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MEASURES AS FUNCTIONALS ON
UNIFORMLY CONTINUOUS FUNCTIONS

J A N K. PACHL

The space T1t of bounded Radon measures on a complete
metric space is studied in duality with the space ^ of
bounded uniformly continuous functions. The weak topology
has reasonable properties: the space %Rt is ^-weakly se-
quentially complete, and every ^-weakly compact subset of
Wlt is pointwise equicontinuous on the set of 1-Lipschitz
functions.

1* Introduction* Let (X, d) be a complete metric space and
SPΐf(X) the space of (bounded) Radon ( = tight) measures on X. This
space is usually studied in duality with the space ^h{X) of bounded
continuous functions on X. It is known that the weak topology
w(fΰtt(X), ^b(X)) is sequentially complete, and there is a useful cri-
terion (Prohorov's condition) for w(Tlt, ^^-compactness [11].

In this paper we turn to the space ^h(X) of bounded uniformly
continuous functions on Xand to the weak topology w($Jlt(X), *%fb(X)).
The topologies w(Wlu ^ ) a n d w(Wlu ^b) coincide on the positive cone
•3Jlt; thus our results say nothing new about positive measures.
Obviously, the two topologies differ (on fΰlt) whenever <%Sb Φ <ĝ .

The main results are: (A) the topology w(Wlt, <%fh) is sequentially
complete, and (B) a norm-bounded subset of 2ft t is relatively w(ΪDtt, ^ 6 ) -
compact if and only if its restriction to the set

Lip (1) - {/: X^R\\\f\\ gl and \f{x) - f(y) \ £ d(x, y) for x,yeX}

is equicontinuous in the compact-open topology.
The topology of uniform convergence on Lip (1) was discussed by

Dudley [3]. Here we improve some of Dudley's results. For example,
Theorem 6 in [3] says, in the present setup, that μn—>μ uniformly
on Lip (1) whenever μ e $Jltf μn e Έflt for n = 1, 2, , and μJJ) -> μ(f)
for each / e ^ ( X ) . Here we obtain the same conclusion, assuming
only that μn(f)->μ(f) for each fe^b(X).

A reasonable generalization is to allow X to be an arbitrary uni-
form space and replace Ttt by the space Wlu(X) of uniform measures
on X (see [4] and the references therein). The results extend to the
space WU(X), as well as to the space WlF(X) of free uniform measures.
Several previously studied spaces of measures can be described as
Tlu or mF—see [5], [8]. To cover both SKU and WlF, in § 2 we employ
sets of Lipschitz functions more general than Lip(l).

As in similar situations studied before (e.g., [1], [10]), the goal
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of the construction is to pass from fΰtt(X) to the space I1 — Wlt(N).
It should be noted, however, that the approach through partitions
of unity ([10], [12]) seems to be barred, in view of the theorem by
Zahradnίk [13] which says that there are metric spaces without a
sufficient supply of Γ-continuous partitions of unity.

An earlier version of this paper was announced in [9].

2* Construction* The property of Radon measures we are chiefly
interested in is their continuity on Lip(l) (or on more general sets
of Lipschitz functions). In Lip (1), the compact-open topology agrees
with the topology of pointwise convergence, and the latter will be
easier to deal with.

Throughout this section, (X, d) will be metric space and ft a
Lipschitz function on X; that is, ft maps X into the field R of real
numbers and

\h{x)-h{y)\^d{x,y)

for x, y e X. Put

Lip (h) = {/: X— J2 I I/I ̂  Λ and \f(x) - f(y) | ̂  d(x, y) for x, y e X) ,

and denote by U the linear space spanned by Lip (ft). Endow U with
the topology of pointwise convergence (i.e., U is a topological sub-
space of Rx) and denote by SJΪ the space of the linear forms on U
whose restrictions to Lip (ft) c U are continuous. Endow Tt with the
norm

Needless to say, both U and Tt depend on ft.
As Lip (ft) is compact, the Ascoli theorem ([6], Ch. 7, Th. 17)

gives the following precompactness criterion.

LEMMA 2.1. A subset of ίOl is || \\dΛ-precompact if and only if
it is equicontinuous on Lip (ft).

The main idea in the proof of the following lemma is to choose
as small functions in Lip (ft) as possible and then use the fact that
they cannot be made smaller. This is why it will be convenient to
work with (nonnegative) functions in Lip (ft) which are "small far
from a finite set": say that /eSm(ft) if and only if there is a non-
empty finite set F(f) c X such that

/ = inf {g e Lip (h)\g^O and g{y) ^ f{y) for every y e F(f)} .

Obviously Sm(ft) c Lip (ft). The set F{f) is not unique (in fact, the
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equality remains true when F{f) is replaced by any larger set); we
fix arbitrarily, for each/e Sm (fe), a nonempty finite set F(f) satisfying
the above equality.

Notice that each /eSm(fe) can be described explicitly in terms
of d and F(f):

f(x) = max {(/(») - d(y, x))+ \ y e F{f)} .

Note also that Sm (fe) is pointwise dense in Lip+ (fe) = {fe Lip (fe) | / ^ 0};
indeed, every nonnegative function in Lip (70 is the supremum of a
subset of Sm(fe).

The system of finite subsets of X is denoted by Fin(X).
When YaX and / is a function on X, write

and Il/H - | | / | | x .

LEMMA 2.2. Lei .McSR and suppose that there is a t > 0 swcfe
that \μ(f) I ̂  £ Il/H for any μeM and any bounded fe U. If M is
not || \\dΛ-precompact then there are: an ε > 0, gkeSm(h) and
μk G M, k = 1, 2, , suc/k ί/iαί /or eαcft k we have

1°. I Λ(Λ) I > 2ε ,
2°. I ^ ( ^ ) I ̂  ε /or i < k, and
3°. cry Λ gk = 0 /or i < Λ.

Proof. By 2.1, ikf is not equicontinuous on Lip (A) at 0. Every
fe Lip (fe) may be written as / = / + — / ' with /+, /~ 6 Lip +{h), and
Sm(fe) is dense in Lip+(fe). Hence M is not equicontinuous on Sm (fe)
at 0: there is a 7 > 0 such that

Vδ > OvFe Fin (J5Γ)3/e Sm (fe)3/i 6 M: \\f\\F < δ and | /ι(/) | > 3τ .

Take such a y > 0 and keep it fixed through the whole proof. To
reduce the number of quantifiers, we drop δ: Put δ = y/t and g =
(/ - §)+ to get

( 1 ) VFeFm(X)lgeSm(h)3μeM:\\g\\F = 0 and \μ(g)\>2y.

Now we distinguish two cases. Case II can arise only when fe
is unbounded.

Case I. Assume that there is a r ^ 0 such that for all μeM
and /eSm(fe) we have \μ(f — / Λ r ) | <; 7. (This is automatically
satisfied when fe is bounded.) Substituting this to (1) we get

(2) vFeFm(X)lgeSm(h)iμeM: \\g\\£r, ||βr||*. = O and \μ(g)\>7
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For n = 1, 2, consider the statement

VFe Fin (X)3# 6 Sm (Λ)3/< 6 if: || g || ^ r/2*'1 , || g | | , = 0 and

Plainly ( ^ ) does not hold for 2n ^ 4rί/τ; on the other hand,
does hold by (2). Choose n such that ( ^ ) is true and (Sζ+1) is not.
With Ύ] = r/2%, 7* = (1/2 + l/2w)τ and ε = 7/4w(w + 1) we have

VίePin(X)3flr6Sm(λ)3^eΛf: | | f lr | |^2i?, [|flr|U = O and

\μ(g)\>7*,

lFoe Fin (X)V<7 e Lip (h)Vμ eM:[0 £ g £η,\\g\\FQ = 0]

H μ() I ̂  T* - 2ε .

(The negation of (£ζ+1) gives only 3JP0V# 6 Sm (fe) however,
{g eSm(h)\g <^ η) is dense in {g e Lip (h)\0 <L g <>η}. Hence (4) fol-

lows.)
We are going to construct gt e Sm (h) and μk e M for k = 1,2,

such that
Γ°. I k ί | | ^ 2 i 7 and | ^ ( < 7 « | > 7 * ,
200. I (̂ίjrfc* - gϊ A η) \ ̂  e for i < k , and
300. fir? Agΐ ^η for i < fc.
First use (3) to find g?eSm(h) and μLeM such that \\g*\\^2η

and I ^(flrf) | > 7* (conditions 200 and 300 are empty for k = ΐ). For
fc ̂ > 2, when ^ and g* have been constructed for j < A, take a finite
set FaX such that FΌF0, Fz>F(gf) for i < k, and | ^ ( / ) | ^ ε
whenever / e Lip (h), \\f\\F = 0 and j < fc. Use (3) to get a #ί e Sm (ft)
and a f t e l such that Hflrf || ^ 2^, \\gi\\F = 0 and \μh{gt) \ > 7*.
Conditions I00 and 200 are obviously satisfied. As for 300, put / * =
(2η - gt)+ A h; then / * 6 Lip+ (h) and for yeF, j < fe we have f*(y) =
2η Ah^ gf(y). This together with Fz)F(gf) gives / * ^ #*. Now,
if flfί(a?) > 37 for some xeXthen 77 > f*(x) ^ flr*^)? hence g* A g* ^ ^.

Finally, put gk = g* - g* A η. Conditions 2°, 3° follow from 200,
300. As for 1°, we have

I μk{gk) I ̂  I μk(gt) I - I μh{gt A η) I > 7* - (7* - 2s) = 2ε ,

by (4).
This concludes the proof when h is bounded. In the general case

we have to consider one more possibility:

Case II. Assume that the assumption made in Case I does not
hold. Thus for every r ^ 0 there are a μ e M and an fe Sm (h) such
that \μ(f-f A r) \ > 7. Put ε - 7/2.
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Choose μ^eM and gι e Sm (h) such that | μ^g^ \ >2ε. For k :> 2,
when μ$ and #,,• have been constructed for j < k, take a finite set
FaX such that Fz)F(gd) for j" < A; and | μ, (f) | ^ ε whenever j < &,
/ G Lip (h) and H/H*. = 0. Put rk = 2 max {/&(#) l^/eί7} and use the as-
sumption to produce a μk e M and an fk e Sm (ft) with | μk(fk — fk A rk) | >
2ε. Put gk — fk — fk A rk; condition 1° is satisfied. We have fk(y) <Ξ
h{y) ^ rk for each yeF, hence gk(y) = 0. Thus | | ^ | U = 0 and 2°
follows.

Finally, put / * = (rk - fk)
+ A h. Then / * e Lip+ (λ), and for yeF,

j < &, we have

f*(v) ^ (n - fk(v)) Λ A(2/) ̂  (n - A(y)) Λ

This along with Fz)F(gj) implies / * ;> ̂ , . If x e l and gk(x) > 0
then fk(x) > rk, hence /*(α?) = 0; this proves 3°, for gk A g^ ̂  gk A

COROLLARY 2.3 Let JkfcSK α îd suppose £&α£ ίfeerβ is α ί > 0
/̂ αί \μ(f)\ ^ ί I I/I I /or αw?/ μeM and any bounded feU. If

M is not II \\dih-precompact then there is a continuous linear map p:
3JI -—> I1 such that p(M) c I1 is not norm-precompact.

Proof. Produce μk and gk as in 2.2, satisfying 1°, 2° and 3°.
Define a linear map q:Γ —>U by

ff({Sjfe}?=i) = Σ
k=

for every bounded real sequence {zk}k=ι. Since the functions gk are
pairwise disjoint, the sum is well defined and, moreover, q(z) e 2 Lip (h)
whenever z is in the unit ball of l°°. It follows that the transposed
map p = *q maps 9K into I1 and is continuous, with || p || <; 2. In order
to show that p(M) is not precompact in I1, we prove that the in-
finite set {p(μk) I k = 1, 2, •} is norm-discrete:

I I p { μ i ) - P(βk) II = s u p { | (p(jij) - p(jih), z ) I I ze Γ , \\z \\ ^ 1}

- sup {| < Λ - μh, q(z)) \ \z e Γ, || ^ || ^ 1}

> ε

for i < k.

3* Results* Corollary 2.3 allows us to deduce the properties
of SKί(X) from those of I1. Let us recall the relevant facts about I1:

THEOREM 3.1. (a) The space I1 is weakly sequentially complete.
(b) Every weakly convergent sequence in I1 is norm convergent.
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Hence every weakly countably compact set in I1 is norm-compact.

Proof is in ([2], Π-§2). The second assertion in (b) uses the
theorem of Eberlein ([2], IΠ-§2).

Let X be a complete metric space and h a Lipschitz function on
X. The compact-open topology and the topology of pointwise con-
vergence agree on Lip(fe); this is the only topology on Lip(fc) we
consider. It is well known (see e.g., [4], [7]) that a bounded Radon
measure on X can be characterized as a linear form on ^/h{X) which
is || 11-continuous and whose restriction to Lip(l) is continuous.

Define again the norm || ||d = || ||d>1 on Wlt(X) by

THEOREM 3.2. Let X be a complete metric space, (a) The space

t(X) is w(ίΰlt9 ^b) sequentially complete.
(b) Let a set MaWt(X) be bounded on the unit || \\-ball in

The following conditions are equivalent:
( i ) M is relatively || \\d-compact;
(ii) M is relatively w($Jltf %fb) countably compact;
(iii) The restriction of M to Lip (1) is equicontinuous.

Proof, (a) Suppose that {μn}n=i is a w(ϊΰlt, %fb) Cauchy sequence
and {μn \ n = 1, 2, •} is not || ||d-precompact. The sequence is bounded
on the unit || ||-ball in ^h{X) by the Banach-Steinhaus theorem, and
2.3 produces a p:Wt-^lι such that {p(β*)\n = 1, 2, •• }c£1 is not
precompact. As the sequence {p(μn)}n=i is w(l\ l°°) Cauchy, this con-
tradicts 3.1. Hence {μn | n — 1, 2, •} is || ||d-precompact. It follows
that the w{^*, ^h) limit of the sequence (in the algebraic dual <&*
of ^ 6 ) is both || ||x-continuous on ^ 6 and continuous on Lip(l), i.e.,
belongs to Wlt.

(b) Obviously (i) « (iii) and (i) => (ii). If M is relatively w(Wlt, %fh)
countably compact but not || ||rf-precompact, then there is, again by
2.3, a p: Wlt —> I1 such that p(M) is relatively w(l\ Γ) countably
compact but not norm-precompact. This contradiction proves the
implication (ii) => (i).

Now let X be a uniform space. The uniform structure of X is
protectively generated by uniformly continuous maps into complete
metric spaces; the ίTSS-topology in the space WIJJK) is generated by
the corresponding maps into the spaces of Radon measures ([4], [5]).

COROLLARY 3.3. Let X be a uniform space, (a) The space
is w(-$Ru, <%fh) sequentially complete.

(b) The following properties of a set Ma Ttu(X) are equivalent:
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( i ) M is relatively UEB-compact;
(ii) M is relatively w($Jlu, %fb) countably compact;
(iii) The restriction of M to any UEB set is equicontinuous.

Proof, (a) follows immdiately from 3.2(a). In order to deduce
(b) from 3.2(b), it is enough to realize that every w(ϊΰluf ^b) bounded
set is ϊ7i?B-bounded and also bounded on the unit || ||-ball in

Thus the UEB-topology agrees with w(ίΰtu, %Sb) on every relatively
w($R%9 ̂ b) countably compact subset of $Jlu(X). LeCam [7] proved
that the two topologies agree on the positive cone SKί(X).

In the same way as the sets Lip(l) generate the £7ϋ7JS-topology
in $Jlu(X), the general sets Lip(fe) generate the UE-topologγ in the
space fΰlF(X) of free uniform measures [8]. Thus 2.3 yields the
following analogue to 3.3.

PROPOSITION 3.4. Let X be a uniform space, (a) The space
WlF(X) is w(MF, %S) sequentially complete.

(b) The following properties of a set Ma 2JlF(X) are equivalent:
( i ) M is relatively UE-compact;
(ii) M is relatively w(WlF, %f) countably compact;
(iii) The restriction of M to any UE set is equicontinuous.

REFERENCES

1. J. B. Conway, A theorem on sequential convergence of measures and some applica-
tions, Pacific J. Math., 28 (1969), 53-60.
2. M. M. Day, Normed linear spaces, 2nd Edition, New York 1962.
3. R. M. Dudley, Convergence of Baire measures, Studia Math., 27 (1966), 251-268.
Correction: Studia Math., 5 1 (1974), 275.
4. Z. Frolίk, Measure-fine uniform spaces I, Lecture Notes in Mathematics No. 541,
403-413; Springer-Verlag 1976.
5. Z. Frolίk, J. Pachl and M. Zahradnίk, Examples of uniform measures, Proc. Conf.
"Topology and Measure" (Zinnowitz 1974), Ernst-Moritz-Arndt-Universitat Greifswald 1978.
6. J. L. Kelley, General Topology, Princeton 1955.
7. L. Le Cam, Note on a certain class of measures, unpublished.
8. J. Pachl, Free uniform measures on sub-inversion-closed spaces, Comment. Math.
Univ. Carolinae, 17 (1976), 291-306.
9. , Compactness in spaces of uniform measures, Comment. Math. Univ.
Carolinae, 16 (1975), 795-797.
10. M. Rome, Vespace M°°{T), Publ. Dept. Math. (Lyon) 9-1 (1972), 37-60.
11. F. D. Sentilles, Bounded continuous functions on a completely regular space,
Trans. Amer. Math. Soc, 168 (1972), 311-336.
12. F. D. Sentilles and R. F. Wheeler, Linear functional and partitions of unity in
Cb(X), Duke Math. J., 4 1 (1974), 483-496.
13. M. Zahradnίk, ^-continuous partitions of unity, Czechoslovak Math. J., 26 (1976),
319-329.

Received April 12, 1978. Research supported in part by National Research Council
of Canada.

UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, B. C, CANADA V6T 1W5






