditions ft and μ2 are unique.

( 5 ) If XQμ and X ~ v, then vQμ.
(6a) If v^Qμ and v2Qμ, then (vx V v2)Qμ.
(6b) // vQμt and vQμ2, then vQ(μt V μ2).
(7) If μ is sigma-finite, then vQμ for any measure v on &'.
(8) // vQμ, then vAQμ for all i e y .

Proof.
(1) Follows from definition of quasi-dominance.
(2) Given Ee Sf, there exists Fe &* such that v{E) = v(EΓ\ F)

and μF < v. Since μSv and; μF < v, it follows that v(E{\F) — 0. In
other words, vSμ.

(3a) Suppose EeS^. Then there exist F1 and F2 in 3f such
that vlE) = vλ{E Π Fx) and V2{E) = V2(E Π Fa)> where μFχ < ^ and
^ 2 < v2. If JP = JPX U i^, then it can be seen that (vx + V2)(E) =
(v, + V2)(E n F) and μF < v, + v2.

(3b) Suppose EeS^. Since vQ^; there exists Fx in ^ such
that v{E) = y(£? Π JF\) and (/sj^ < v. Since vQμ21 there exists F 2 in
SS such that v(^Π JF\) - v((En FJ Π ί7,) and (μ2)Fz < v. If F = F, n F2,
then i (JE) = V(J& Π JP) and (ft + ft),, < v.

(4) By the Lebesgue Decomposition Theorem, μ can be written
as the sum of μx and μ2, where ft < v and μ2Sk and ftSft. Since
vQft by (1) and since μβv, we have vSμ2 by (2). Uniqueness under
the added conditions amounts to the uniqueness of the Lebesgue
Decomposition Theorem for the case ftSft.

( 5 ) By (4), μ = ft + ft, where ft < λ and λSft. Since λ ~ v,
we have ft < v and ySft. Then vQμ by (3b).

(6a) Since (vt V v2) ^ (^ + v2), the result follows from (3a) and
(5).

(6b) Since (ft V ft) ~ (ft + ft), the result follows from (3b) and
(1).

(7) By the Lebesgue Decomposition Theorem, μ — ft + ft,
where ft < v and ftSv. Since ft is sigma-finite, vS ft [3, Theorem
3.2]. Then vQμ by (3b).

(8) Fix AeS^ and suppose Ee<9*. Since i Qft there exists
FzSS such that V (̂J&) = v(A Π E) = v((A Π E) Π F) and such that
μF < v. Necessarily, ^ n F < vA. Hence, (̂JS?) = vA(E Π (A Π ί7)) and

< vΛf so that v^Q^.

We say that v is strongly recessive with respect to μ9 denoted
v<sμ, if λ» is the zero measure whenever X^v and XQμ. Clearly,
vQμ and v <sμ if and only if v is the zero measure.
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THEOREM 2.2. The following are equivalent:
(1) ί / i e y and vAQμ, then v(A) = 0.
(2) If X<*v and XQμ, then X = 0.
( 3 ) If X<Cv and XQμ, then X = 0.
(4 ) JUSI; αwd v <C μ-

( 5 ) μSu αraϊ v <^ μ.
( 6 ) (μ + j;)Sk.
( 7 ) μ£k cmd y(A) = 0 whenever μ(A) < co.

Proof.
(1) implies (7): Suppose μA < v. Assuming (1), we first show

that μSv by showing that μ{A) = 0. Since μA < i^, we have vAQμA

so that i^Q/i. Assuming (1), we have v{A) = 0 so that μ(A) — 0.
Hence, μSv. Now suppose μ(A)< ©o. Assuming (1), we show that
v(A) — 0. We already know that μSv, so that μΛSv. Since ^ is
finite, we have vSμA [3, Theorem 3.2] so that vΛSμ. Hence, vAQμ
and assuming (1), we have v(A) = 0 as was to be shown.

(7) implies (6): Since v(A) = 0 whenever μ(A)<oof we have
μ = ̂  + v. Hence, (^ + p)Sv.

(6) implies (5): Clearly, v <Z μ + v. It suffices to show that
μ = μ + v. Suppose EeS^. Since (μ + v)Sv, there exists F in £f
such that (]« + v)(£) = (iM+v)(ίίnί') and v(F) = 0. Hence,
(JM + v)(E ΓlF) = μ(E n f ) g μ{E) so that (// + v)(E) =

(4) implies (3): Suppose μ£k> and v < μ. Suppose, moreover,
that λ < v and λQμ. It suffices to show that X = 0. Since μSί> and
λ < v, we have μSλ. Since /̂ Sλ and XQμ, we have λS^ by (2) of
Theorem 2.1. Since XSμ and since λ < v, we have X — 0.

Clearly, (5) implies (4), (3) implies (2) and (2) implies (1).

We shall see that the second condition in (7) of Theorem 2.2 is
enough to insure that v<sμ whenever μ enjoys the property of
semifiniteness. We say that μ is semi finite (or locally finite) if it
satisfies any of the following equivalent conditions [1, Exercise 25.9
or 9, Theorem 8.3]: (1) If Ee<9*, then μ{E) = sup{μ(#n F):
μ(F) < oo}. (2) Every measurable set of positive measure contains
a measurable set of finite positive measure. (3) Every measurable
set E contains a measurable set F such that F has sigma-finite
/i-measure and μ(E) = μ(F). A measure is called degenerate if the
only values taken on by the measure are 0 and ©o.

Following [5, page 396], we shall say that v is totally incom-
patible with μ if v(E)>0 implies μ(E) = oo. Equivalently, v is
totally incompatible with μ if μ + v = μ. In view of Theorem 2.2,
v is totally incompatible with μ whenever v<sμ. If v is totally
incompatible with μ, then clearly v < μ. If v < μ and μ is degene-
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rate, then v is totally incompatible with μ.

THEOREM 2.3. // v is totally incompatible with μ and μ is
semifinite, then v<sμ.

Proof. Evidently, v < μ and it suffices to show that μSv. Given
E in S^, by virtue of the semifiniteness of μ there exists F in Sf
such that μ(E) = μ(Ef] F) and such that μ{F) is sigma-finite. Since
v is totally incompatible with μ and since μ(F) is sigma-finite, we
have v{F) = 0.

THEOREM 2.4.

(la) If v < X and X <s/*, then v <sμ*
(lb) If v<sX and X < μ, ίλew y <sμ.
(2) // vQμ and X <sμ> then vSX.
(3a) Ifv<s(μ + X) and vQX, then v <sμ. Hence, ifv<s(μ + X)

and vSX, then v<sμ.
(3b) If (v + X)Qμ and X<sμ, then vQμ.
(4) // (i) v<sμ, (ϋ) vQX and (iii) XQμ, then vSX.
(5) If V!<sμ and v2 <sμ, then vx + v2 <sμ
(6) If v<sμ, then vA<sμA for all A in S^.

Proof.
(la) Since X<sμ, we have μSx and X < μ by Theorem 2.2.

Since v < λ, we have μSv and v μ. Hence, v <sμ by Theorem 2.2.
(lb) Suppose i e ^ and ϊ^Qμ. Since X < μ, we have i^Qλ.

Since v<^λ and since vAQx, we have v(A) = 0. Therefore, v<sμ
by Theorem 2.2.

(2) Suppose vA < λ. It suffices to show that v{A) = 0. Since
X <sμ, we have vA <sμ by (la) of this theorem. By (8) of Theorem
2.1, we have vAQμ. Hence, vA = 0 and v{A) = 0.

(3a) Suppose AeS^ and v^Q/i. It suffices to show that v(A) = 0.
Since vQλ, we have vAQx by (8) of Theorem 2.1. Then vAQ{μ + λ),
so that v{A) = 0 by Theorem 2.2.

(3b) {vJrX)Sx by (2) of this theorem. Hence, X<sv and
v + x = i; by Theorem 2.2.

(4) Since XQμ and v <sμ, we have λ&> by (2) of this theorem.
Since vQX and xSv, we have vSλ by (2) of Theorem 2.1.

(5) and (6) follow immediately from Theorem 2.2.

For reference and for comparison, we restate the Lebesgue De-
composition Theorem (Theorem 1.1). In stating this theorem, we
may replace the requirement that vxSv% by vλQv2 because of (2) in
Theorem 2.1 and the fact that vSv^ We then prove an analogous
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decomposition theorem involving strong recessiveness and quasi-
dominance.

Lebesgue Decomposition Theorem. Suppose μ and v are meas-
ures on a sigma-ring S^. Then v can be written as v1 + v2, where
v1 < μ and v2Sμ. Necessarily, v2 is unique. We may arrange to have
vλQv2 (or v1Sv2)9 a n ( i i n that case vx is unique also.

THEOREM 2.5. Suppose μ and v are measures on a sigma-ring
£f. Then v can he written as vt + v2, where V1<sμ and v2Qμ.
The measure v2 is unique. We may arrange to have vλQv2 (or Vi<Sv2),
and under that requirement vί is unique also.

Proof. By the Lebesgue Decomposition Theorem, μ can be
written as μ1 + μ2, where μλ<Cv and μβv and μβμ2. Again by the
Lebesgue Decomposition Theorem, v can be written as v1 + v2, where
vx < μ2 and vβμ2 and vβv2. Notice that μ1Sv1 since μ$μ2 and vγ < μ2.
We show that v1 and v2 are the required measures.

Let us show that vλ<sμ. Of course, v^μ since vL < μ2 and
μ2 ^ μ. Since μβv, we have μβv^ Since μ1Sv1 and μ2Sv19 we have
μSvx so that v^<sμ.

Now we show that v2Qμ. Since μ1 < Vj. + y2 and since μβvif we
have /*! < y2 [3, page 630]. Since μ1 < v2 and since v2Sμ2y we have

To prove uniqueness of the decomposition, suppose v — v3 + v4,
where vz<sμ and V4Q//. Then ^ S ^ by (2) of Theorem 2.4. Since
v4^vt + v2 and since ^ S ^ , we have v4 ^ v2. Similarly, v2 ^ v4, so
that v2 is unique.

Since vβv29 we have ViQv2. Now suppose v — v3 + v2, where
Vz<sf* and v2Q^ and P3QV2. Then p3Sv2 by (4) of Theorem 2.4.
Since vz <; vx + v2 and since vβv2, we have v3 <Ξ vlβ Similarly, Vi ^ ^
so that vL is unique in this case.

We have already seen that v <sμ if and only if v(A) — 0 when-
ever vAQμ. We now prove the corresponding result for vQμ.

THEOREM 2.6. vQμ if and only if v{A) — 0 whenever vA<sμ.

Proof. Let MJ^S^) be the family of measures on S* which are
strongly recessive with respect to μ, and let M2{6^) be the family
of all measures on S^ which are quasi-dominant with respect to μ.
The desired result follows from Theorem 1.2 and the decomposition
of Theorem 2.5.

As an application of Theorem 2.6 we have the following:

THEOREM 2.7. // (v + X)Qμ and vQX, then vQμ.
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Proof. Suppose vA<sμ. Then (v + X)SvA by (2) of Theorem
2.4. Hence, (vA + XA)SvA, so that vA<sXA by Theorem 2.2. Since
vAQxA, and vA<sXA9 we see that vA is the zero measure. Hence,
v{A) = 0 so that vQμ.

Suppose y is a sigma-ring and Jf is a sigma-ring containing
S*. We say that ^ is an ideal in ^ if Ef)FeS* whenever
Ee^~ and FeS^. If ^ is a sigma-ring, let Si denote the class
of locally measurable sets; that is, Si = {E: E f] Fe S* whenever
FeS*}. The class Si is a sigma-algebra since it contains X, and
it is the largest sigma-ring having S* as an ideal. If μ is a meas-
ure on S* and S* is an ideal in ^ , define μλ on ^ " by μx(E) =
supί^^Πi 7 7): i^e ̂ } for all Ee^~. Then ^ is an extension of μ
to a smallest measure on J7~ [1, Exercise 17.1].

THEOREM 2.8. Suppose the sigma-ring S^ is an ideal in the
sigma-ring J^"". Suppose, moreover, that μ and v are measures on
S* and that μx and vλ are their respective extensions to smallest
measures on J7~. Then:

(1) vSμ if and only if vλSμλ. Indeed, given E in Jf, there
exists F in S^ such that vλ(E) = v{E Π F) and μ{F) = 0.

( 2 ) v <• μ if and only if vλ < μλ.
(3) vQμ if and only if vλQμλ. Indeed, given E in J^~, there

exists F in S^ such that vλ(E) = v{E Π F) and μF < v.
(4 ) v<sμ if and only if vλ <sμx-

Proof. The relationships on j?~ clearly imply the same rela-
tionships on S". It suffices to prove the results which extend rela-
tionships on S* to relationships on J^~.

(1) Suppose Ee^~. Then vλ(E) = suv{v(E ΠF): FeS*}. Hence,
there exists a sequence {En} in S* such that vx{E) = \imv{EΓ\ En).
For each n, there exists Fn in S^ such that v(Ef)En)= v(EnEnΓ\Fn)
and μ(Fn) = 0. If F = ΌFn, then v(E f] En) = v(E Γ\ En n F) for all
n. Hence, v ^ ) = v(J57π F) and ̂ (F) = 0.

(2) Suppose v < μ and suppose ^(i£) = 0. Then μ(E Π F) = 0
for all JP in ^ . Since v < ^, we have i;(JS? n F) = 0 for all JP in
^ so that v̂ (JEr) = 0.

(3) The proof is similar to that of (1). If μFn<tv for all n
and F = U-F», then μF < v. Then (μF)λ < ̂  by (2), and we use the
fact that (μF)λ = (^)^.

(4) This result follows from (1) and (2) and the fact that μSv
and v < μ.

3* Convergence of measures* In this section we examine the
extent to which quasi-dominance or strong recessiveness is preserved
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under convergence of measures. Our notation is as follows: If μn

and μ are measures such that μn(A) -> μ(A) for all A e <$*, we write
μ% —> μ. If μa and μ are measures such that μa(A) -» μ(A) for each
A 6 <5̂ , where the a's are members of some directed set, we write
μa —> μ. If μm ^ jtίΛ whenever m^,n[μa<^ μβ whenever a^ β], then
we write μn] μ [resp., μa t jεφ An increasingly directed net of
measures always converges to a measure, namely its supremum, but
we have no need of this fact.

THEOREM 3.1. Suppose vnQμ for all n and vn-±v or suppose
VaQμ for all a and va \ v. Then vQμ.

Proof. Suppose vA<sμ. Since vnQμ for all n [vaQμ for all a],
we have vnSvA for all n [resp., vaSvA for all a] by (2) of Theorem
2.4. In either case, we have vSvA [3, page 630]. Necessarily, v(A) = 0
so that vQμ.

We cannot weaken the convergence in Theorem 3.1 to ordinary
convergence of a generalized sequence. That is, there exist meas-
ures va, v and μ such that vaQμ for all a and va —> v, but it is false
that vQμ. Indeed, we can have v<sμ even though v is a finite,
nonzero measure and μ is a semifinite measure.

Example 3.2. Let X be the set of ordinals less than or equal
to the first uncountable ordinal α>x Let ^ be the set of countable
subsets of X — {ω^ί or their complements in X. Let p(E) = 0 if E
is countable and 1 if E is the complement of a countable set. For
each a < ω19 let pJJE) — 1 if aeE and 0 otherwise. It is easy to
see that pa -»p. Let S^z be the Borel sets of the unit interval Y,
let λ be Lebesgue measure on ^ 2 , and let &* — ̂  x Sf%. If
vΛ = jθαxλ and v = /)χλ, then it is clear that vα-> v. Now let /c be
counting measure on ̂ 2 , and let μ be the smallest measure on
SfxxSΊ such that μ(AxJ8) = ρ(A)fc(B) [1, Theorem 39.1 and Ex-
ercise 39.18]. Then vaSμ for all a and v<sμ- Since y is nonzero,
it is false that vQμ.

THEOREM 3.3. // (1) vQμn for all n, (2) μn -> μ and (3) v is
semifinite, then vQμ.

Proof. If v(A) < oo, we show that vΛQμ. Suppose v(A) < ^.
Since vQμί9 there exists F± in ^ such that v(JE) = v{E^F^), where

*Ί. < y W e fin(i, inductively, F% in ^ such that
( i ) Fn is contained in i^_i,
(ii) p(4) = v{A n F J , and
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(iii) (μn)Fn < v.
Let F = Π Fn. Then (μn)F < v for all n, and we have ^ < v. Since
v(A) < oo, we have v{A) = vίif l ί 7 ) and y(A — i*7) = 0. Hence, vAQμ
if v(A) < oo. Since v is semifinite, vQμ by Theorem 3.1.

It is possible to have measures μa, μ and v such that ι>Qμa for
all α: and such that μa ΐ μ and yet not have vQμ. Indeed, we can
arrange to have v be finite, μ be semifinite, vSμa for each a and
have v<sμ where v is not the zero measure. Choose nonzero meas-
ures v and μ such that v<sμ, where μ is semifinite (and where v
is finite, if desired). The measures {μA: μ{A) < oo} are directed in
the obvious sense and μA | μ. If EeS^ and μ(A) < oo, then v(E) =
v(E — A) and ^(2? — A) = 0. Hence, i>Sμ4 for each such A.

We now show that the semifiniteness of v cannot be dropped in
the statement of Theorem 3.3. We shall find a nonzero measure v
and an increasing sequence of measures μn such that v is quasi-
dominant with respect to each μn and such that v is not quasi-
dominant with respect to the limit of the μn's.

Example 3.4. For each positive integer i, let X{ be a copy of
the unit interval, let ^ i be the Borel sets of Xif let κt be counting
measure on ^~it and let λ« be Lebesgue measure on ^ 7 . Let Y== x Xt

and let ^ — x ^ 7 Let pn be the smallest product measure of the
form κ,x x x κn x Xn+1 x . If desired, pn can be thought of as
the smallest product of ^ X XΛ;, and λH+1 x . Then Pi<sP2<s
pz<s-- * Ίί p = sup|θn, then ^ S ^ for all ^.

Now let K and λ be counting measure and Lebesgue measure,
respectively, on the Borel sets £f of the unit interval X Let v
be the smallest measure on Sf x ^ such that v{A x5) = tc(A)p(B)
[1, Theorem 39.1 and Exercise 39.18]. Let μΛ be the smallest meas-
ure on £Sχ^ such that μn(AxB) = λ(A)^(J5), and let /̂  = supμΛ.
It is easy to see that vSμn for all n (and hence, vQμw for all n),
μn] μ9 and v<sμ. Since y ^ 0, it is false that vQμ.

THEOREM 3.5. Suppose v<sμa for all a and μa—>μ. If μ is
semifinite or if μa t /£» then v <sμ.

Proof. If v(E) > 0, then μa(E) = oo for all a. Hence, /*(#) = oo
if v(E) > 0. If μ is semifinite, then v<sμ by Theorem 2.3. On
the other hand, suppose μa | μ. It suίfices to show that μSv, but
this is the case since μaSv for all a [3, Theorem 3.1].

If v <sμa for all a and μα—> μf it does not follow that v <sμ.
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Example 3.6. As in Example 3.2, let X be the set of ordinals
less than or equal to the first uncountable ordinal ω19 Let SΊ be
the class of countable subsets of X — {ω^ or their complements in
X. Let v(E) — 0 if E is countable and 1 if E is the complement
of a countable set. For each a < colf let μa(E) be the number of
points in E which are greater than a. Let μ = ooy. It is easy to
see that v<sμa for all a and μa—> μ9 but it is false that v<sμ.
Indeed, vQμ in this case.

THEOREM 3.7. // (1) va<sμ for all a, (2) va-*v and (3) μ or
v is semi finite, then v<Csμ

Proof. Since va<sμ for all a and since va—>v, it is easy to
see that μ(E) = °° whenever v(E) > 0. In other words, v is totally
incompatible with μ. By Theorem 2.3, we have v<sμ if μ is semi-
finite. We will be able to use this part of the theorem to show
that vSμ in the case that v is semifinite.

Suppose v is semifinite and suppose μA < v. Then (va)Λ <sμA for
all a, and we have (va)A <sv for all a. Since (vβ)4—>^, we use the
first part of this theorem to assert that vA <sv. Necessarily, v(A)~0
so that μ(A) — 0. Hence, μSv and we are done.

If K<sμ for all n and vn | y, does it follow that v <sμ
(l The

answer is no. Indeed, there exist nonzero measures pn and p such
that pn<sp for all n and such that ρn] p. Use the measures pn

and <o given in Example 3.4.

4* Atomic and nonatomic measures* A measurable set will
be called an atom for μ if it has positive ^-measure and does not
contain two disjoint sets of positive /i-measure. We say that a
measure is purely atomic if every chunk (measurable set of positive
measure) contains an atom. We say that a measure is nonatomic
if it has no atoms. Using these definitions, it is easy to see that a
measure is purely atomic [nonatomic] if an equivalent measure is
purely atomic [resp., nonatomic]. In Theorem 4.2 and Corollary 4.3
we consider some ways in which quasi-dominance plays a role in
the study of purely atomic measures and nonatomic measures.

THEOREM 4.1.

(1) If μ is purely atomic, then so is μA for each A in £f.
(2) If μ is nonatomic, then so is μA for each A in £f.
(3) μ is purely atomic if and only if μ{A) — 0 whenever μΛ

is nonatomic.
(4) μ is nonatomic if and only if μ{A) = 0 whenever μA is

purely atomic.
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Proof.
(1) If μA{E) > 0, then μ(A Γ) E) > 0. Hence, An E contains a

set F which is an atom for μ. It is easy to see that F is an atom
for μA also.

(2) If E were an atom for μA, then Af] E would be an atom
for μ.

(3) and (4). By [4, Theorem 2.1], μ can be written as μx + μz,
where μt is purely atomic, μ2 is nonatomic, μSμ2 and μ2Sμι. The
assertions of (3) and (4) then follow from Theorem 1.2.

THEOREM 4.2. Suppose v < μ and vQμ.
(1) If μ is purely atomic, then so is v.
(2) If μ is nonatomic, then so is v.

Proof. We first notice that vAQμ for all A in Sf by (8) of
Theorem 2.1. To prove (1), suppose μA is nonatomic. Since vA < μ
and since μ is purely atomic, we have μSvA by [4, Theorem 2.3].
In other words, vA<sμ. Since vAQμ, we have v(A) = 0. Hence, v
is purely atomic by (3) of Theorem 4.1.

To prove (2), suppose vA is purely atomic. Since vA < μ and
since μ is nonatomic, we have μSvA by [4, Theorem 1.6]. In other
words, vA<sμ. Since vAQμ, we have y(A) = 0. Hence, v is non-
atomic by (4) of Theorem 4.1.

COROLLARY 4.3. (Cf. [4, Theorem 1.5]). Suppose μ — v + λ and
vQx.

(1) If μ is purely atomic, then so is v.
(2) If μ is nonatomic, then so is v.

Proof. Suppose μ = v + λ and vQλ. Of course, vQv so that
vQ(v + λ). That is, vQμ. Then since v <t μ, the conclusions follow
from Theorem 4.2.

5 • Quasi-dominance and the RadonrNikodym theorem* If /
is a real-valued function on X, we say that / is locally measurable
if the inverse image of each Borel set is a locally measurable set.
Equivalently, / is locally measurable if and only if {x:f(x) > a} Π F
is in Sf for all real numbers a and all F in £f.

THEOREM 5.1. Suppose there exists a nonnegative locally meas-

urable function f such that v(E) = \ f dμ for all E in Sf'. Then
JE

v < μ and vQμ.

Proof. It is evident and well-known that v < μ. Now let
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F = {x:f(x)>0}. It is easy to see that v(E - F) = 0 so that

v(E) = v(E Π ί1) for all Ee &*. We show that μF < v. If v{G) = 0,

then 0 == ί / dμ = t / dμ. Since /(a;) > 0 for all x in F Π G, we

have 0 = μ(F nG) = /^(Gr). Hence,

THEOREM 5.2. Suppose v is finite, μ is semifinite, v < μ and
vQμ. Then there exists a nonnegative measurable function f such

that v(E) = [ f dμ for all E in &*.
JE

Proof. Since v is finite, we can find a set Eo in &* such that
v(βύ ^ v(E) for all E in &*. Since vQμ, there exists F in S? such
that V(JEΓ0) ~ v(E0 n F) and ^ < v. Since v is finite and μF is semi-
finite, it is easy to see that μF is sigma-finite. By the usual Radon-
Nikodym theorem, there is a nonnegative measurable function / such

that v{E) = I / dμ for all measurable sets E contained in F. If we
JE

let / be zero on the complement of F, then it is clear that v(fj)=

( fdμ for all E in &.
JE

If v has a Radon-Nikodym derivative with respect to μ, then v
enjoys a strong form of quasi-dominance in that the set F does not
depend on E and that v(E) = v(E(\ F) can be replaced by v{E — ί7) = 0
for all E in S^. It is easy to see that if v is finite and vQμ, then
v enjoys this strong form of quasi-dominance with respect to μ. We
might ask if a Radon-Nikodym derivative exists for semifinite
measures in the presence of absolute continuity and strong quasi-
dominance, and the answer is no. Indeed, even if μ and v are
equivalent semifinite measures, a standard example shows that it
may be impossible to find a nonήegative function / such that XEf is
measurable and v(E) = l fdμ whenever μ(E) < oo. (It can be seen
that two equivalent semifinite measures have the same sets of sigma-
finite measure. Consequently, the Radon-Nikodym theorem holds for
such measures if v{E) = \ fdμ whenever μ(E) < oo [5, Theorem 3.1].)

JE

Example 5.3, [Cf 2, Exercise 31.9]. Let A and B be uncount-
able sets such that card A < card B. Let X = AxB. A set
{(a, b):a = aQ} is a vertical line and {(α, b):b = bQ} is a horizontal line.
Let Sf be the smallest sigma-algebra containing vertical lines, hori-
zontal lines and countable sets. Let a(E) be the number of hori-
zontal lines L such that L — E is countable, and let β{E) be the
number of vertical lines L such that L — E is countable. Let
μ — a + β and v = a + 2β. Then v < μ and v is strongly quasi-
dominant over μ since μ < v. Although μ and v are semifinite, it
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can be seen that no function / exists such that v{E) = \ fdμ for all

E in Sf such that μ(E) < ^ .

THEOREM 5.4. Suppose v is a degenerate measure such that
v < μ. Suppose, moreover, that there exists a locally measurable
set F such that v{E — F) — 0 for all E in S^ and such that μF < v.
If f= coXF, then v{E) = \ fdμ for all E in <9*.

Proof. Suppose Ee<9*. We wish to show that v(E) = [ fdμ.

S )E

fdμ = oo μ(Ef]F).

lΐv(E) = oo fthenv(En F) - oo so that μ(Ef)F) >0and coμ(EnF) = °o.
If v(E) = 0, then μF(E) = 0so that μ(EΓ\F) = 0 and ooμ(Er\F) = 0.

We now look at the Kadon-Nikodym theorem from a slightly
different point of view. In keeping with [5, page 395], we say
that v is compatible with μ if 0 < v(E) < °o implies there exists F
in S^ such that v{E f] F) > 0 and μ{F) < oo. Let us say that v is
strongly compatible with μ if v(E)>0 implies there exists F in £f
such that v(EΠ F)>0 and μ(F) < oo. For example, v is strongly
compatible with μ whenever vSμ. Of course, if v is strongly com-
patible with μ, then v is compatible with μ. If v is (strongly)
compatible with μ, then clearly pA is (strongly) compatible with μ
or μA.

Recall that v is totally incompatible with μ if μ{E) = c>o when-
ever v(E)>0. If v is compatible with μ and if v is totally incom-
patible with μ, then it is easy to see that v is degenerate (i.e., has
a subset of {0, <>o} for its range). A degenerate measure is clearly
compatible with any measure.

THEOREM 5.5. If v is strongly compatible with μ, then vQμ.

Proof. Suppose vΛ<sμ. We want to show v(A) = 0. Suppose,
to the contrary, that v(A) > 0. Then there exists F in S^ such that
v(A Π F) > 0 and μ(F) < co. In other words vA(F) > 0 and μ(F) < co,
which is impossible since vA is totally incompatible with μ by
Theorem 2.2.

THEOREM 5.6. // v is semifinite and v is compatible with μ,
then v is strongly compatible with μ. Hence, vQμ in this case.

Proof. The result follows immediately from the definitions.

If vQμ, it does not follow that v is even compatible with μ.
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For example, let v be Lebesgue measure on the Borel sets of [0, 1]
and let μ be coy. However, we have the following result if μ is
semifinite:

THEOREM 5.7. // vQμ and μ is semifinite, then v is strongly
compatible with μ.

Proof. Suppose 0 < v(E). Since vQμ, there exists F in Sf such
that v(E) = v(Ef]F) and μF < v. If μ{EΓ\F)<ooy we are done.
Otherwise, there exists a measurable set G contained in E f] F such
that 0 < μ{G) < oo. Since μF(G) > 0, we have v(G) > 0, so that v is
strongly compatible with μ.

We may combine Theorems 5.5, 5.6 and 5.7 as follows:

COROLLARY 5.8. Suppose μ and v are semifinite. Then the
following are equivalent:

(1) v is compatible with μ.
( 2) v is strongly compatible with μ.
(3) v is quasi-dominant with respect to μ.

If / is a real-valued function on X, let us say that / is /̂ -meas-
urable if {x: fix) > a} Π F is in £f for all real numbers a and all
measurable F such that μ{F) < oo. Let ,9%x = {E: E Π Fe SS when-
ever f e y and μ[F) < oo}. Define μφλ on ,9%χ by μψλ{E) = sup
{μ(F):Fe<9* and FdE and μ(F) < oo} for all E in S>%x. If // is
semifinite, it is easy to see that μφλ is an extension of μ to a small-
est measure on Sfψλ [cf. 1, Exercise 17.1]. We shall use these ideas
in our next theorem, which is a variation of Theorem 5.1.

THEOREM 5.9. (Cf. [5, Theorem 2.1].) Suppose μ is semi-
finite and suppose there exists a nonnegative μ-measurable function
f such that v{E) = \ fdμψλ for all E in &'. Then v < μ and vQμ.

Proof. It is easy to see that v < μ. We show that v is strongly
compatible with μ. Suppose 0 <v(E), and let A = {x:f(x) > 0}.
Since v(E) > 0, it follows that μφλ(A ΓΊ E) > 0. Hence, there exists
F in £f such that F is a subset of A f)Eand 0 < μ(F) < oo. Since
/ is positive on F and since μ(F) > 0, we have v(F) > 0. Hence, v
is strongly compatible with respect to μ, and we have vQμ by
Theorem 5.5.

If desired, an alternate proof of Theorem 5.2 is possible. Since
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μ is semiίinite and since vQμ, we have v is compatible with μ by
Theorem 5.7. Then the existence of the Radon-Nikodym derivative
follows from [5, Theorem 2.2].

6* Largest product measures* Suppose μ and v are semiίinite
measures on sigma-rings Sf and J^~, respectively. We say that a
measure p on *9*x^~ is a product of μ with v if p(AxB) =
μ(A)v(B) whenever Ae£^ and S e ^ . More than one product of
μ with v may exist. Nevertheless, there is always a largest pro-
duct of μ with v given by outer measure extension [7, page 265].

In order to see something of the role quasi-dominance and strong
recessiveness can play in the study of largest product measures,
we state some results without proof. In Theorem 6.2 we see that
things work out well if v is quasi-dominant or strongly recessive
with respect to i/.

THEOREM 6.1. Suppose
(1) μ and μf are semίfinite measures on the sigma-ring S^,
(2) v and v' are semifinite measures on the sigma-ring J7~

and v < i/,
(3) p is the largest product of μ with v, and
(4) p' is the largest product of μr with v'.
Then p can he written as the sum of measures ft and p2 such

that p1 < pf and p2Spr, where ft is a product of some measure μ1

with v and p2 is a product of some measure μ2 with v.

THEOREM 6.2. Assume the hypotheses of Theorem 6.1, and sup-
pose, in addition, that v is quasi-dominant with respect to v* or
that v is strongly recessive with respect to i/. Then the measure ft
of Theorem 6.1 can be taken to be the largest product of some
measure μx with v.

In general, the measure ft of Theorem 6.1 cannot be expressed
as the largest product of μ1 with v. For example, let Sf be the
Borel sets of the unit interval and let ^~ be the Borel sets of the
product of the unit interval with the two-point set {0,1}. Define
μ and μf on Sf by μ = tc and μ' = λ, where K is counting measure
and λ is Lebesgue measure. Define v and v' on J^~ by

v(β) = X({y: (y, 0) 6 B}) + \({y: {y, 1) 6 B})

and

v\B) = \({y: (y, 0) e B}) + κ({y: (y, 1) 6 B}) .

Let p be the largest product of μ with v, and let p' be the largest
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product of μf with vf. By Theorem 6.1, we may write p as a sum
of product measures pλ and <o2 such that pt < pf and pβp'. It can
be seen that

ft({(*, (2/, 0)): α = »}) = 0

and

ft({(α, (2/, 1)): a? = y}) = oo .

If ^ could be expressed as the largest product of some measure μt

with v, we would have the impossible conclusion that

μ1xM{(x, y): x = y}) = 0

and

where ftxλ is the largest product of μt and λ in each case.
We close by stating a theorem with the same hypotheses as

Theorem 6.1 but with a conclusion that uses Theorem 2.5 to de-
compose v with respect to i/.

THEOREM 6.3. Assume the hypotheses of Theorem 6.1. Then p
can be written as the sum of measures p0, p± and p2 such that
Po + Pi < Pf and pSp\ where po[Pi] is the largest product of some μ0

with v0 [resp.f some μγ with vλ] and p2 is a product of some μ2 with
v.
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