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INTERSECTIONS OF TERMS OF POLYCENTRAL
SERIES OF FREE GROUPS AND FREE

LIE ALGEBRAS

T. C. HURLEY

This paper is concerned with deriving bases for the lower
central factors of a free group modulo the intersection of
certain terms of the polycentral series with the lower central
series, and with the identification of the intersections them-
selves. The results from the group case are used to derive
analogous results for the free Lie Algebra.

Let G be an arbitrary group. The commutator group [A, B]
of the subsets A and B of G is the subgroup generated by all
commutators [α, b] = a^b^ab, α e i , b e B. The lower central series
of G is the chain of normal subgroups

G = GX^G2^ ^Gi^ Gi+ι ^ •

where Gi+ι = [Gίy G].
Let mlf •• ,m Λ , ••• be a sequence of positive integers. For n —

1 we define Gmi, as above, to be the m xth term of the lower central
series of G and then define the polycentral series,

G ^ Gmi ^ ^ Gmv...,m. ^ Gmv...,m.,m.+1 ^ •

of G relative to this sequence by the rule that GTOl,...,mί+1 is the
m ί + 1 th term of the lower central series of Gmv...,m..

Let L be a Lie Algebra. By analogy to the group case
we define the polycentral series of L relative to the sequence

ij J^~ Ij Z- > . . . ^ > // Z^9" Ij ^>

in the following way: L1 = L and L<+1 = Lt. L (where in L, A.B =
the ideal generated by all α.6, aeA,beB and . denotes the multi-
plication in L). Then, inductively, define

Lmv...,m.+1 = (Iί« l f... f W <)«< + 1 .

A group G is nilpotent iff (?„ = 1G for some n and polynilpotent
iff GTOl,...,mu = 1G for some (finite) sequence mlf ••-,mn. Similarly
define a nilpotent Lie Algebra and a polynilpotent Lie Algebra. The
nth. lower central factor of G is GJGn+1. A group G is said to be
residually-P, where P is some group property, iff for each geG,

105



106 T. C. HURLEY

g Φ 1, there exists a normal subgroup Ng of G such that G/Ng has
the property P and g$Ng.

If F is a free group, then F/Fmv...,mn is the /reβ polynilpotent
group relative to the sequence mlf , mn Similarly define Sίfl
£f»1,...,mnf the /ree polynilpotent Lie Algebra, where J^ is a free
Lie Algebra.

Free polynilpotent groups have been studied extensively by
Gruenberg [1], who shows for example that they are residually
finite p-groups for every prime p, and by Smelkin [5] who deter-
mines their lower central factors and also obtains bases for the
additive groups of free polynilpotent Lie Algebras. Results along
these lines have also been obtained by Ward [6].

It is a consequence of Gruenberg's result that G=F/(Fmvm2t...irrίnD
Fmιmr..mn+r)9 (r ̂  0), is residually nilpotent and it may also be
verified that for s ^ mjn^ mn + r the sth lower central factor of
G and of F/Fmi>m2,...tmn are isomorphic—see Lemma 7 below. In
this paper, all the lower central factors of Fj{Fm>n Π Fmn+r)(r ^ 0),
are computed (Theorem E below). This includes Smelkin's result on
Fm,n (the case r = 0) and the proof here is independent of his rely-
ing solely on computations with basic group commutators. Also a
classification of Fm>n n Fmn+r as a product of certain commutator
subgroups of F is obtained (Theorem A)—see Ward [6, Theorem
17.2] for the case n = 2. The lower central factors of F/(Fm,n Π
Fmn+r) turn out to be free abelian and consequently this group is
residually torsi on-free-and-nilpotent and therefore by Gruenberg [1]
is residually a finite p-group for all primes p.

Using the results from the group case, J*fm,n D = S ^ + r is identi-
fied (Theorem A') and a basis for the additive group of -Sf/(βS^Λ,ii Π
^fmn+r) is obtained (Theorem F).

2* Further notation and preliminary lemmas* Define, for any
group G, with n ^ 2,

G(m, n; r) = Π [Gm+rι, Gm+r2, , Gm+rJ

where the product is over all nonnegative integers r19 , rn with
n + r2 + + rn — r.

If n = 1, define G(m, I; r) = Gw + r, (for m ̂  1, r ^ 0).
Then it is clear that

G(m, n; 0) = Gm,n .

THEOREM A. Fm,n n Fmn+r = F(m, n r).
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The special case

Fm,2 Π F2m+r = Π [Fm+r*t Fm+r2\
rί+r2=r

has been shown by Ward [6, Theorem 17.2].

To prove this and to describe the lower central factors of
F/F(m, n r) I need some properties of free groups, free Lie Alge-
bras and basic commutators, and the reader is referred to either
Magnus, Karrass and Solitar [4, Chapter 5] or to M. Hall [2, Chapter
11]. An excellent account may also be found in P. Hall's notes [3,
Chapter 5].

For a precise formulation of bracket arrangement βs see [5,
§5,2]; imprecisely βs(A19 , As) means the commutator subgroup
obtained by bracketing Alf , As in a certain fixed defined way.
Thus, for example, if β* = (( ), ( )) then β\Alf A2, As, A,) = [[Alf

A2\, [A

The bracket arrangement is used only in Lemma 1 below, which
is probably well-known and is in any case a simple application of
P. HalΓs 3-subgroup lemma [5, Theorem 5.2].

LEMMA 1. Let Alf , A8 be normal subgroups of a group G,
βs a bracket arrangement of weight s and p a (fixed) permutation
of 1,2, . . . , s . Then

where the product is over all permutations a of 1, 2, •••,§.

Proof. It is clear that we may assume p is the identity per-
mutation.

The cases s = 2 and s = 3 are obvious. Now use induction on
s. Let s > 3 and suppose β8 — βιβq so that

βs(A19 , A.) = [β\A19 , At), βq(At+1, , A.)] .

By induction β\Alf •• , 4 ί ) S Π . [Aσω, , Aalt)] and

β C '9 A8) £

and so it is only necessary to show that

( 1 ) [[Aσω, , AσU)], [Ap{t+1), , Apω]] £ Π [Aσω, , Aσ{s)]
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since for normal subgroups [AB, C] £ [A, C][B, C].

We can assume, since [A, B] = [B, A], that t ^ q, and (1) can
be proved by induction on q. If q = 1, then t — s — 1 and (1) is
obvious. If q > 1 then by the 3-subgroup lemma

, ••*, AσU)], [

X

Applying the inductive hypothesis to the groups on the right hand
side of the above gives the required result.

G(m, n; r) as defined presents some notational difficulties and so
in what follows I shall use the convention that Πr (where the
expression after the product is expressed as a function of rlf , rn)
to mean the product over all nonnegative integers r19 , rn with
r1 + + r% = r.

LEMMA 2. ( i ) G(m, n; r) £ G(m, n; r — 1), (r ^ 1).

(i i) [G(m, n; r), G(m, p; s)] £ G(m, n + p; r + s).
(iii) [G(m, w; r), G(m, ̂  s)] Q G(m, n\ r + s + 1).
(iv) G(m, w + 1; r) £ G(m, w; r + 1).

Proof. ( i ) is obvious.
( i i ) :- [G(m, n',r),G(m, p; s)] = [Tlr[Gm+rι, •••, G w + r J , Π 8 [Gw + 8 l,

• , G m + s J ] . (If n = 1 interpret Πr = Gm+r and similarly if p = 1).
Hence [G(m, w; r), G(m, p ; 8 ) ] S Π r , [[G»+fl, •••, G m + r J , [Gw + S l, •••,
ί?m+Sp]] since for normal subgroups, [AB, C] £ [A, C][β, C] and
[A, BC] £ [A, 5][A, C]. Now use Lemma 1 to complete the proof.

(iii):- [G(m, n; r), G(m, w; s)] £ Πr,s [[Gm + r i, , 6r»+rJ, [G*+βι, ,

If Λ = 1, then Πr,s = [G»+r, G w + J

£ Gm+r+s+1 = G(m, w; r + β + 1).

If w > 1

and so

[G(m, n; r), G(m, w; s)]

£ Π [[Gm+r + r +1, Gm + r 3, , Gn+rn]9 [Gm + β l, ,

£ Π [G«+tl, , Gm+hnJ, t = r + s + 1 .
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The last step comes, as before, from Lemma 1.
(iv):- The proof is similar to (iii) and is omitted.

LEMMA 3. Let A, B, C be normal subgroups of the group G.
Suppose ae A, b e B, ceC. Then

[α, b, c][b, c, a][c, a,b] = l modulo [[A, B], [A, C]] .

[[A, B], [B, C]] . [[A, C], [B, C]] .

Proof. By well-known commutator identities (see e.g., [4,
Theorem 5.1]),

[α, δ, ca][c, a, bc][b, c, ah] = 1

==> [a, b, c[c, a]][c, a, b[b, c]][b, c, a[a, b]] = 1

= > [α, b, [c, a]][a, b, c][a, 6, c, [c, a]][c, a, [b, c]]

x [c, α, δ][c, α, δ, [6, c]][δ, c, [α, δ]][δ, c, α][δ, c, α, [α, δ]] = 1 .

Now since

[a, b, [c, a]] and [α, δ, c, [c, α]] e [[A, 5], [A, C]] ,

[c, α, [6, c]] and [c, α, 6, [6, c]] 6 [[A, C], [B, C]] ,

[6, c, [α, 6]] and [6, c, α, [α, 6]] 6 [[A, B], [B, C]] ,

and the groups are all normal we have that

[α, δ, c][δ, c, α][c, α, b] e [[A, J5], [A, C]] .

This lemma can be thought of as a generalization of the Jacobi

identity for groups.

COROLLARY. Suppose a e G(m, n; r), b e G(m, p; s), c e G(m, q; t).

Then

[a, δ, c][δ, c, a][c, a,b] = l modulo G(m9 n + p + q r + s + t + 1) .

Proof. Let A = G(m, n; r), J5 = G(m, p; s), C = G(m, q; t). Then
by Lemma 2,

[[A, JS], [A, C]J £ [G(m, % + p; r + s), G(m, w + ?; r + ί)]

£ G(m, ?ι + p + ^ ; r + s + r + ί ) .

£ G(m, n + p + qm,r + s + t + 1) .

Similarly for [[A, B], [B, C\] and [[A, C], [B, C]].

3* Bases* Let c be a basic commutator with c = [cί9 c2] for
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basic commutators clf c2. Say c is structurally contained in F(m, 1;
r) = Fm+r iff c e Fm+r. Suppose it is defined what is meant by say-
ing that c is structually contained in F(m, t; r) for all 1 <̂  t < n
and for all r. Then say c is structurally contained in F(m, n\ r)
iff cλ is structurally contained in F(m, s; rx), and c% is structurally
contained in F(m, t; r2) for some s, £ ̂  1 and some r l f r2 ̂  0 with
s + ί = n and ^ + r2 = r. (Note: If s ^ 2, then automatically c2 e Fm

since [cx, c2] is basic.)

For a basic commutator c, write ceF(m, n r) iff c is struc-
turally contained in F(m, n r).

The following lemmas are easily verified.

LEMMA 4. If ce F(m, n; r) then c e F(m, n; r ) .

LEMMA 5. ( i ) If ceF{m, n; r) then (ii) c~eF(m, n — l r + m),

(n ^ 2 ) . ceF(m, n; r - 1). (r ̂  1).

Proofs. These come directly from the definition and Lemma 2.

LEMMA 6. Suppose δ, c are basic commutators such that b e
F{m, s; ϊ), and ceF(m, t; k), with s + t = n and i + k = r. ϊ%ew
[6, c] ΐs congruent, modulo F(m, n; r + 1), to a product of basic
commutators, each of which is structurally contained in F{m, n; r).

Proof. We may assume that F is finitely generated since b
and c only involve a finite number of generators of F.

We may also assume that b > c since [6, c] = [cf b]~\ If 6 is a
generator of F then clearly [6, c] is a basic commutator. If b —
[bίf b2] where b2 <̂  c then again [b, c] is a basic commutator and
there is nothing to be shown.

Define the difference number (d.n.) of a commutator [δ, c] where
b and c are basic commutators with b > c, in the following way:
Let b have weight w and suppose there exists v basic commutators
of weight <̂  w. Let c be the ith basic commutator. Then I < v
and define

d.n. [δ, c] = 0 — Z .

Now use induction on d.n. [δ, c]. (This is a type of "backward
induction").

Suppose δ = [b19 δ2] where blf δ2 are basics and δ2 > c. Then
weight δ2 ̂  weight c, giving that δ2 6 Fm and consequently bx e Fm.
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Thus, we may assume s Ξ> 2 and therefore suppose

δx 6 F(m, sf, ij) , δ2 e

with Sj + s2 = s, ΐx + i2 = i, (s19 s2 ^ 1, iίf i2 ^ 0). Then by corollary
to Lemma 3,

( 3) [δ, c] == [&!, δ2, c] Ξ [blf c, δ2][δ2, c, δ j " 1 modulo F(m, n; r + 1) .

Now d.n. [δx, c] < d.n. [δ, c] and so by the inductive hypothesis
[bu c] is congruent, modulo F(m, st + t; ix + fc + 1), to a product,
ef1- ej* say (αt e Z), of basic commutators β* with each et e ^(m, sx +
t; ix + &).

Then using the commutator identity [xy, z] = [x, z][x, z, y][y, z]
and Lemmas 2 and 3, we see that

(4 ) [bίf c, b2] = Π [ei9 b2fό modulo F(m, n\ r + 1) .

Now for each j, 1 ^ j ^ q9 weight es 5* weight δ. Also δ2 > c
and hence d.n. [ejf δ2] < d.n. [δ, c]. Therefore by induction each
[ej9 δ2], and consequently [6W c, δ2], can be written, modulo F{m, n;
r + 1), as a product of basic commutators structurally contained in
F(m, n r).

Also d.n. [δ2, c] < d.n. [δ, c] and therefore [δ2, c] is congruent,
modulo F(m, s2 + t;ί2 + fc + 1), to a product, /Z1- •/£* say (βt e Z),
of basic commutators ft such that ft e F(m, s2 + t; i2 + &).

For a particular / o note that there are two possibilities, either
fi ^ δx or / t < δx. In any case, as above, get

( 5) [δ2, c, δj Ξ Π [Λ, δ j ^ modulo F(m, w; r + 1) .

Now consider the two cases.

Case 1. /,• ̂  δlβ Now weight fό ^ weight δ and also bι > δ2 > c
giving that d.n. [fjf δj < d.n. [δ, c].

Case 2. bx > f5. Now weight δ,. < weight δ and also, since f$
has bigger weight than c, f, > c giving that d.n. [b19 fj] < d.n. [δ, c].

Hence, by induction, each [fJf δj is congruent, modulo F(m, n;
r + 1), to a product of basic commutators structurally contained in
F(m, n; r) and therefore from (5), so is [δ2, c, δ j . Thus [bίf c, δ2] and
[δ2, c, δ j " 1 are products, modulo F(m, n r + 1), of basic commuta-
tors of the required form and using (3) gives the required result.

THEOREM B. F(m, n; r)/F(m, n; r + 1) is free abelian, freely
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generated by those basic commutators c of weight mn + r such that
c e F(m, n; r).

Proof. It follows from Lemma 2 that the group is abelian.
Also since F(m, n; r) Q Fmn+r, and F{m, n; r + 1) Q Fmn+r+1 the
freeness will follow from the Basis Theorem for Basic Commutators
[4, Theorem 5.13A or 2, Theorem 11.2.4].

Therefore it is only necessary to show that the stated basic
commutators generate the group.

If n = 1, this is equivalent to showing that Fm+r/Fm+r+1 is
generated by basic commutators of weight m + r and this is part
of the Basis Theorem. Let n > 1 and proceed by induction on n.
If a e F(m, n; r) then a is a product of elements of the form

b = [b19 , δ j , b, e Fm+r. with n + + rn = r .

By induction [b19 •• ,6Λ_1] is congruent, modulo F(m, n — 1; r — rn + l)
to a product of basic commutators structurally contained in
F(m, n — 1; r — rn) and bn is also congruent modulo Fm+rn+1 to a
product of basic commutators contained in Fm+rn. Now from Lemma 2,

[F(m, n - 1; r - rn + 1), F m + r J £ F(m, n r + 1)

and

, n - 1; r - r j , F m + r w + 1 ] S ^(m, n; r + 1)

and so the problem reduces to showing that [α, b]9 with a~eF(m, n —
1; r — r j and beF(m, 1; r j , is congruent, modulo ^(m, n; r + 1), to
a product of basic commutators of weight mn + r each of which is
structurally contained in F(m, n r). Lemma 6 does this for us.

COROLLARY. Let b be a basic commutator. Then

b 6 F(m, n; r) *=* b e F(m9 n; r) .

Proof. We have already seen (Lemma 4) that if beF(m,n;r)
then 6eF(m9 n r).

Suppose now beF(m, n r). Then 6, being a basic commutator,
is not 1 and so b 0 Π?=i Ĵ o since free groups are residually nilpotent.
Thus b £ Γ\T=ι F(m9 n; i) and suppose beF(m, n; s), bί F(m, n; 8 + 1).
So s ^ r and therefore by Theorem B, 6 is a unique product,
modulo F(m, n; s +1) of basic commutators structually contained in
F[m9 n; s). Therefore since b is also a basic commutator, this unique
product must be precisely 6, giving that b~eF(m9n;s) and therfore
6e(m, n r).
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THEOREM C. Every element of Fm,n can be written uniquely as

c«i.. .c

as mod F(m, n r) ,

where clf , c8 are the basic commutators of weight < mn + r
structually contained in Fm,n, at e Z> and c1 < < cs in the order-
ing of the basic commutators.

REMARK. This theorem reduces to P. HalΓs Basis Theorem for
the case n == 1 and m = 1. This then can be considered as a
"basis theorem" for certain terms of the polycentral series of F.
Whereas in the Basis Theorem uniqueness modulo Fr+ί is obtained,
here Fr+1 must be replaced by the complicated expression F(m, n; r).

Proof of Theorem C. The proof is immediate from Theorem
B. I omit spelling out the details.

THEOREM A.

Fm>n Π Fmn+r = F{m, n; r) .

Proof. The proof is now easy. Use induction on r. The case
r = 0 is trivial.

It is clear that F(m, n r) £ Fm>n Π Fmn+r. Suppose r > 0 and
a e Fm,n n Fmn+r. Then a e F(m, n; r — 1) by the inductive hypothesis,
and by Theorem B, a is a product, modulo F(m, n; r), of certain
basic commutators of weight mn + r — 1. Since also a e Fmn+r, this
product must be 1 by the Basis Theorem, and so aeF(m, n r).
This proves Theorem A.

It is clear that these arguments work for the free Lie Algebra
and so I state without proof the following two theorems.

Let T{ denote the set of basic commutators of weight i.

THEOREM B\ J^mJJίf{m9 n; r) has as additive basis those basic
commutators of weight < mn + r which are structually contained
in SfM.

THEOREM A'.

SfM Π ̂ mn+r = £?{m, n; r) .

Theorems A' and B' may also be deduced easily from Theorem
F and its corollary below.
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THEOREM D. (Smelkin [5]). Let G == F/Fmin. Then GJGi+ί is
free abelian, freely generated by the set St = T\Riy where Rt denotes
the basic commutators of weight i structurally contained in Fm>n.

Proof. Clearly Gt/Gi+ι is generated by St since the basics
structurally contained in Fm>n vanish in G.

We need only consider i *z mn and hence suppose ί = mn + r,
r ^ 0.

Suppose a product Π of elements from St is in Fi+1Fm,n. Then

Π = ab , ae Fm,n , b e Fi+1 .

Hence a e Fm>n Π Ft = F(m, n\ r) by Theorem A. Therefore by
Theorem B, a is a product, modulo F(m, w; r + 1)(£ -FYa), of basic
commutators of weight i which are structurally contained in
F(m, n r). The set of basic commutators structually contained in
F(m, n r) of weight i has empty intersection with St and so a = 1
modulo Fi+1 and hence Π Ξ 1 modulo Fi+ίf giving that Π is
identically 1.

THEOREM D'. (Smelkin [5]). The set consisting of those basic
commutators which are not structurally contained in Jίfm,n is an
additive basis for

This may be proved from Theorem A' by analogy to the group
case. It is also a trivial consequence of Theorem F below.

The proof of the following theorem includes that of Theorem D.

THEOREM E. Let G = F/F(m, n\ r). Then GtfGi+ί is free abelian,
freely generated by the set St = T\Ri9 where Rt denotes the basic
commutators of weight i structurally contained in F{m, n; r).

Proof. Clearly St generates GifGi+1. It is only necessary to con-
sider i ^ mn + r and hence let i = mn + r + s, s ^ 0. Suppose a
product Π of elements from St is contained in F(m, n; r)Fi+1.

Then

Π = ab, a 6 F(mt n; r) , 6 6 Fi+1 .

Therefore α e ^ Π F(mf n; r) = F(m, n; r + s), by Theorem A.
Thus α, by Theorem B, is a product, modulo F(m, n; r + s + 1), of
basic commutators of weight i which are structurally contained in
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F(m, n r + s). An element of S< cannot be structurally contained
in F(m, n:r + s) for if so it would be constructurally contained in
F(m, n; r)—see Lemma 5. Hence Π is identically 1.

If G is any group then as e.g., in Magnus, Karrass and Solitar
[4, Chapter 5] (&T=iGJGi+1 can be made into a Lie Algebra L by
defining addition, +, in L by

Σ UiGi+i + Σ UiGi+i — Σ €Li(iiGi+ί, (aif a'i e Gt)

(i.e., using the group multiplication componentwise) and multiplica-
tion, , in L by first defining

aiGi+1-(ijGj+1 = [di, aj]Gi+j+1, (α< e Gif α, e Gs)

and then using the distributive laws to extend this definition to all
of φG</G<+ι.

Let G = F/F(m, m r). Then there is the obvious surjective Lie
Algebra homomorphism σ: S^l^fim, n; r) -> φ Gi/Gi+1. The basic
commutators structurally contained in £f{m, n; r) vanish in
£fΊ£f(m, n; r) and the others are linearly independent in φ GJGi+1

by Theorem E. This gives the following theorem.

THEOREM F. The additive group of J*flJ*f(mfn\r) has as
basis the set of those basic commutators which are not structurally
contained in £f(m, n r).

COROLLARY. .Sf/^f(m, n; r) and φ GJGi+1 are isomorphic Lie
Algebras under the obvious map.

LEMMA 7. ( i ) If FIR is residually nilpotent so is F/(Rf)FJ.
(ii) The mth lower central factor of F/R is isomorphic to

that of F/(R Π Fn) for any m^n.

Proof. ( i ) If FIR is residually nilpotent, then Π* FJt = R.
Now fii FIR Π Fn) S Πi FiR = R- Also for i ^ n, F,(R f] Fn) £ Fn

giving that fϊ* FIR f] Fn) = R f] Fn. Thus F/(R n Fn) is residually
nilpotent when F/R is.

(ii) Since Fm+ί(R Π Fn) S Fm+1R we have a surjective map

FJJt Π Fn)IFm+ί(R n Fn) > FmR/Fm+1R .

The kernel of this map is Fm(R n Fn) n Fm+ιR = Fm+ί(R n F J , for
m ^ n, giving that the two groups are isomorphic.

COROLLARY 1. F/(Fnv...,mn n Fmv..mn+r) is residually nilpotent.
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COROLLARY 2. F/(Fm,n Π Fmn+r) is residually torsion-free and
nilpotent.

COROLLARY 3. F/(Fm>nf] Fmn^r) is residually a finite p-group
for all primes p.

Proof of corollaries. By Gruenberg [1], F/Fmv...,mn is residually
nilpotent, giving that F/(Fmv...,mn Π F m i . . . % J is residually nilpotent.
By Theorem E, F/(Fmyn Π Fmn+r) has torsion-free lower central factors
and is therefore residually torsion-free-and-nilpotent and hence again
by Gruenberg [1] it is residually a finite p-group for all primes p.

It is also a corollary that the sth lower central factor of
FIFmv...,m% is isomorphic to that of F/(Fmv...,mn n Fmv..mn+r), for s ^
WV *mn + r.
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