INTERSECTIONS OF TERMS OF POLYCENTRAL SERIES OF FREE GROUPS AND FREE
 LIE ALGEBRAS

T. C. Hurley

Abstract

This paper is concerned with deriving bases for the lower central factors of a free group modulo the intersection of certain terms of the polycentral series with the lower central series, and with the identification of the intersections themselves. The results from the group case are used to derive analogous results for the free Lie Algebra.

Let G be an arbitrary group. The commutator group $[A, B]$ of the subsets A and B of G is the subgroup generated by all commutators $[a, b]=a^{-1} b^{-1} a b, a \in A, b \in B$. The lower central series of G is the chain of normal subgroups

$$
G=G_{1} \geqq G_{2} \geqq \cdots \geqq G_{i} \geqq G_{i+1} \geqq \cdots
$$

where $G_{i+1}=\left[G_{i}, G\right]$.
Let $m_{1}, \cdots, m_{n}, \cdots$ be a sequence of positive integers. For $n=$ 1 we define $G_{m_{1}}$, as above, to be the m_{1} th term of the lower central series of G and then define the polycentral series,

$$
G \geqq G_{m_{1}} \geqq \cdots \geqq G_{m_{1}, \cdots, m_{i}} \geqq G_{m_{1}, \cdots, m_{i}, m_{i+1}} \geqq \cdots
$$

of G relative to this sequence by the rule that $G_{m_{1}, \cdots, m_{i+1}}$ is the m_{i+1} th term of the lower central series of $G_{m_{1}, \ldots, m_{i}}$.

Let L be a Lie Algebra. By analogy to the group case we define the polycentral series of L relative to the sequence $m_{1}, \cdots, m_{i}, \cdots$

$$
L \geqq L_{m_{1}} \geqq \cdots \geqq L_{m_{1}, \cdots, m_{i}} \geqq L_{m_{1}, \cdots, m_{i}, m_{i+1}} \geqq \cdots
$$

in the following way: $L_{1}=L$ and $L_{i+1}=L_{i}$. L (where in $L, A . B=$ the ideal generated by all $a . b, a \in A, b \in B$ and . denotes the multiplication in L). Then, inductively, define

$$
L_{m_{1}, \ldots, m_{i+1}}=\left(L_{m_{1}, \cdots, m_{i}}\right)_{m_{i+1}} .
$$

A group G is nilpotent iff $G_{n}=1_{G}$ for some n and polynilpotent iff $G_{m_{1}, \ldots, m_{n}}=1_{G}$ for some (finite) sequence m_{1}, \cdots, m_{n}. Similarly define a nilpotent Lie Algebra and a polynilpotent Lie Algebra. The nth lower central factor of G is G_{n} / G_{n+1}. A group G is said to be residually- P, where P is some group property, iff for each $g \in G$,
$g \neq 1$, there exists a normal subgroup N_{g} of G such that G / N_{g} has the property P and $g \notin N_{g}$.

If F is a free group, then $F / F_{m_{1}, \cdots, m_{n}}$ is the free polynilpotent group relative to the sequence m_{1}, \cdots, m_{n}. Similarly define \mathscr{L} / $\mathscr{L}_{m_{1}, \ldots, m_{n}}$, the free polynilpotent Lie Algebra, where \mathscr{L} is a free Lie Algebra.

Free polynilpotent groups have been studied extensively by Gruenberg [1], who shows for example that they are residually finite p-groups for every prime p, and by Smelkin [5] who determines their lower central factors and also obtains bases for the additive groups of free polynilpotent Lie Algebras. Results along these lines have also been obtained by Ward [6].

It is a consequence of Gruenberg's result that $G=F /\left(F_{m_{1}, m_{2}, \cdots, m_{n}} \cap\right.$ $\left.F_{m_{1} m_{2} \cdots m_{n}+r}\right)$, $(r \geqq 0)$, is residually nilpotent and it may also be verified that for $s \geqq m_{1} m_{2} \cdots m_{n}+r$ the s th lower central factor of G and of $F / F_{m_{1}, m_{2}, \cdots, m_{n}}$ are isomorphic-see Lemma 7 below. In this paper, all the lower central factors of $F /\left(F_{m, n} \cap F_{m n+r}\right)(r \geqq 0)$, are computed (Theorem E below). This includes Smelkin's result on $F_{m, n}$ (the case $r=0$) and the proof here is independent of his relying solely on computations with basic group commutators. Also a classification of $F_{m, n} \cap F_{m n+r}$ as a product of certain commutator subgroups of F is obtained (Theorem A)-see Ward [6, Theorem 17.2] for the case $n=2$. The lower central factors of $F /\left(F_{m, n} \cap\right.$ $F_{m n+r}$) turn out to be free abelian and consequently this group is residually torsion-free-and-nilpotent and therefore by Gruenberg [1] is residually a finite p-group for all primes p.

Using the results from the group case, $\mathscr{L}_{m, n} \cap \mathscr{L}_{m n+r}$ is identified (Theorem $\left.\mathrm{A}^{\prime}\right)$ and a basis for the additive group of $\mathscr{L} /\left(\mathscr{L}_{m, n} \cap\right.$ $\mathscr{L}_{m n+r}$) is obtained (Theorem F).
2. Further notation and preliminary lemmas. Define, for any group G, with $n \geqq 2$,

$$
G(m, n ; r)=\Pi\left[G_{m+r_{1}}, G_{m+r_{2}}, \cdots, G_{m+r_{n}}\right]
$$

where the product is over all nonnegative integers r_{1}, \cdots, r_{n} with

$$
\begin{aligned}
& r_{1}+r_{2}+\cdots+r_{n}=r . \\
& \quad \text { If } n=1 \text {, define } G(m, l ; r)=G_{m+r},(\text { for } m \geqq 1, r \geqq 0) . \\
& \quad \text { Then it is clear that }
\end{aligned}
$$

$$
G(m, n ; 0)=G_{m, n}
$$

Theorem A. $\quad F_{m, n} \cap F_{m n+r}=F(m, n ; r)$.

The special case

$$
F_{m, 2} \cap F_{2 m+r}=\prod_{r_{1}+r_{2}=r}\left[F_{m+r_{1}}, F_{m+r_{2}}\right]
$$

has been shown by Ward [6, Theorem 17.2].
To prove this and to describe the lower central factors of $F / F(m, n ; r)$ I need some properties of free groups, free Lie Algebras and basic commutators, and the reader is referred to either Magnus, Karrass and Solitar [4, Chapter 5] or to M. Hall [2, Chapter 11]. An excellent account may also be found in P. Hall's notes [3, Chapter 5].

For a precise formulation of bracket arrangement β^{s} see [5, §5.2]; imprecisely $\beta^{s}\left(A_{1}, \cdots, A_{s}\right)$ means the commutator subgroup obtained by bracketing A_{1}, \cdots, A_{s} in a certain fixed defined way. Thus, for example, if $\left.\beta^{4}=(()),()\right)$ then $\beta^{4}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=\left[\left[A_{1}\right.\right.$, $\left.\left.A_{2}\right],\left[A_{3}, A_{4}\right]\right]$.

The bracket arrangement is used only in Lemma 1 below, which is probably well-known and is in any case a simple application of P. Hall's 3-subgroup lemma [5, Theorem 5.2].

Lemma 1. Let A_{1}, \cdots, A_{s} be normal subgroups of a group G, β^{s} a bracket arrangement of weight s and ρa (fixed) permutation of $1,2, \cdots, s$. Then

$$
\beta^{s}\left(A_{\rho(1)}, A_{\rho(2)}, \cdots, A_{\rho(s)}\right) \subseteq \prod_{\sigma}\left[A_{\sigma(1)}, A_{\sigma(2)}, \cdots, A_{\sigma(s)}\right]
$$

where the product is over all permutations σ of $1,2, \cdots, s$.
Proof. It is clear that we may assume ρ is the identity permutation.

The cases $s=2$ and $s=3$ are obvious. Now use induction on s. Let $s>3$ and suppose $\beta^{s}=\beta^{t} \beta^{q}$ so that

$$
\beta^{s}\left(A_{1}, \cdots, A_{s}\right)=\left[\beta^{t}\left(A_{1}, \cdots, A_{t}\right), \beta^{q}\left(A_{t+1}, \cdots, A_{s}\right)\right]
$$

By induction $\beta^{t}\left(A_{1}, \cdots, A_{t}\right) \subseteq \Pi_{\sigma}\left[A_{\sigma(1)}, \cdots, A_{\sigma(t)}\right]$ and

$$
\beta^{q}\left(A_{t+1}, \cdots, A_{s}\right) \subseteq \prod_{\rho}\left[A_{\rho(t+1)}, \cdots, A_{\rho(s)}\right]
$$

and so it is only necessary to show that

$$
\begin{equation*}
\left[\left[A_{\sigma(1)}, \cdots, A_{\sigma(t)}\right],\left[A_{\rho(t+1)}, \cdots, A_{\rho(s)}\right]\right] \cong \prod_{\sigma}\left[A_{\sigma(1)}, \cdots, A_{\sigma(s)}\right] \tag{1}
\end{equation*}
$$

since for normal subgroups $[A B, C] \subseteq[A, C][B, C]$.
We can assume, since $[A, B]=[B, A]$, that $t \geqq q$, and (1) can be proved by induction on q. If $q=1$, then $t=s-1$ and (1) is obvious. If $q>1$ then by the 3 -subgroup lemma

$$
\begin{aligned}
{\left[\left[A_{\sigma(1)},\right.\right.} & \left.\left.\cdots, A_{\sigma(t)}\right],\left[A_{\rho(t+1)}, \cdots, A_{\rho(s)}\right)\right] \\
& \leqq\left[\left[A_{\sigma(1)}, \cdots, A_{\sigma(t)}, A_{\rho(s)}\right],\left[A_{\rho(t+1)}, \cdots, A_{\rho(s-1)}\right]\right] \\
& \times\left[\left[\left[A_{\sigma(1)}, \cdots, A_{\sigma(t)}\right],\left[A_{\rho(t+1)}, \cdots, A_{\rho(s-1)}\right]\right], A_{\rho(s)}\right]
\end{aligned}
$$

Applying the inductive hypothesis to the groups on the right hand side of the above gives the required result.
$G(m, n ; r)$ as defined presents some notational difficulties and so in what follows I shall use the convention that Π_{r} (where the expression after the product is expressed as a function of r_{1}, \cdots, r_{n}) to mean the product over all nonnegative integers r_{1}, \cdots, r_{n} with $r_{1}+\cdots+r_{n}=r$.

Lemma 2. (i) $G(m, n ; r) \subseteq G(m, n ; r-1),(r \geqq 1)$.
(ii) $\quad[G(m, n ; r), G(m, p ; s)] \subseteq G(m, n+p ; r+s)$.
(iii) $[G(m, n ; r), G(m, n ; s)] \subseteq G(m, n ; r+s+1)$.
(iv) $G(m, n+1 ; r) \cong G(m, n ; r+1)$.

Proof. (i) is obvious.
(ii):- $[G(m, n ; r), G(m, p ; s)]=\left[\Pi_{r}\left[G_{m+r_{1}}, \cdots, G_{m+r_{n}}\right], \Pi_{s}\left[G_{m+s_{1}}\right.\right.$, $\left.\cdots, G_{m+s_{p}}\right]$]. (If $n=1$ interpret $\Pi_{r}=G_{m+r}$ and similarly if $p=1$). Hence $[G(m, n ; r), G(m, p ; s)] \subseteq \Pi_{r, s}\left[\left[G_{m+r_{1}}, \cdots, G_{m+r_{n}}\right],\left[G_{m+s_{1}}, \cdots\right.\right.$, $\left.\left.G_{m+s_{p}}\right]\right]$ since for normal subgroups, $[A B, C] \cong[A, C][B, C]$ and $[A, B C] \subseteq[A, B][A, C]$. Now use Lemma 1 to complete the proof.
(iii):- $[G(m, n ; r), G(m, n ; s)] \cong \Pi_{r, s}\left[\left[G_{m+r_{1}}, \cdots, G_{m+r_{n}}\right],\left[G_{m+s_{1}}, \cdots\right.\right.$, $\left.G_{m+s_{n}}\right]$.

$$
\text { If } \begin{aligned}
n=1, \text { then } \Pi_{r, s} & =\left[G_{m+r}, G_{m+s}\right] \\
& \subseteq G_{m+r+m+s} \\
& \subseteq G_{m+r+s+1}=G(m, n ; r+s+1)
\end{aligned}
$$

If $n>1$

$$
\begin{aligned}
{\left[G_{m+r_{1}}, \cdots, G_{m+r_{n}}\right] } & \subseteq\left[G_{m+r_{1}+m+r_{2}}, G_{m+r_{3}}, \cdots, G_{m+r_{n}}\right] \\
& \subseteq\left[G_{m+r_{1}+r_{2}+1}, G_{m+r_{3}}, \cdots, G_{m+r_{n}}\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
& {[G(m, n ; r), G(m, n ; s)]} \\
& \quad \cong \prod_{r, s}\left[\left[G_{m+r_{1}+r_{2}+1}, G_{m+r_{3}}, \cdots, G_{m+r_{n}}\right],\left[G_{m+s_{1}}, \cdots, G_{m+s_{n}}\right]\right] \\
& \quad \cong \prod_{t}\left[G_{m+t_{1}}, \cdots, G_{m+t_{2 n-1}}\right], \quad t=r+s+1
\end{aligned}
$$

The last step comes, as before, from Lemma 1.
(iv):- The proof is similar to (iii) and is omitted.

Lemma 3. Let A, B, C be normal subgroups of the group G. Suppose $a \in A, b \in B, c \in C$. Then

$$
\begin{gathered}
{[a, b, c][b, c, a][c, a, b] \equiv 1 \text { modulo }[[A, B],[A, C]] .} \\
{[[A, B],[B, C]] . \quad[[A, C],[B, C]]}
\end{gathered}
$$

Proof. By well-known commutator identities (see e.g., [4, Theorem 5.1]),

$$
\begin{aligned}
& {\left[a, b, c^{a}\right]\left[c, a, b^{c}\right]\left[b, c, a^{b}\right]=1} \\
& \quad \Longrightarrow[a, b, c[c, a]][c, a, b[b, c]][b, c, a[a, b]]=1 \\
& \quad \Longrightarrow[a, b,[c, a]][a, b, c][a, b, c,[c, a]][c, a,[b, c]] \\
& \quad \times[c, a, b][c, a, b,[b, c]][b, c,[a, b]][b, c, a][b, c, a,[a, b]]=1 .
\end{aligned}
$$

Now since

$$
\begin{aligned}
& {[a, b,[c, a]] \text { and }[a, b, c,[c, a]] \in[[A, B],[A, C]],} \\
& {[c, a,[b, c]] \text { and }[c, a, b,[b, c]] \in[[A, C],[B, C]]} \\
& {[b, c,[a, b]] \text { and }[b, c, a,[a, b]] \in[[A, B],[B, C]]}
\end{aligned}
$$

and the groups are all normal we have that

$$
\begin{gathered}
{[a, b, c][b, c, a][c, a, b] \in[[A, B],[A, C]] .} \\
{[[A, B],[B, C]] \cdot[[A, C],[B, C]]}
\end{gathered}
$$

This lemma can be thought of as a generalization of the Jacobi identity for groups.

Corollary. Suppose $a \in G(m, n ; r), b \in G(m, p ; s), c \in G(m, q ; t)$. Then

$$
[a, b, c][b, c, a][c, a, b] \equiv 1 \text { modulo } G(m, n+p+q ; r+s+t+1)
$$

Proof. Let $A=G(m, n ; r), B=G(m, p ; s), C=G(m, q ; t)$. Then by Lemma 2,

$$
\begin{aligned}
{[[A, B],[A, C]] } & \cong[G(m, n+p ; r+s), G(m, n+q ; r+t)] \\
& \cong G(m, n+p+q ; r+s+r+t) \\
& \cong G(m, n+p+q ; r+s+t+1)
\end{aligned}
$$

Similarly for $[[A, B],[B, C]]$ and $[[A, C],[B, C]]$.
3. Bases. Let c be a basic commutator with $c=\left[c_{1}, c_{2}\right]$ for
basic commutators c_{1}, c_{2}. Say c is structurally contained in $F(m, 1$; $r)=F_{m+r}$ iff $c \in F_{m+r}$. Suppose it is defined what is meant by saying that c is structually contained in $F(m, t ; r)$ for all $1 \leqq t<n$ and for all r. Then say c is structurally contained in $F(m, n ; r)$ iff c_{1} is structurally contained in $F\left(m, s ; r_{1}\right)$, and c_{2} is structurally contained in $F\left(m, t ; r_{2}\right)$ for some $s, t \geqq 1$ and some $r_{1}, r_{2} \geqq 0$ with $s+t=n$ and $r_{1}+r_{2}=r$. (Note: If $s \geqq 2$, then automatically $c_{2} \in F_{m}$ since $\left[c_{1}, c_{2}\right.$] is basic.)

For a basic commutator c, write $c \bar{\in} F(m, n ; r)$ iff c is structurally contained in $F(m, n ; r)$.

The following lemmas are easily verified.
Lemma 4. If $c \bar{\in} F(m, n ; r)$ then $c \in F(m, n ; r)$.
Lemma 5. (i) If $c \overline{\operatorname{\epsilon }} F(m, n ; r)$ then (ii) $c \bar{\in} F(m, n-1 ; r+m)$, $(n \geqq 2) . \quad c \bar{\in} F(m, n ; r-1) . \quad(r \geqq 1)$.

Proofs. These come directly from the definition and Lemma 2.
Lemma 6. Suppose b, c are basic commutators such that $b \bar{\in}$ $F(m, s ; i)$, and $c \bar{\in} F(m, t ; k)$, with $s+t=n$ and $i+k=r$. Then $[b, c]$ is congruent, modulo $F(m, n ; r+1)$, to a product of basic commutators, each of which is structurally contained in $F(m, n ; r)$.

Proof. We may assume that F is finitely generated since b and c only involve a finite number of generators of F.

We may also assume that $b>c$ since $[b, c]=[c, b]^{-1}$. If b is a generator of F then clearly [b, c] is a basic commutator. If $b=$ [b_{1}, b_{2}] where $b_{2} \leqq c$ then again [b, c] is a basic commutator and there is nothing to be shown.

Define the difference number (d.n.) of a commutator [b, c] where b and c are basic commutators with $b>c$, in the following way: Let b have weight w and suppose there exists v basic commutators of weight $\leqq w$. Let c be the l th basic commutator. Then $l<v$ and define

$$
\text { d.n. }[b, c]=v-l
$$

Now use induction on d.n. [b, c]. (This is a type of "backward induction").

Suppose $b=\left[b_{1}, b_{2}\right]$ where b_{1}, b_{2} are basics and $b_{2}>c$. Then weight $b_{2} \geqq$ weight c, giving that $b_{2} \in F_{m}$ and consequently $b_{1} \in F_{m}$.

Thus, we may assume $s \geqq 2$ and therefore suppose

$$
b_{1} \bar{\in} F\left(m, s_{1} ; i_{1}\right), \quad b_{2} \bar{\in} F\left(m, s_{2} ; i_{2}\right),
$$

with $s_{1}+s_{2}=s, i_{1}+i_{2}=i,\left(s_{1}, s_{2} \geqq 1, i_{1}, i_{2} \geqq 0\right)$. Then by corollary to Lemma 3,

$$
\begin{equation*}
[b, c]=\left[b_{1}, b_{2}, c\right] \equiv\left[b_{1}, c, b_{2}\right]\left[b_{2}, c, b_{1}\right]^{-1} \text { modulo } F(m, n ; r+1) \tag{3}
\end{equation*}
$$

Now d.n. $\left[b_{1}, c\right]<$ d.n. $[b, c]$ and so by the inductive hypothesis [$\left.b_{1}, c\right]$ is congruent, modulo $F\left(m, s_{1}+t ; i_{1}+k+1\right)$, to a product, $e_{1}^{\alpha_{1}} \cdots e_{q}^{\alpha_{q}}$ say ($\alpha_{i} \in \boldsymbol{Z}$), of basic commutators e_{i} with each $e_{i} \bar{\in} F\left(m, s_{1}+\right.$ $\left.t ; i_{1}+k\right)$.

Then using the commutator identity $[x y, z]=[x, z][x, z, y][y, z]$ and Lemmas 2 and 3, we see that

$$
\begin{equation*}
\left[b_{1}, c, b_{2}\right]=\prod_{j=1}^{q}\left[e_{j}, b_{2}\right]^{\alpha_{j}} \text { modulo } F(m, n ; r+1) \tag{4}
\end{equation*}
$$

Now for each $j, 1 \leqq j \leqq q$, weight $e_{j} \leqq$ weight b. Also $b_{2}>c$ and hence d.n. $\left[e_{j}, b_{2}\right]<$ d.n. $[b, c]$. Therefore by induction each $\left[e_{j}, b_{2}\right]$, and consequently $\left[b_{1}, c, b_{2}\right]$, can be written, modulo $F(m, n$; $r+1$), as a product of basic commutators structurally contained in $F(m, n ; r)$.

Also d.n. $\left[b_{2}, c\right]<$ d.n. $[b, c]$ and therefore $\left[b_{2}, c\right]$ is congruent, modulo $F\left(m, s_{2}+t ; i_{2}+k+1\right)$, to a product, $f_{1}^{\beta_{1}} \cdots f_{h}^{\beta_{h}}$ say $\left(\beta_{i} \in \boldsymbol{Z}\right)$, of basic commutators f_{i} such that $f_{i} \bar{\epsilon} F\left(m, s_{2}+t ; i_{2}+k\right)$.

For a particular f_{i}, note that there are two possibilities, either $f_{i} \geqq b_{1}$ or $f_{i}<b_{1}$. In any case, as above, get

$$
\begin{equation*}
\left[b_{2}, c, b_{1}\right] \equiv \prod_{j=1}^{h}\left[f_{j}, b_{1}\right]^{\beta_{j}} \text { modulo } F(m, n ; r+1) \tag{5}
\end{equation*}
$$

Now consider the two cases.
Case 1. $f_{j} \geqq b_{1}$. Now weight $f_{j} \leqq$ weight b and also $b_{1}>b_{2}>c$ giving that d.n. $\left[f_{j}, b_{1}\right]<$ d.n. $[b, c]$.

Case 2. $b_{1}>f_{j}$. Now weight $b_{1}<$ weight b and also, since f_{j} has bigger weight than $c, f_{j}>c$ giving that d.n. $\left[b_{1}, f_{j}\right]<$ d.n. $[b, c]$.

Hence, by induction, each $\left[f_{j}, b_{1}\right]$ is congruent, modulo $F(m, n$; $r+1)$, to a product of basic commutators structurally contained in $F(m, n ; r)$ and therefore from (5), so is $\left[b_{2}, c, b_{1}\right]$. Thus $\left[b_{1}, c, b_{2}\right]$ and $\left[b_{2}, c, b_{1}\right]^{-1}$ are products, modulo $F(m, n ; r+1)$, of basic commutators of the required form and using (3) gives the required result.

Theorem B. $F(m, n ; r) / F(m, n ; r+1)$ is free abelian, freely
generated by those basic commutators c of weight $m n+r$ such that $c \bar{\in} F(m, n ; r)$.

Proof. It follows from Lemma 2 that the group is abelian. Also since $F(m, n ; r) \subseteq F_{m n+r}$, and $F(m, n ; r+1) \subseteq F_{m n+r+1}$ the freeness will follow from the Basis Theorem for Basic Commutators [4, Theorem 5.13A or 2, Theorem 11.2.4].

Therefore it is only necessary to show that the stated basic commutators generate the group.

If $n=1$, this is equivalent to showing that F_{m+r} / F_{m+r+1} is generated by basic commutators of weight $m+r$ and this is part of the Basis Theorem. Let $n>1$ and proceed by induction on n. If $a \in F(m, n ; r)$ then a is a product of elements of the form

$$
b=\left[b_{1}, \cdots, b_{n}\right], b_{i} \in F_{m+r_{i}} \text { with } r_{1}+\cdots+r_{n}=r
$$

By induction $\left[b_{1}, \cdots, b_{n-1}\right.$] is congruent, modulo $F\left(m, n-1 ; r-r_{n}+1\right)$ to a product of basic commutators structurally contained in $F\left(m, n-1 ; r-r_{n}\right)$ and b_{n} is also congruent modulo $F_{m+r_{n}+1}$ to a product of basic commutators contained in $F_{m+r_{n}}$. Now from Lemma 2,

$$
\left\lfloor F\left(m, n-1 ; r-r_{n}+1\right), F_{m+r_{n}}\right\rfloor \subseteq F(m, n ; r+1)
$$

and

$$
\left[F\left(m, n-1 ; r-r_{n}\right), F_{m+r_{n}+1}\right] \subseteq F(m, n ; r+1)
$$

and so the problem reduces to showing that $[a, b]$, with $a \bar{\in} F(m, n-$ $\left.1 ; r-r_{n}\right)$ and $b \bar{\in} F\left(m, 1 ; r_{n}\right)$, is congruent, modulo $F(m, n ; r+1)$, to a product of basic commutators of weight $m n+r$ each of which is structurally contained in $F(m, n ; r)$. Lemma 6 does this for us.

Corollary. Let b be a basic commutator. Then

$$
b \bar{\in} F(m, n ; r) \Longleftrightarrow b \in F(m, n ; r) .
$$

Proof. We have already seen (Lemma 4) that if $b \bar{\in} F(m, n ; r)$ then $b \in F(m, n ; r)$.

Suppose now $b \in F(m, n ; r)$. Then b, being a basic commutator, is not 1 and so $b \notin \bigcap_{i=1}^{\infty} F_{i}$, since free groups are residually nilpotent. Thus $b \notin \bigcap_{i=1}^{\infty} F(m, n ; i)$ and suppose $b \in F(m, n ; s), b \notin F(m, n ; s+1)$. So $s \geqq r$ and therefore by Theorem B, b is a unique product, modulo $F(m, n ; s+1)$ of basic commutators structually contained in $F(m, n$; $s)$. Therefore since b is also a basic commutator, this unique product must be precisely b, giving that $b \bar{\in} F(m, n ; s)$ and therfore $b \bar{\in}(m, n ; r)$.

Theorem C. Every element of $F_{m, n}$ can be written uniquely as

$$
c^{\alpha_{1}} \ldots c^{\alpha_{s}} \bmod F(m, n ; r)
$$

where c_{1}, \cdots, c_{s} are the basic commutators of weight $<m n+r$ structually contained in $F_{m, n}, \alpha_{i} \in \boldsymbol{Z}$, and $c_{1}<\cdots<c_{s}$ in the ordering of the basic commutators.

Remark. This theorem reduces to P. Hall's Basis Theorem for the case $n=1$ and $m=1$. This then can be considered as a "basis theorem" for certain terms of the polycentral series of F. Whereas in the Basis Theorem uniqueness modulo F_{r+1} is obtained, here F_{r+1} must be replaced by the complicated expression $F(m, n ; r)$.

Proof of Theorem C. The proof is immediate from Theorem B. I omit spelling out the details.

Theorem A.

$$
F_{m, n} \cap F_{m n+r}=F(m, n ; r) .
$$

Proof. The proof is now easy. Use induction on r. The case $r=0$ is trivial.

It is clear that $F(m, n ; r) \subseteq F_{m, n} \cap F_{m n+r}$. Suppose $r>0$ and $a \in F_{m, n} \cap F_{m n+r}$. Then $a \in F(m, n ; r-1)$ by the inductive hypothesis, and by Theorem B, a is a product, modulo $F(m, n ; r)$, of certain basic commutators of weight $m n+r-1$. Since also $a \in F_{m n+r}$, this product must be 1 by the Basis Theorem, and so $a \in F(m, n ; r)$. This proves Theorem A.

It is clear that these arguments work for the free Lie Algebra and so I state without proof the following two theorems.

Let T_{i} denote the set of basic commutators of weight i.
Theorem B^{\prime}. $\mathscr{L}_{m, n} / \mathscr{L}(m, n ; r)$ has as additive basis those basic commutators of weight $<m n+r$ which are structually contained in $\mathscr{L}_{m, n}$.

Theorem A^{\prime}.

$$
\mathscr{L}_{m, n} \cap \mathscr{L}_{m n+r}=\mathscr{L}(m, n ; r) .
$$

Theorems A^{\prime} and B^{\prime} may also be deduced easily from Theorem F and its corollary below.

Theorem D. (Smelkin [5]). Let $G=F / F_{m, n}$. Then G_{i} / G_{i+1} is free abelian, freely generated by the set $S_{i}=T_{i} \backslash R_{i}$, where R_{i} denotes the basic commutators of weight i structurally contained in $F_{m, n}$.

Proof. Clearly G_{i} / G_{i+1} is generated by S_{i} since the basics structurally contained in $F_{n, n}$ vanish in G.

We need only consider $i \geqq m n$ and hence suppose $i=m n+r$, $r \geqq 0$.

Suppose a product Π of elements from S_{i} is in $F_{i+1} F_{m, n}$. Then

$$
\Pi=a b, \quad a \in F_{m, n}, \quad b \in F_{i+1} .
$$

Hence $a \in F_{m, n} \cap F_{\imath}=F(m, n ; r)$ by Theorem A. Therefore by Theorem B, a is a product, modulo $F(m, n ; r+1)\left(\cong F_{i+1}\right)$, of basic commutators of weight i which are structurally contained in $F(m, n ; r)$. The set of basic commutators structually contained in $F(m, n ; r)$ of weight i has empty intersection with S_{i} and so $a \equiv 1$ modulo F_{i+1} and hence $\Pi \equiv 1$ modulo F_{i+1}, giving that Π is identically 1 .

Theorem D^{\prime}. (Smelkin [5]). The set consisting of those basic commutators which are not structurally contained in $\mathscr{L}_{n, n}$ is an additive basis for $\mathscr{L} \mid \mathscr{L}_{m, n}$.

This may be proved from Theorem A^{\prime} by analogy to the group case. It is also a trivial consequence of Theorem F below.

The proof of the following theorem includes that of Theorem D.
Theorem E. Let $G=F / F(m, n ; r)$. Then G_{i} / G_{i+1} is free abelian, freely generated by the set $S_{i}=T_{i} \backslash R_{i}$, where R_{i} denotes the basic commutators of weight i structurally contained in $F(m, n ; r)$.

Proof. Clearly S_{i} generates G_{i} / G_{i+1}. It is only necessary to consider $i \geqq m n+r$ and hence let $i=m n+r+s, s \geqq 0$. Suppose a product Π of elements from S_{i} is contained in $F(m, n ; r) F_{i+1}$.

Then

$$
\Pi=a b, a \in F(m, n ; r), \quad b \in F_{i+1} .
$$

Therefore $a \in F_{i} \cap F(m, n ; r)=F(m, n ; r+s)$, by Theorem A. Thus a, by Theorem B, is a product, modulo $F(m, n ; r+s+1)$, of basic commutators of weight i which are structurally contained in
$F(m, n ; r+s)$. An element of S_{i} cannot be structurally contained in $F(m, n: r+s)$ for if so it would be constructurally contained in $F(m, n ; r)$-see Lemma 5 . Hence Π is identically 1 .

If G is any group then as e.g., in Magnus, Karrass and Solitar [4, Chapter 5] $\bigoplus_{i=1}^{\infty} G_{i} / G_{i+1}$ can be made into a Lie Algebra L by defining addition, + , in L by

$$
\sum a_{i} G_{i+1}+\sum a_{i}^{\prime} G_{i+1}=\sum a_{i} a_{i}^{\prime} G_{i+1},\left(a_{i}, a_{i}^{\prime} \in G_{i}\right)
$$

(i.e., using the group multiplication componentwise) and multiplication, \cdot, in L by first defining

$$
a_{i} G_{i+1} \cdot a_{j} G_{j+1}=\left[a_{i}, a_{j}\right] G_{i+j+1},\left(a_{i} \in G_{i}, a_{j} \in G_{j}\right)
$$

and then using the distributive laws to extend this definition to all of $\oplus G_{i} / G_{i+1}$.

Let $G=F / F(m, m ; r)$. Then there is the obvious surjective Lie Algebra homomorphism $\sigma: \mathscr{L} \mid \mathscr{L}(m, n ; r) \rightarrow \oplus G_{i} / G_{i+1}$. The basic commutators structurally contained in $\mathscr{L}(m, n ; r)$ vanish in $\mathscr{L} \mid \mathscr{L}(m, n ; r)$ and the others are linearly independent in $\oplus G_{i} / G_{i+1}$ by Theorem E. This gives the following theorem.

Theorem F. The additive group of $\mathscr{L} / \mathscr{L}(m, n ; r)$ has as basis the set of those basic commutators which are not structurally contained in $\mathscr{L}(m, n ; r)$.

Corollary. $\mathscr{L} \mid \mathscr{L}(m, n ; r)$ and $\oplus G_{i} / G_{i+1}$ are isomorphic Lie Algebras under the obvious map.

Lemma 7. (i) If F / R is residually nilpotent so is $F /\left(R \cap F_{n}\right)$.
(ii) The m th lower central factor of F / R is isomorphic to that of $F /\left(R \cap F_{n}\right)$ for any $m \geqq n$.

Proof. (i) If F / R is residually nilpotent, then $\bigcap_{i} F_{i} R=R$. Now $\bigcap_{i} F_{i}\left(R \cap F_{n}\right) \subseteq \bigcap_{i} F_{i} R=R$. Also for $i \geqq n, F_{i}\left(R \cap F_{n}\right) \cong F_{n}$ giving that $\cap_{i} F_{i}\left(R \cap F_{n}\right)=R \cap F_{n}$. Thus $F /\left(R \cap F_{n}\right)$ is residually nilpotent when F / R is.
(ii) Since $F_{m+1}\left(R \cap F_{n}\right) \subseteq F_{m+1} R$ we have a surjective map

$$
F_{m}\left(R \cap F_{n}\right) / F_{m+1}\left(R \cap F_{n}\right) \longrightarrow F_{m} R / F_{m+1} R .
$$

The kernel of this map is $F_{m}\left(R \cap F_{n}\right) \cap F_{m+1} R=F_{m+1}\left(R \cap F_{n}\right)$, for $m \geqq n$, giving that the two groups are isomorphic.

Corollary 1. $F /\left(F_{m_{1}, \cdots, m_{n}} \cap F_{m_{1} \cdots m_{n}+r}\right)$ is residually nilpotent.

Corollary 2. $F /\left(F_{m, n} \cap F_{m n+r}\right)$ is residually torsion-free and nilpotent.

Corollary 3. $F /\left(F_{m, n} \cap F_{m n+r}\right)$ is residually a finite p-group for all primes p.

Proof of corollaries. By Gruenberg [1], $F / F_{m_{1}, \ldots, m_{n}}$ is residually nilpotent, giving that $F /\left(F_{m_{1}, \cdots, m_{n}} \cap F_{m_{1} \cdots m_{n}+r}\right)$ is residually nilpotent. By Theorem E, $F /\left(F_{m, n} \cap F_{m n+r}\right)$ has torsion-free lower central factors and is therefore residually torsion-free-and-nilpotent and hence again by Gruenberg [1] it is residually a finite p-group for all primes p.

It is also a corollary that the sth lower central factor of $F / F_{m_{1}, \ldots, m_{n}}$ is isomorphic to that of $F /\left(F_{m_{1}, \ldots, m_{n}} \cap F_{m_{1} \cdots m_{n}+r}\right)$, for $s \geqq$ $m_{1} \cdots m_{n}+r$.

References

1. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc., (3) 7 (1957), 29-62.
2. M. Hall, The Theory of Groups, Macmillan, New York, 1959.
3. - The Edmonton Notes on Nilpotent Groups, Queen Mary College Lecture Notes, London, 1969.
4. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York-London-Sydney, 1966.
5. A. L. Smelkin, Free Polynilpotent Groups, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 91-122; English transl., Amer. Math. Soc. Transl., (2) 55 (1966), 270-304.
6. M. A. Ward, Basic Commutators, Phil. Trans. Royal Soc. of London, Ser, A, 264 (1969), 343-412.

Received September 13, 1977 and in revised form June 9, 1978.
University College
Belfield, Dublin 4, Ireland

