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INTERSECTIONS OF TERMS OF POLYCENTRAL
SERIES OF FREE GROUPS AND FREE
LIE ALGEBRAS

T. C. HURLEY

This paper is concerned with deriving bases for the lower
central factors of a free group modulo the intersection of
certain terms of the polycentral series with the lower central
series, and with the identification of the intersections them-
selves. The results from the group case are used to derive
analogous results for the free Lie Algebra.

Let G be an arbitrary group. The commutator group [A, B]
of the subsets A and B of G is the subgroup generated by all
commutators [a, b] = a™*b'ab, ac A, be B. The lower central series
of G is the chain of normal subgroups

G:G12G22"'2GigGi+1g“

where G,,, = [G,, G].

Let m,, --+, m,, --- be a sequence of positive integers. For n=
1 we define G,,,, as above, to be the m,th term of the lower central
series of G and then define the polycentral series,

GZ G = = Copon, Z Gy =

of G relative to this sequence by the rule that G,,,...,,, is the
m;,,th term of the lower central series of G,,,....m;-

Let L be a Lie Algebra. By analogy to the group case
we define the polycentral series of L relative to the sequence
My, =o0y My *o°

L g Lml 2 M g Lml,-",mi 2 Lml""v"”’i’mz’-}-l ; °T

in the following way: L, = L and L,,, = L,. L (where in L, A.B=
the ideal generated by all a.b,ac A,be B and . denotes the multi-
plication in L). Then, inductively, define

Limpeomisy = Dingroeeim g -

A group G is nilpotent iff G, = 1; for some n and polynilpotent
iff G,,....n, =1s for some (finite) sequence m,, -+, M,. Similarly
define a nilpotent Lie Algebra and a polynilpotent Lie Algebra. The
nth lower central factor of G is G,/G,.,. A group G is said to be
residually-P, where P is some group property, iff for each ge@,
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g # 1, there exists a normal subgroup N, of G such that G/N, has
the property P and g¢ N,.

If F is a free group, then F/F,, ..., is the free polynilpotent
group relative to the sequemce m,, +++, m,. Similarly define &/
L myyeemyy the free polynilpotent Lie Algebra, where & is a free
Lie Algebra.

Free polynilpotent groups have been studied extensively by
Gruenberg [1], who shows for example that they are residually
finite p-groups for every prime p, and by Smelkin [5] who deter-
mines their lower central factors and also obtains bases for the
additive groups of free polynilpotent Lie Algebras. Results along
these lines have also been obtained by Ward [6].

It is a consequence of Gruenberg’s result that G=F/(F, . .m, N
Fomyemgir)y (= 0), is residually nilpotent and it may also be
verified that for s = mm,---m, + r the sth lower central factor of
G and of F/F, .,..n., are isomorphic—see Lemma 7 below. In
this paper, all the lower central factors of F/(F,, N F...)(r=0),
are computed (Theorem E below). This includes Smelkin’s result on
F, . (the case » = 0) and the proof here is independent of his rely-
ing solely on computations with basic group commutators. Also a
classification of F, ,N F,,.. as a product of certain commutator
subgroups of F' is obtained (Theorem A)—see Ward [6, Theorem
17.2] for the case » = 2. The lower central factors of F/(F,.N
F,... turn out to be free abelian and consequently this group is
residually torsion-free-and-nilpotent and therefore by Gruenberg [1]
is residually a finite p-group for all primes p.

Using the results from the group case, &, N Lparr is identi-
fied (Theorem A’) and a basis for the additive group of /(. .N
ZLunsr) 18 obtained (Theorem F).

2. Further notation and preliminary lemmas. Define, for any
group G, with n = 2,

G(m’ n;r) = II [Gm+rly Gm-}-rz, tt Gm+rn]

where the product is over all nonnegative integers #, ---, r, with
’r1+7.2+ e +/,'”=7'.
If n =1, define G(m, l;7) = Gpyr, (for m = 1, » = 0).
Then it is clear that
Gim, n;0) = Gy«

THEOREM A, F, . NF,...= F(m,n;r).
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The special case

Fm,z N F2m+r = H [Fm-l—rly Fm+r2]

ri+ry=r

has been shown by Ward [6, Theorem 17.2].

To prove this and to describe the lower central factors of
F/F(m, n; r) I need some properties of free groups, free Lie Alge-
bras and basic commutators, and the reader is referred to either
Magnus, Karrass and Solitar [4, Chapter 5] or to M. Hall [2, Chapter
11]. An excellent account may also be found in P. Hall’s notes [3,
Chapter 5].

For a precise formulation of bracket arrangement 5° see [5,
§5.2]; imprecisely B°(4,, ---, A,) means the commutator subgroup
obtained by bracketing A, ---, 4, in a certain fixed defined way.
Thus, for example, if 8 = (( ),( )) then B%(4, 4. 4;, 4) = [[4,,
A,], [4s, Al

The bracket arrangement is used only in Lemma 1 below, which
is probably well-known and is in any case a simple application of
P. Hall’s 3-subgroup lemma [5, Theorem 5.2].

LEMMA 1. Let A, ---, A, be normal subgroups of a group G,
B a bracket arrangement of weight s and o a (fixed) permutation
of 1,2, ---,s. Then

BS(AP(I)’ Ap(z)y t AP(s)) - IOI [Aa(m Aa(z)y ct %y Aa(s)]
where the product is over all permutations o of 1,2, -, s.

Proof. It is clear that we may assume p is the identity per-
mutation.

The cases s =2 and s = 8 are obvious. Now use induction on
s. Let s > 3 and suppose B° = 8'8? so that

BS(AU M) As) = [Bt(Au ) At); Bq(At+1r M) As)] .
By induction Bt(Au tt At) - Ho [Au(l): ct Ao(t)] and
Bq(AH—u ct Ty As) - ];[ [A.0<t+1)7 M) Ap(s)]

and so it is only necessary to show that

(1) [[Aa(l)’ °t % Av(t)]’ [Ap(t+1)’ °t Ap(a)]] - l;[ [Aa(m ) Ao(s)]
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since for normal subgroups [AB, C] < [A4, C][B, C].

We can assume, since [A4, B] = [B, A], that ¢t = ¢, and (1) can
be proved by induction on ¢q. If ¢ =1, then ¢t =5 —1 and (1) is
obvious. If ¢ > 1 then by the 8-subgroup lemma

[[Aa(l)’ M) Aa(t)]’ [Ap(t+1)) Y Ap(s)]]
< [[Ao(l)’ M) Aa(t)) AP(s)L [AP(t-H.)f M) AP(s—l)]]
X [[[Ao(l), ct Ao(t)]’ [Ap(t-l-l)’ ) AP(s—-l)]]’ Ap(s)] .

Applying the inductive hypothesis to the groups on the right hand
side of the above gives the required result.

G(m, n; r) as defined presents some notational difficulties and so
in what follows I shall use the convention that [I, (where the
expression after the product is expressed as a function of »,, ---, 7,)
to mean the product over all nonnegative integers =, ---,r, with
ry e 1, =1

LEMMA 2. (i) Gim,n;r) S Gm,n;r — 1), (r=1).
(ii) [G(m, n; 7), G(m, p; 8)] = G(m, n + p; r + ).
(iii) [G(m, n;r), G(m, n; s)] S Gim, n;r + s + 1).
@iv) Gm,n + 1L;7) < Gim, n; v + 1).

Proof. (i) is obvious.
(ii):_ [G(my n; ’l"), G(m; D; S)] = [Hr [Gm+r17 tt Gm+r,,,]’ H: [Gm+31,
**y Guis,ll. (If m =1 interpret II, = G,., and similarly if p =1).

Hence [G(m, n; ), Gim, p;8)] S I1,.s [[Gunirp s Guirdy [Guieyp =* s
Gunis,]] since for normal subgroups, [AB,C] <[4, C][B,C] and
[4, BC] <[4, B][4, C]. Now use Lemma 1 to complete the proof.

(111):_ [G(m’ n; r), G(my n; 3)] S Hr,s [[Gm+r1, ) Gm+r,,,]) [Gm+31’ ct %y
Gm+s,,,]]'

If n =1, then Tl,.. = [Gurrs Gussl
S Gririmts -
S Guirron = G(m, m; 7 + s + 1).
Ifn>1
[Gm+r1: R} Gm+rn] - [GM+rl+m+rz, Gm+r3’ ] Gm+'rn]
S [Gm+r1+r2+v Gm+r39 ) Gm+r,,] ’
and so
[G(m, n; 7), G(m, n; 8)]
- H [[Gm+q+r2+u Gm+r3y ST Gm+r,‘]? [Gm+319 M) Gm+s,,]]

o 1:[ [Gm+t1, ] Gm—l—t%__l], t=r+s+1.
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The last step comes, as before, from Lemma 1.
(iv):- The proof is similar to (iii) and is omitted.

LeMMA 3. Let A, B, C be normal subgroups of the group G.
Suppose ac A, be B, ceC. Then

[a, b, cl[b, ¢, alle, a, b] = 1 modulo [[A4, B], [4, C]] .
(4, B], [B,Cll. [[4,C] [B,C]].

Proof. By well-known commutator identities (see e.g., [4,
Theorem 5.1]),

[CL, b; ca][cy a, bc][br ¢, a'b] =1
= [a, b, ¢cle, allle, a, b[b, c]l[b, ¢, ala, b]] =1
= [a’y b, [Cr a]][ai b, C][CL, by ¢, [C’ a]][67 a, [by C]]
X [e, a, blle, a, b, [b, c]l[b, ¢, [a, BII[B, ¢, al[b, ¢, a, [a, B]] = 1.
Now since

[a, b, [¢, a]] and [a, b, ¢, [¢, a]l € [[4, B], [4, C]],
[¢, a, [b, ¢]] and [c, a, b, [b, cll € [[4, C], [B, C]],
[0, ¢, [a, b]] and [b, ¢, a, [a, b]] e [[4, B], [B, C]],

and the groups are all normal we have that
[a, b, c][b, ¢, alle, a, b] €[[A, B], [4, C]] .
l[Ay B]; [B’ C]][[A’ C]y [Bi C]] .

This lemma can be thought of as a generalization of the Jacobi
identity for groups.

COROLLARY. Suppose acG(m, n;r), beGim, p;s), ceG(m, ¢;t).
Then
[a, b, c]lb, ¢, allc, @, b] = 1 modulo G(m,n +p +q¢;r +s +t+1).

Proof. Let A = G(m, n;r), B=G(m, p;s), C = G(m, q;t). Then
by Lemma 2,

[[4, B], [4, Cll < [G(m, n + p; 7 + s), G(m, n + ¢; 7 + 1)]
SGEm,n+p+q¢r+s+r+1t.
cGmn+p+gr+s+t+1).

Similarly for [[4, B, [B, C]] and [[4, C], [B, C]I.

3. Bases. Let ¢ be a basic commutator with ¢ = [¢,, ¢,] for
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basic commutators ¢, ¢,. Say ¢ is structurally contained in F(m, 1;
r)=F,,, iff ¢ce F,,,. Suppose it is defined what is meant by say-
ing that ¢ is structually contained in F(m, ¢;r) for all 1<t <n
and for all ». Then say c is structurally contained in F(m, n;r)
iff ¢, is structurally contained in F(m, s; r,), and ¢, is structurally
contained in F(m, t; r,) for some s,¢ =1 and some 7,7, =0 with
s+t=mn and r, + r,=1r. (Note: If s =2, then automatically c,€ F',
since [c, ¢,] is basie.)

For a basic commutator ¢, write ¢& F(m, n;r) iff ¢ is struc-
turally contained in F'(m, n; 7).
The following lemmas are easily verified.

LEMMA 4. If c€ F(m, n;r) then ¢ F(m, n; ).

LEMMA 5. (i) If ¢&F(m,n;r)then (i) c€ F(m,n — 1;r + m),
(m=2). ¢ce€F(im,n;r —1). (r=1).

Proofs. These come directly from the definition and Lemma 2.

LEMMA 6. Suppose b,c are basic commutators such that be
F(m, s; 1), and ¢€ F(m, t; k), with s +t=n and 1 +k =r. Then
[b, ¢c] is congruemt, modulo F(m,n;r + 1), to a product of basic
commutators, each of which is structurally contained in F(m, n; r).

Proof. We may assume that F' is finitely generated since b
and ¢ only involve a finite number of generators of F.

We may also assume that b > ¢ since [b,¢] =[¢,d]™. If b is a
generator of F' then clearly [b, ¢] is a basic commutator. If b =
[b,, b;] where b, <c¢ then again [b,¢c] is a basic commutator and
there is nothing to be shown.

Define the difference number (d.n.) of a commutator [b, ¢] where
b and ¢ are basic commutators with b > ¢, in the following way:
Let b have weight w and suppose there exists v basic commutators
of weight < w. Let ¢ be the I[th basic commutator. Then I < v
and define

dn.[b,c] =v—1.

Now use induction on d.n.[b,¢]. (This is a type of “backward
induction”).

Suppose b = [b,, b,] where b, b, are basics and b, >¢. Then
weight b, = weight ¢, giving that b,€ F',, and consequently b,¢ F,.
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Thus, we may assume s = 2 and therefore suppose
b, EF(m, s;1,), b €F(m, sy1,),

with s, +s, =38, %9 +14, =1, (s;,8,=1,1%,1 =0). Then by corollary
to Lemma 3,

(8) [b,¢e] =1[b,b,c]=][b,e¢, blb, ¢, b,]™* modulo F(m, n;r + 1) .

Now d.n.[b, ¢] < d.n.[b, ¢] and so by the inductive hypothesis
[b, ¢] is congruent, modulo F(m, s, + t;4, +k + 1), to a product,
et -e5 say (o, € Z), of basic commutators e¢; with each e, € Fi(m, s,+
t; 1, + k).

Then using the commutator identity [xy, z] = [z, ][, 2, ¥][¥, 2]
and Lemmas 2 and 3, we see that

(4) [b,, ¢, b,] = T [es, b, modulo F(m, n; 7 + 1) .
J=1

Now for each j, 1 < j < q, weight ¢; < weight b. Also b, > ¢
and hence d.n.[e;, b,] < d.n.[b, ¢c]. Therefore by induction each
[e;, b,], and consequently [b, ¢, b,], can be written, modulo F(m, n;
r + 1), as a product of basic commutators structurally contained in
F(m, n; r).

Also d.n.[b,, ¢] < d.n.[b, ¢] and therefore [b, ¢] is congruent,
modulo F(m, s, + t; %, + k + 1), to a product, ffi---fi* say (B;€ Z),
of basic commutators f; such that f; & F(m, s, + ¢; 1, + k).

For a particular f;, note that there are two possibilities, either
fi= b, or f; <b,. In any case, as above, get

(5) [bs, ¢, b.) = 11 [, b} modulo F(m, m; 7 +1).

Now consider the two cases.

Case 1. f; =b,. Now weight f; < weight b and also b, > b, > ¢
giving that d.n.[f;, b,] < d.n. [b, c].

Case 2. b, > f;. Now weight b, < weight b and also, since f;
has bigger weight than ¢, f; > ¢ giving that d.n. [b,, f;] < d.n. [b, c].

Hence, by induction, each [f;, b,] is congruent, modulo F(m, n;
r + 1), to a product of basic commutators structurally contained in
F(m, n; r) and therefore from (5), so is [b,, ¢, b,]. Thus [b,, ¢, b,] and
[b,, ¢, b,]* are products, modulo F(m, n;r + 1), of basic commuta-
tors of the required form and using (8) gives the required result.

THEOREM B. F(m, n;r)/F(m,n;r + 1) is free abelian, freely
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generated by those basic commutators ¢ of weight mn + v such that
ce F(m, n; r).

Proof. It follows from Lemma 2 that the group is abelian.
Also since F(m,n;r) S Fopyy, and Fim,n;r +1) & Fhpery, the
freeness will follow from the Basis Theorem for Basic Commutators
[4, Theorem 5.183A or 2, Theorem 11.2.4].

Therefore it is only necessary to show that the stated basic
commutators generate the group.

If n =1, this is equivalent to showing that F,. . /F,..., is
generated by basic commutators of weight m + + and this is part
of the Basis Theorem. Let » > 1 and proceed by induction on x.
If o € F(m, n;r) then a is a product of elements of the form

bz[bly Ocoybn]? bieF’hH—T,; With T1+ o e _i_/r% :,,..

By induction [b,, ---, b,_,] is congruent, modulo F(m, n—1;r—7,+1)
to a product of basic commutators structurally contained in
Fm,n —1;r —r,) and b, is also congruent modulo F,,, ,, to a
product of basic commutators contained in F,,, . Now from Lemma 2,

lF(m,?’L —'1;7' — Ty +1)’Fm+rn];F(m)n;T +1>
and
[Fm,n —1;7r —1,), Fuy, ] S F(m, n; r + 1)

and so the problem reduces to showing that [a, b], with a € F(m, n—
1;7 —r,) and b€ F(m, 1;r,), is congruent, modulo F(m, n;r + 1), to
a product of basic commutators of weight mn + » each of which is
structurally contained in F(m, n;r). Lemma 6 does this for us.

COROLLARY. Let b be a basic commutator. Then
b€ F(m, n;r) == be F(m, n;r) .

Proof. We have already seen (Lemma 4) that if be F(m, n;r)
then b€ F(m, n; r).

Suppose now be F(m, n;r). Then b, being a basic commutator,
is not 1 and so b ¢ N, F,, since free groups are residually nilpotent.
Thus b¢ N, F(m, ;1) and suppose b€ F(m, n;s), b¢ F(m, n; s+1).
So s =17 and therefore by Theorem B, b is a unique produect,
modulo F(m, n; s+ 1) of basic commutators structually contained in
F(m, n; s). Therefore since b is also a basic commutator, this unique
product must be precisely b, giving that b€ F(m, n; s) and therfore
be(m, n;r).
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THEOREM C. Ewery element of F,,, can be written uniquely as
¢ .-¢c* mod F(m, n; r) ,

where ¢, +++, ¢, are the basic commutators of weight < mn + r
structually contained im F, ., a,€Z, and ¢, <---< ¢, in the order-
ing of the basic commutators.

REMARK. This theorem reduces to P. Hall’s Basis Theorem for
the case n =1 and m = 1. This then can be considered as a
“basis theorem” for certain terms of the polycentral series of F.
Whereas in the Basis Theorem uniqueness modulo F,., is obtained,
here F',., must be replaced by the complicated expression F(m, n; r).

Proof of Theorem C. The proof is immediate from Theorem
B. I omit spelling out the details.

THEOREM A.

Fm,anmn-é—r:F(m’n;/r)'

Proof. The proof is now easy. Use induction on ». The case
r = 0 is trivial.

It is clear that F(m,n;7)<S F, N F,.. Suppose r >0 and
ackF,,.NF,..,. Then aeF(m,n;r —1) by the inductive hypothesis,
and by Theorem B, a is a product, modulo F'(m, n;r), of certain
basic commutators of weight mn + » — 1. Since also a € F,,.,, this
product must be 1 by the Basis Theorem, and so ae F(m, n;r).
This proves Theorem A.

It is clear that these arguments work for the free Lie Algebra
and so I state without proof the following two theorems.
Let T, denote the set of basic commutators of weight <.

THEOREM B'. &, ./ (m, n; r) has as additive basis those basic
commutators of weight < mn + r which are structually contained
WM Loy

THEOREM A’.

Gin N Lonnr = L (M, 05 7) .

Theorems A’ and B’ may also be deduced easily from Theorem
F and its corollary below.
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THEOREM D. (Smelkin [5]). Let G = F/F,,.. Then G,/G., is
free abelian, freely generated by the set S; = T\R,;, where R, denotes
the basic commutators of weight i structurally contained in F, ,.

Proof. Clearly . G,/G,., is generated by S; since the basics
structurally contained in F, , vanish in G.

We need only consider 7= mmn and hence suppose 7 = mn + 7,
r=0.

Suppose a product I of elements from S, is in F,, F, .. Then
IIl=ab, acF,,, beF,, .

Hence acF,,NF,=F(m,n;r) by Theorem A. Therefore by
Theorem B, a is a product, modulo F(m, n;r + 1)(& F,,,), of basic
commutators of weight ¢ which are structurally contained in
F(m, n;r). The set of basic commutators structually contained in
F(m, n;r) of weight 1 has empty intersection with S; and so a =1
modulo F;., and hence [[ =1 modulo F.,,, giving that [[ is
identically 1.

THEOREM D’. (Smelkin [5]). The set comsisting of those basic
commutators which are mot structurally contained in <2,, s an
additive basis for &£ L .

This may be proved from Theorem A’ by analogy to the group
case. It is also a trivial consequence of Theorem F below.

The proof of the following theorem includes that of Theorem D.

THEOREM E. Let G = F/F(m, n;r). Then G,/G.., is free abelian,
freely generated by the set S; = T,\R,, where R, denotes the basic
commutators of weight © structurally contained in F(m, n; r).

Proof. Clearly S; generates G,/G,:,. It is only necessary to con-
sider 1 = mn + r and hence let ¢t =mn +1r +s, s= 0. Suppose a
product J] of elements from S, is contained in F(m, n; »)F,,,.

Then
II = ab, a € F(m, n; 1), beF,, .

Therefore acF;N F(m, n;r) = F(m, n;r +s), by Theorem A.
Thus @, by Theorem B, is a product, modulo F(m, n;r + s + 1), of
basic commutators of weight ¢ which are structurally contained in
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F(m, n;r + s). An element of S, cannot be structurally contained
in F(m, n:r + s) for if so it would be constructurally contained in
F(m, n; r)—see Lemma 5. Hence I] is identically 1.

If G is any group then as e.g., in Magnus, Karrass and Solitar
[4, Chapter 5] @r.G./G,,, can be made into a Lie Algebra L by
defining addition, +, in L by

306Gy + 2 aiGiyy = 3 0.0iGayy, (@, i€ GY)

(i.e., using the group multiplication componentwise) and multiplica-
tion, -, in L by first defining

aGi11°0Giyn =[5, 051Giiih,, (@€ Gy a;€GY)

and then using the distributive laws to extend this definition to all
of D Gi/Gyy,.

Let G = F/F(m, m; r). Then there is the obvious surjective Lie
Algebra homomorphism o¢:. &2/ (m, n;r) — P G;/G;;,. The basic
commutators structurally contained in &(m, n; ) vanish in
Z1Z(m, n; r) and the others are linearly independent in & G,/G,.,
by Theorem E. This gives the following theorem.

THEOREM F. The additive group of £/ (m,n;r) has as
basis the set of those basic commutators which are mot structurally
contained in F(m, n;r).

COROLLARY. /& (m,n;r) and @ G;/G,,, are isomorphic Lie
Algebras under the obvious map.

LEMMA 7. (i) If F/R is residually nilpotent so is F/(RNF,).
(ii) The mth lower central factor of F/R 1is isomorphic to
that of F/(RNF,) for any m = n.

Proof. (i) If F/R is residually nilpotent, then M, F.R = R.
Now M:; F(RNF,)=SN:F.R=R. Also for i=n, F({RNF, S F,
giving that N, F(RNF,) = RNF,. Thus F/(RNF,) is residually
nilpotent when F/R is.

(ii) Since F,.(RNF,) < F,,,R we have a surjective map

F.(RNF,)Fp.(BNF,) — F.R[F. R .

The kernel of this map is F, RNF)NF,.R=F,. (RNF,), for
m = m, giving that the two groups are isomorphic.

COROLLARY 1. F/(Fo . ...on, O Fycom,ir) 18 residually milpotent.
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COROLLARY 2. F/(F,,.N F,...) is residually torsion-free and
nilpotent.

COROLLARY 8. F/(F,,.NF,..,) is residually a finite p-group
for all primes p.

Proof of corollaries. By Gruenberg [1], F/F,,....., is residually
nilpotent, giving that F/(F,,.....n, N Fa,...n,+,) is residually nilpotent.
By Theorem E, F/(F, . N F,... has torsion-free lower central factors
and is therefore residually torsion-free-and-nilpotent and hence again
by Gruenberg [1] it is residually a finite p-group for all primes ».

It is also a corollary that the sth lower central factor of
F|F,,.... ., is isomorphic to that of F/(F,,..m, N Fu...w,+r)y fOr 8=
My~ oM, + 7.
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