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INTEGRAL REPRESENTATION FOR ELEMENTS
OF THE DUAL OF ba(S, X))

MicHAEL KEISLER

D. Mauldin presented conditions under which the dual
of ca(S, J) could be given an integral representation. W.D.L
Appling gave a ‘‘pseudo-representation’’ for the dual of
ba(S, >7), but the latter was not the type obtained by Mauldin.
This paper gives conditions that are necessary and sufficient
for the existence of the classical type integral representation
for the dual of ba(S, X). ’

1. Introduction. Mauldin [11] found that an integral represen-
tation is possible for the elements of the dual of ca(S, >, provided
the cardinality of ea(S, >)) is =2% and the continuum hypothesis
holds. Edwards and Wayment noted in [7] that for the function
space of real-valued, absolutely continuous functions on [0, 1], AC,
the dual cannot be represented using Riemann or Lebesgue-type
integrals. Using a different type of integral, a “v-integral”, the
latter authors then presented an integral representation for elements
of AC*. W.D. L. Appling [1] observed that an analogous result held
for the subspace of ba(S, >,) made up of functions absolutely con-
tinuous with respect to a given member ¢ of ba(S, 3). The latter
paper went on to give a “pseudo-representation” of elements of the
dual of ba(S, >)). The representation was not the same type as
obtained, conditionally, by Mauldin for ca(S, >,). Dunford and Schwarz
[6], p. 374, noted that no “satisfactory representation” for members
of ba(S, >))* was known.

In this paper it is proven that a representation such as that
obtained by Mauldin for ca(S, >)) is possible for ba(S, >.) if and only
if ba(S, 3 does not contain a “continuous” element, a condition
which is shown by application of a theorem of Horn and Tarski
[8], to be equivalent to the existence of a subfield of > that is
isomorphic to the smallest field of subsets of (0, 1] containing the
intervals of the form (k/2", (k + 1)/2"], for nonnegative integers k
and n, hereafter denoted >.

The integral here will be the same as that used by both Mauldin
and Appling. The reader is referred to [2] for its definition and
properties.

2. Filters. Properties of filters make them very convenient
for several of the arguments. Filters are discussed in [12], and the
first two lemmas below, stated without proof, can be found there.
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The terminology used here differs slightly, so definitions are given
first.

DEFINITION. Let 3, be a field of subsets of S. FZ D) is a
filter iff v, we FimpliesvNw + @, vNwe Fand forzed,vUzecF.
A filter F is an ultrafilter if it is contained properly in no other
filter. B is a base for a filter F if BZ F and for ve F there is
w € B such that w < v.

LEMMA 1. Every filter is contained in an wultrafilter.

LEMMA 2. F is an ultrafilter iff ve D, implies veF or v ¢ F
(where v’ 1s the complement of v).

For an ultrafilter F' we can define p(v) =1, if ve F, and p(v) =
0, if v¢ F. It easily seen that peba(S, >)). Therefore the lemma
below can be used to construct some special members of ba(S, >).
Note, however, that there is no guarantee that the g constructed
above is in ca(S, 3)), should 3> happen to be a c-algebra.

LEMMA 3. Let Q be a property that if possessed by v >, then
for a subdivision D of v, there is w € D having property Q. A filter
F, with a base of elements having property Q, is contained in an
ultrafilter with a base of elements having property Q.

Proof. Let & be the family of all filters having a base of
elements having property Q. <& is partially ordered by inclusion,
and by Kuratowski’s lemma [9] there is a maximal chain 57 in &
containing F. Clearly F'* = UZS# is a filter, and since v € F'* implies
G € &7 such that ve @, and hence a w with property Q in G such
that w C v, then it follows that F'* € & Suppose z € 3, and neither
zZz nor 2’ is in F*. Then zNv #* @, for ve F*, and it follows that
M={yed|ly=22nv, for some veF*} is a filter containing F*.
The maximality of 57 implies M ¢ <%, and hence there is y, in M
such that ke M and %k < y, implies k& does not have property Q.
Similarly for N={ye>,|ly 22 Nwv, for some veF*}). If weF*
such that zNw < ¥y, and 2’ N w S yy, then {z N w, 2’Nw} subdivides
w, from which it follows that w does not have property @. Since
F* is in &7, the latter must be false, and we have ze F'* or 2’ ¢ F'*;
i.e.,, by Lemma 2, F'* is an ultrafilter.

3. Continuous and discrete elements. There are various uses
of the words “atom” and “continuous” in the literature. Their use
here is generally consistent with the literature, but we provide
definitions for clarity.
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DEFINITION. Let pgeba(S, >)). p is said to be an atom if
{v|p(v) # 0} is an ultrafilter.

DEFINITION. Let peba(S, >)). p is said to be continuous if for
& > 0 there is a subdivision D of S such that if E refines D, then
for ve E, |u(v)| < e.

DEFINITION. Let pteba(S, >)). ¢ is said to be discrete if for M
such that 0 < and \ < Sl;zl, then A\ is not continuous.

The set of nonnegative members of ba(S, D) will be denoted
ba(S, >))*. The next lemma is a restatement of results by Appling,
[4], and is a consequence of a decomposition theorem in [5] since the
continuous elements form a normal subspace.

LEMMA 4. Let peba(S, D). There is t, continuous and p
discrete such that p =t + t, and (@) = S v, for ve>,, where
¢ (v) = inf {sup {¢(w)|w € D}| D is a subdivision of v}, for ve ..

Lemma 5 reveals the relationship between atoms and discrete
elements.

LEMMA 5. Let peba(S, 3)*. p is discrete iff there is a sequence
of atoms, {1}, such that p = >, t,.

Proof. Lemma 4 implies that if g is discrete, then p = Sp*.

For ve >, if D is a subdivision of v, then there is w in D such that
p*(w) = p*(v). Thus for ve >, by Lemma 3, there is an ultrafilter
F, with a base of elements on which p¢* equals p*(v); let g, be the
atom on F', such that £,(S) = p*(v). It is immediate that p*(w) =
L*(w), for w in F, and w < v. Therefore, y, # p, implies F, = F,,
and hence there is z such that ze F, and 2’ € F,. Thus g,V g, =
gmax {¢t., 1} = ¢, + pt,. Since ba(S, 3>)) is a complete vector lattice,

[5], and g = p,, for every v, it follows that A = sup M, where M =
{re,| 11, > 0}, exists, equals >, M, and A < p¢. M summable implies
that M is countable. And since A(v) = p,(v) = p*(w), for ve>, it
follows that » > .

For the converse, suppose z¢ = >, tt,, for some sequence {z,} of
atoms. For ve >, D a subdivision of », and % a positive integer,
Pa(v) = sup {¢,(w)|w € D}; thus sup {¢(w)|we D} = p,(v). It follows
that Sy* = > p,, for every N, since there is a subdivision D such
that for we D, 3" p,(w) = sup {¢,(w)}¥. Therefore, Sp* = Dty = [t
From Lemma 4 we conclude that Sp* = p, and hence g is discrete.
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4. On integral representation. Discrete and continuouse ele-
ments play important roles insofar as integral representations of the
dual are concerned. One of the most familiar examples of a field of
sets, that generated by the half open intervals in (0, 1], gives rise
to a continuous element, the interval length measure. On the other
hand, it is not difficult to construct a field for which no continuous
elements exist; given a set S, let >, be the field consisting of all
finite subsets of S and their complements, then ba(S, X) contains no
nonzero continuous elements. Theorem 2 demonstrates that the first
mentioned example has no classical integral representation for members
of the dual, and Theorem 3 shows that the second example does have
such a representation for members of the dual.

THEOREM 1. 3| contains a subfield > isomorphic to >, i/ there
is a positive, continuous e ba(S, D).

Proof. The “interval length” function can be extended to a
member ' of ba(S,>)) and, by Theorem 1.22 of [8], ' can be
extended to a peba(S, >)). Clearly g is a positive and continuous
element of ba(S, >)). Conversely, a positive and continuous z € ba(S, >))
can be used via an induction argument to construct a subfield 3 of
S, isomorphic to >,

DEFINITION. A member T of ba(S, >))* will be said to be repre-
sentable provided there is f: >, — R such that T(y) = Ss fu, for ne

ba(S, >)). For nonnegative peba(S, X)), P. represents the Lebesque
decomposition projection operator (see [2] for definition and properties).

THEOREM 2. If there.is a positive peba(S, D)) for which Ie)
such that p(I) > 0 implies there are disjoint J, K€ >, such that I =
JUK and p(I)¢{pul), (K)}, then T(\) = P.(\)(S), for neba(S, ),
defines a nonrepresentable member of ba(S, >)*.

Proof. Suppose T is representable, with f:>, — R such that
gs Fx = T(\), for each neba(S,S). If for IeS, p(V) = wIN V),
for Ve, then T(x) = Ss fu = SI f1e and since P.(p)(S) = (D), we
have p(I) = S fr. Applying a theorem of Kolmogoroff, [10],

o= rnsu| =l ] =Ls i

Let Q = {I€3,|each subdivision of I contains J such that p(J) >
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0 and f(J) = 1/2}, and note that if Ve@Q and D subdivides V, there
isJeDN Q. Suppose Ve such that (V) > 0. Since S ’f - 1];1:
14

0, there is a subdivision D of V such that if E refines D, then
SuElf —1llp < V)2, from which it follows that thereis Ie DN Q.
Since to each V&3, on which #(V) > 0 there are disjoint J, K&,
such that V=J UK, #(J) > 0 and g¢(K) > 0, then we may construct,
inductively, a sequence {D,} of disjoint subsets of @ such that Ie D,
implies there are J, Ke D,,, such that I 2 JUK and INV = @ for
VeD,, and V¢{J, K}. Then the collection of infinite maximal chains
in UD, has cardinality =2 and any two contain disjoint sets. Each
gives rise, by Lemma 3, to an ultrafilter with a base in @ and since
Lt -0 on at most W, ultrafilters, we conclude there is ultrafilter F
with a base in @ (implying f -4 0) and on which ¢£— 0. Thus MI) =
1, for Ie F, and = 0, otherwise, defines X\ € ba(S, >) for which P.(\) =
0, although Ss SN =1/2] Therefore T is not representable.

Let {r,}3-, be an enumeration of the rationals in (0,1). For Ie
o let p,(I) =1/2", if r,el, and =0, if r,¢ . {3V, pt.}5-, forms a
Cauchy sequence in the Banach space ba(S, >, (with variation norm).
Let ¢ = lim,._., >, ¢,, and note that u is a discrete function satisfy-
ing the hypothesis of Theorem 2. Thus the latter can produce non-
representable members of ba(S, >))* through both continuous and
discrete elements. However, applying it to continuous elements alone
yields the following result.

COROLLARY. If each member of ba(S, >)* is representable, then
there is mo positive continuous member of ba(S, D).

Lemma 4 assures us that if a ba(S, >,) contains no positive
continuous elements, then all members of ba(S, >)) are discrete and
can be written as in Lemma 5. This representation will be useful
in Theorem 3.

THEOREM 3. If ba(S, >)) contains no positive continuous element,
then each T in ba(S, >,)* is representable.

Proof. For B U = {all ultrafilters in >}, let B°={F e B|B(V)=
{F' € B|V e F'} is infinite for Ve F}. Let g(1) =U and if ¢ is defined
for all ordinals less than an ordinal x, then let

glx) = (N{gw) |y < a})°.

By transfinite induction (see [13]) g can be defined for all ordinals <
2%, Since x < y implies g(x) 2 g(y), the domain of g has cardinality
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greater than that of its range, and since the ordinals are well ordered,
it follows that there are ordinals x and z' such that x < 2’ and g(x)=
g(z’). Thus g(x) = g(x + 1) and if B = g(x), then B = B".

If Fe B and Je F, then B(J) must be infinite (since F € B°!) and
hence we may select disjoint I, and I, such that each belongs to a
member of B and J=I,UI. Thus if B @, then we may, by
induction, construct a sequence {D,} of subdivisions S such that for
each m, every Ie D, is contained in a member of B, and there are
distinet J, K€ D, ., such that I = JU K. The smallest field >} con-
taining U D, is isomorphic to >,. Theorem 1 implies there is a
positive continuous member of ba(S, >)). Thus B= ©.

Let A = {p|p¢ is an atom and p(S) =1} and F,={V|u(V) =1},
for peA. For Ve, let V*={Fen{gw)|y <2(V)}|VeF}, where
2(V)=inf {y|V ¢ U g(y)} (which exists since g(x) = @). Finally, define
f(V)y=sup{T()|rc A and F.e V*}, V* = @,and f(V)=0,if V* =
@. For peA, let h(p) = inf {y|F. ¢ 9(y)} and note that F ¢ g(h(y))
and F.eN{g®W)|y < h(w)}. Thus there is Ve F, such that M=
{FenN{gWw|y < h(w)}|VeF} is finite. In fact, we can find V such
that M = {F,}, and since V¢ U g(h(y)), it follows that h(g) = 2(V)
and hence V* =M. Thus f(V)= T(#), and for WeF, and 2V,

F(W) = T(y), from which it follows that Ss fu= T(). Since each

reba(S, ) is discrete, there is is a sequence {z,} = R and a sequence
{¢t.} < A such that g = > ... Since T is continuous, T'(y) =
>, T(¢,). And since |[|[M]|| = 1, for A € 4, it follows that f is bounded
by ||T]l. A result in [3] implies that S Sfu exists and equals

tim | £ 5o, = lim 30, | = lim 570, T() = T() .

Theorems 1, 2 and 8 may be combined to produce the following
characterization of those ba(S, >)) with representable duals.

THEOREM 4. The following are equivalent.

(1) Each Teba(S, >)* is representabdle.

(ii) FEach element of ba(S, X)) is discrete.

(iii) There is mo positive continuous member of ba(S, D).
(iv) There is mo subfield of >, isomophic to >.

Thus for spaces with a dual representable in the sense of this
paper one must turn to subspaces of ba(S, >, (as Mauldin [11] has
done with ca(S, >)), where 3, is a c-algebra, and as Appling [1] has
done with the space of functions absolutely continuous with respect
to a given member of ba(S, >.)) or be content to deal with a ba(S, >))
having no positive continuous element.
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