PERIODIC POINTS ON TORI

Benjamin Halpern

We prove the following theorem.
Theorem 1. Given a continuous map $f: T^{n} \rightarrow T^{n}$ of the n-dimensional torus into itself. Each map homotopic to f has an infinite number of periodic points if and only if the Lefschetz numbers of the iterates $L\left(f^{m}\right), m=1,2, \cdots$, are unbounded.

The "if" direction of Theorem 1 follows from a theorem of Brooks, Brown, Pak, and Taylor [1]. Let $N(f)$ denote the Nielsen number of the map f. Recall that each map homotopic to f must have at least $N(f)$ distinct fixed points.

Theorem 2. (Brook, Brown, Pak, and Taylor [1]). If $f: T^{n} \rightarrow T^{n}$ is a continuous map, then $N(f)=|L(f)|$.

The converse direction of Theorem 1 is deduced from the more precise result, Theorem 3.

Definition 1. Given a map $f: T^{n} \rightarrow T^{n}$. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the characteristic values of $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$. If λ_{i} is not a root of unity, then set $a_{i m}=\left|1-\lambda_{i}^{m}\right|$. If λ_{i} is a root of unity, then let N be such that $\lambda_{i}^{N}=1$ and $\lambda_{i}^{m} \neq 1$ for $1 \leqq m<N$ (i.e., λ_{i} is a primitive N th root of unity), and set

$$
a_{i m}= \begin{cases}\left|1-\lambda_{i}^{m}\right| & \text { if } m \not \equiv 0 \bmod N \\ \sum_{q \mid N}\left|1-\lambda_{i}^{q}\right| & \text { if } m \equiv 0 \bmod N\end{cases}
$$

Set $a_{m}(f)=\prod_{\imath=1}^{n} a_{i m}$.
Theorem 3. For each map $f: T^{n} \rightarrow T^{n}$ there exists a smooth map g homotopic to f such that for $m \geqq 1$,

$$
\#\left\{x \in T^{n} \mid g^{m}(x)=x\right\} \leqq \alpha_{m}(f)
$$

Since $L\left(f^{m}\right)=\Pi_{i=1}^{n}\left(1-\lambda_{i}^{m}\right)$, we see that $\#\left\{x \in T^{n} \mid g^{m}(x)=x\right\}=N(f)$ for all m such that $\lambda_{i}^{m} \neq 1$ for all i. From Theorems 2 and 3, one may also deduce similarities between the asymptotic behaviors of $P_{m}=\#\left\{x \in T^{n} \mid g^{m}(x)=x\right\}$ and $Q_{m}=\max \left\{N\left(f^{r}\right) \mid 1 \leqq r \leqq m\right\}$.

In the process of proving Theorem 3 we establish a general result, Theorem 4, which concerns periodic points for maps homotopic to
periodic maps.
Theorem 4. Given a smooth compact connected manifold M of dimension $m \geqq 2$, and a smooth map $f: M \rightarrow M$ such that $f^{N}=1_{M}$ for some $N \geqq 2$, and $f\left(x_{0}\right)=x_{0}$ for some $x_{0} \in M$. Also suppose $P=$ $\left\{x \in M \mid f^{r}(x)=x\right.$ for some $\left.r, 1 \leqq r<N\right\}$ is finite. Then there exists a smooth map $g: M \rightarrow M$ which is homotopic to f and such that $P=$ the set of all periodic points of g, and $g|P=f| P$.

When Theorem 4 is specialized to tori, it gives a map g homotopic to the given periodic map $f: T^{n} \rightarrow T^{n}$, whose numbers of periodic points of various periods are exactly the lower bounds implied by Theorem 2. Theorem 3 for an arbitrary map $f: T^{n} \rightarrow T^{n}$ is proved by homotoping f to a map g which with a "change of coordinates" takes the form $g: T^{n}=T^{k} \times T^{n-k} \rightarrow T^{k} \times T^{n-k}=T^{n}, g(x, y)=(a(x), r(x, y))$ where $a: T^{k} \rightarrow T^{k}$ is periodic. We homotopy a to an \bar{a} according to Theorem 4 and then, using an induction hypothesis we homotopy r on the sets $\{x\} \times T^{n-k}$ for x a periodic point of \bar{a}. This gives a map whose periodic points are the same as a map of the form $\bar{a} \times \bar{b}: T^{k} \times$ $T^{n-k} \rightarrow T^{k} \times T^{n-k}$ where $\bar{a}: T^{k} \rightarrow T^{k}$ and $\bar{b}: T^{n-k} \rightarrow T^{n-k}$. This is sufficient to prove Theorem 3 by induction, but it gives a map with possibly more periodic points than the lower bound set in Theorem 2. In special cases the lower bound in Theorem 2 can be achieved by refinements in the technique outlined above. So we make the following conjecture.

Conjecture. Given a map $f: T^{n} \rightarrow T^{n}$. Then there exists a smooth map g homotopic to f such that $\#\left\{x \in T^{n} \mid x\right.$ is a periodic point of g of least period $m\}=r_{m}$ where $r_{1}=|L(f)|$ and for $q \geqq 2$

$$
r_{q}= \begin{cases}0 & \text { if } L\left(f^{q}\right)=0 \\ \left|L\left(f^{q}\right)\right|-\sum_{\substack{m<q \\ m \backslash q}} r_{m} & \text { if } L\left(f^{q}\right) \neq 0 .\end{cases}
$$

This work was motivated by a question of Shub and Sullivan which appears on page 140 of Hirsch [3]. Shub and Sullivan ask whether every map homotopic to $g: T^{2} \rightarrow T^{2}$ must have an infinite number of periodic points where g is the map covered by the linear $\operatorname{map} \bar{g}: R^{2} \rightarrow R^{2}$ whose matrix is $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Since the Lefschetz numbers $L\left(g^{n}\right)$ are easily seen to be unbounded, a positive answer follows from the theorem of Brooks, Brown, Pak, and Taylor, Theorem 2. An elementary, transparent proof of a special case of Theorem 2 is presented in Proposition 1.
2. Preliminaries. Denote the integers by \boldsymbol{Z}, the rationals by
\boldsymbol{Q}, and the reals by \boldsymbol{R}. For each $a \in \boldsymbol{R}^{n}$ let $T_{a}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ denote the translation by $a, T_{a} b=b+a$ for $b \in \boldsymbol{R}^{n}$. Set $\mathscr{T}=\left\{T_{a} \mid a \in \boldsymbol{Z}^{n}\right\}$. Let $\pi: \boldsymbol{R}^{n} \rightarrow T^{n}$ denote the usual covering map which identifies T^{n} with $\boldsymbol{R}^{n} / \mathscr{J}$. Recall that an $n \times n$ matrix A is unimodular provided it has integer entries and $\operatorname{det} A= \pm 1$, or equivalently, it has integer entries and an inverse with integer entries. Clearly, the rows of a matrix A with integer entries form a basis for the module \boldsymbol{Z}^{n} over Z if and only if A is unimodular.

We will use the form of Nielsen fixed point theorem which states that if $f: X \rightarrow X$ is a continuous map of a compact manifold X into itself, then each map g homotopic to f must have at least $N(f)$ fixed points, where $N(f)$ is the Nielsen number of f. Furthermore, $N(g)=$ $N(f)$, (Brown [2]). The Nielsen number $N(f)$ is defined as follows. First an equivalence relation \sim is defined on the set F of fixed points of f. Two fixed points $x, y \in F$ are equivalent, $x \sim y$, provided there is a path γ in X from x to y such that $f \circ \gamma$ is end points fixed homotopic to γ. The set of equivalence classes F / \sim is known to be finite and each equivalence class is compact.

Using a fixed point index I, such as defined in [2] we may assign an index $i(A)$ to each $A \in F / \sim$ by setting $i(A)=I(U)$ for any open set U such that $F \cap U=A$. The Nielsen number $N(f)$ is the number of $A \in F / \sim$ such that $i(A) \neq 0$. If A is a singleton $\{x\}$, then $i\{x\}$ is the usual index of an isolated fixed point of f and consequently if f is differentiable and $1-d f_{x}$ is nonsingular, then $i\{x\}= \pm 1$ as $\operatorname{det}\left(1-d f_{x}\right)$ is positive or negative.

Let $e^{1}=(1,0, \cdots, 0), e^{2}=(0,1, \cdots, 0)$, etc., denote the standard basis for \boldsymbol{R}^{n}. Set $\beta_{i}(t)=\pi\left(t e^{i}\right)$ and $\alpha_{i}=\left[\beta_{i}\right] \in \pi_{1}\left(T^{n}, *\right)$, where $*=$ $\pi(0)$. Then $\alpha_{1}, \cdots, \alpha_{n}$ form a basis for $\pi_{1}\left(T^{n}, *\right)$. Since the Hurewitz homomorphism $\rho: \pi_{1}\left(T^{n}, *\right) \rightarrow H_{1}\left(T^{n}\right)$ is an isomorphism, we can identify $\pi\left(T^{n}, *\right)$ with $H_{1}\left(T^{n}\right)$ via ρ and consider $\alpha_{1}, \cdots, \alpha_{n}$ as a basis for $H_{1}\left(T^{n}\right)$, which we shall call the standard basis of $H_{1}\left(T^{n}\right)$. If $L: \boldsymbol{R}^{n} \rightarrow$ \boldsymbol{R}^{n} is a linear map, we denote its matrix with respect to the standard basis by \bar{L} and define it by $L\left(e^{i}\right)=\sum_{j} \bar{L}_{j i} e^{j}$. Throughout this paper we will consider \boldsymbol{R}^{n} to be a space of column vectors. Then \bar{L} satisfies $L(v)=\bar{L} v$ for all v in \boldsymbol{R}^{n}.

Consider the case where $\bar{L}_{j_{k}} \in \boldsymbol{Z}$ for all j, i. Then for $a \in \boldsymbol{Z}^{n}$, $L a=b \in \boldsymbol{Z}^{n}$. Since $L \circ T_{a}=T_{b} \circ L$, we see that L induces a map $L^{\prime}: T^{n} \rightarrow T^{n}$. We say that L covers L^{\prime}. It is a straightforward verification that the matrix of $H_{1}\left(L^{\prime}\right): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$ with respect to the standard basis is equal to \bar{L}. Since T^{n} is covered by $\boldsymbol{R}^{n}, T^{n}$ is an Eilenberg-MacLane space, $T^{n}=K\left(\boldsymbol{Z}^{n}, 1\right)$. Hence the homotopy class of a map $f: T^{n} \rightarrow T^{n}$ is determined by the homomorphism $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$. We sum up these observations in the following lemma.

Lemma 1. Each $\operatorname{map} f: T^{n} \rightarrow T^{n}$ is homotopic to a map $g: T^{n} \rightarrow$ T^{n} which is covered by a linear map $\bar{g}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ whose matrix is the same as the matrix of $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$.

Lemma 2. If $f: T^{n} \rightarrow T^{n}$ is covered by a linear $\operatorname{map} A: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$, $f \circ \pi=\pi \circ A$, and 1 is not a characteristic root of A, then the fixed points are isolated, they all have the same index, and the number of them is $|L(f)|$.

Proof. Let x be a fixed point of f. Using an appropriate restriction of $\pi: \boldsymbol{R}^{n} \rightarrow T^{n}$ for a coordinate system about x, we see that $d f_{x}$ expressed in these coordinates is A. Since $\operatorname{det}(1-A)=\prod_{i=1}^{n}\left(1-\lambda_{i}\right)$, where $\lambda_{1}, \cdots, \lambda_{n}$ are the characteristic roots of A, we see that $\operatorname{det}(1-A) \neq 0$. Hence x is an isolated fixed point. Therefore, $i(x)=$ ± 1 as $\operatorname{det}(1-A)$ is positive or negative, and so $i(x)$ is independent of x. The Lefschetz fixed point formula asserts that the sum of the $i(x)$ as x ranges over the fixed points of f is $L(f)$. Hence the number of fixed points is $|L(f)|$.

Proposition 1. Given a map $f: T^{n} \rightarrow T^{n}$ such that 1 is not a characteristic root of $H_{1}(f): T^{n} \rightarrow T^{n}$. Then $N(f)=|L(f)|$.

Proof. By Lemma 1 and the homotopy invariance of $N(f)$, we see that we may assume that f is covered by a linear map $A: \boldsymbol{R}^{n} \rightarrow$ \boldsymbol{R}^{n} and that 1 is not a characteristic root of A. From Lemma 2 we know that the set F of fixed points of f satisfies $\# F=|L(f)|$, and $i(x) \neq 0$ for each $x \in F$. To prove the present proposition it is sufficient to show that if $x, y \in F$, and $x \neq y$, then x is not Nielsen equivalent to y. For then, each $\{x\}$ with $x \in F$ will be a distinct Nielsen equivalence class and their number, $\# F=|L(f)|$, will be equal to $N(f)$ by the definition of $N(f)$.

Assume $x, y \in F, x \neq y$, and $x \sim y$. Then there is a path γ in T^{n} from x to y such that γ is end points fixed homotopic to $f \circ \gamma$. Let $\widetilde{\gamma}: I \rightarrow \boldsymbol{R}^{n}$ be a lift of $\gamma, \pi \circ \tilde{\gamma}=\gamma$, going from $\widetilde{\gamma}(0)=\widetilde{x}$ to $\tilde{\gamma}(1)=\widetilde{y}$. Then $A \circ \tilde{\gamma}$ covers $f \circ \gamma$, since $\pi \circ A=f \circ \pi$. Set $a=\tilde{x}-A(\tilde{\gamma}(0))=\tilde{x}-$ $A(\widetilde{x})$. Since $\pi(A(\widetilde{x}))=f(\pi(\widetilde{x}))=f(x)=x$ and $\pi(\widetilde{x})=x$ we deduce that $a \in Z^{n}$. Then $\pi \circ T_{a}=\pi$ and so $T_{a} \circ A \circ \tilde{\gamma}$ is also a lift of $f \circ \gamma$, $\pi \circ T_{a} \circ A \circ \tilde{\gamma}=\pi \circ A \circ \tilde{\gamma}=f \circ \pi \circ \tilde{\gamma}=f \circ \gamma$. Also note that $T_{a} \circ A \circ \tilde{\gamma}(0)=$ $A(\tilde{\gamma}(0))+a=\tilde{x}=\tilde{\gamma}(0)$. Since γ is end point fixed homotopic to $f \circ \gamma$, we have $T_{a} \circ A \circ \tilde{\gamma}(1)=\tilde{\gamma}(1)$. Therefore $\tilde{\gamma}(1)-\widetilde{\gamma}(0)=T_{a} A \widetilde{\gamma}(1)-T_{a} A \widetilde{\gamma}(0)=$ $(A \tilde{\gamma}(1)+a)-(A \tilde{\gamma}(0)+a)=A(\tilde{\gamma}(1)-\tilde{\gamma}(0))$. From $x \neq y$ and $\pi \tilde{\gamma}(0)=x$ and $\pi(\tilde{\gamma})(1)=y$, we conclude that $\tilde{\gamma}(0) \neq \tilde{\gamma}(1)$. Hence $\tilde{\gamma}(1)-\tilde{\gamma}(0)$ is an eigenvector of A with eigenvalue 1 , a contradiction.

2. Algebraic lemmas.

Lemma 3. Given $v=\left(v_{1}, \cdots, v_{n}\right) \in \boldsymbol{Z}^{n}, n \geqq 1$, such that g.c.d. $\left(v_{1}\right.$, $\left.\cdots, v_{n}\right)=1$, where g.c.d. stands for greatest common divisor. Then there exist $v^{2}, v^{3}, \cdots, v^{n} \in Z^{n}$ such that v, v^{2}, \cdots, v^{n} form a basis for Z^{n}.

Proof. We use induction on n. For $n=1$ we must show that $\{v\}$ is a basis for \boldsymbol{Z}^{1}, i.e., that $v= \pm 1$. But this follows from the fact that g.c.d. $(v)=1$.

Now suppose $n>1$ and that the lemma holds for $n-1$. If $v_{1}=$ $v_{2}=\cdots=v_{n-1}=0$, then $v_{n}= \pm 1$ and the lemma obviously holds. So suppose that not all $v_{1}, v_{2}, \cdots, v_{n-1}$ are 0 . Let $d=$ g.c.d. $\left(v_{1}, \cdots, v_{n-1}\right)$. Then g.c.d. $\left(d, v_{n}\right)=1$ and so we may find $\alpha, \beta \in \boldsymbol{Z}$ such that $\alpha v_{n}+$ $\beta d=1$. Apply the induction hypotheses to the vector $w=\left(v_{1} / d, \cdots\right.$, $\left.v_{n-1} / d\right) \in \boldsymbol{Z}^{n-1}$ and obtain vectors $w^{2}, \cdots, w^{n-1} \in \boldsymbol{Z}^{n-1}$ such that w, w^{2}, \cdots, w^{n-1} form a basis for Z^{n-1}. Thus the matrix A with rows $w, w^{2}, \cdots, w^{n-1}$ is unimodular, and so $\operatorname{det} A= \pm 1$. Let B be the matrix with rows $d w, w^{2}, w^{3}, \cdots, w^{n-1}$. Then $\operatorname{det} B=d(\operatorname{det} A)$ and the first row of B is $d w=\left(v_{1}, v_{2}, \cdots, v_{n-1}\right)$. Set $w^{i}=\left(w_{1}^{i}, \cdots, w_{n-1}^{i}\right)$ for $2 \leqq i \leqq n-1$. Form the matrix C indicated below.

$$
C=\left[\begin{array}{cccc}
v_{1} & \cdot & \cdot & v_{n-1} \\
w_{1}^{2} & \cdot & \cdot & v_{n-1}^{2} \\
\cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
w_{1}^{n-1} & \cdot & \cdot & w_{n-1}^{n-1} \\
\frac{i \alpha v_{1}}{d} & \cdots & \cdot & 0 \\
& & & v_{n-1} \\
d & (\operatorname{det} A) \beta
\end{array}\right]
$$

where $i=-\operatorname{det} A$. Then expanding $\operatorname{det} C$ on the last column we find $\operatorname{det} C=\alpha v_{n}+\beta d=1$. Thus the last $n-1$ rows satisfy the lemma.

Lemma 4. If $v^{1}, v^{2}, \cdots, v^{r} \in Z^{n}, n \geqq 1$, then there is a unimodular matrix A with rows A^{1}, \cdots, A^{n} such that $\operatorname{sp}\left\{A^{1}, \cdots, A^{q}\right\}=\operatorname{sp}\left\{v^{1}, \cdots, v^{r}\right\}$, where $\operatorname{sp} V=$ the linear span in \boldsymbol{R}^{n} for $V \subset \boldsymbol{R}^{n}$, and $q=\operatorname{dim} \operatorname{sp}\left\{v^{1}\right.$, $\left.\cdots, v^{r}\right\}$.

Proof. We may suppose v^{1}, \cdots, v^{r} are linearly independent in \boldsymbol{R}^{n}. We will use induction on r. For $r=1$, Lemma 3 with $v=d^{-1} v^{1}$ where $v^{1}=\left(v_{1}^{1}, \cdots, v_{n}^{1}\right)$ and $d=$ g.c.d. $\left(v_{1}^{1}, \cdots, v_{n}^{1}\right)$ gives the desired conclusion.

Suppose now that $r \geqq 2$ and that Lemma 4 holds for $r-1$. Apply this supposition to v^{1}, \cdots, v^{r-1} and obtain a unimodular matrix
B such that its rows B^{1}, \cdots, B^{n} satisfy $\operatorname{sp}\left\{B^{1}, \cdots, B^{r-1}\right\}=\operatorname{sp}\left\{v^{1}, \cdots\right.$, $\left.v^{r-1}\right\}$. Note that $\operatorname{sp}\left\{B^{1}, \cdots, B^{r-1}, v^{r}\right\}=\operatorname{sp}\left\{v^{1}, \cdots, v^{r-1}, v^{r}\right\}$.

By considerring the linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{n} whose matrix is B it is easily seen that it is sufficient to prove the lemma in the special case where $B^{i}=e^{i}$. Now let $v^{r}=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, and set

$$
w=\left(0, \cdots, 0, \alpha_{r}, \alpha_{r+1}, \cdots, \alpha_{n}\right)=v^{r}-\left(\alpha_{1}, \cdots, \alpha_{r-1}, 0, \cdots, 0\right)
$$

Then $\operatorname{sp}\left\{B^{1}, \cdots, B^{r-1}, v^{r}\right\}=\operatorname{sp}\left\{B^{1}, \cdots, B^{r-1}, w\right\}$. Since v^{r} is independent of B^{1}, \cdots, B^{r-1}, not all of $\alpha_{r}, \alpha_{r+1}, \cdots, \alpha_{n}$ can vanish. Set $d=$ g.c.d. $\left\{\alpha_{r}, \alpha_{r+1}, \cdots, \alpha_{n}\right\}$, and $u=d^{-1} w$. Then $u \in\{0\} \times \boldsymbol{Z}^{n-r+1}$ and the greatest common divisor of its coordinates is 1 . Hence by Lemma 3 there is an $(n-r+1) \times(n-r+1)$ unimodular matrix C such that the first row is $\alpha_{r} / d, \cdots, \alpha_{n} / d$. Set

$$
A=\left[\begin{array}{c|c}
I^{(r-1) \times(r-1)} & 0 \\
\hline 0 & C
\end{array}\right]
$$

Then A is unimodular, and its first r rows are $B^{1}, \cdots, B^{r-1}, u$ which have the same span in R^{n} as does v^{1}, \cdots, v^{r}.

Suppose $f: T^{n} \rightarrow T^{n}, n \geqq 1$, is a map and A is the matrix of $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$. It is shown in [1] that $L(f)=\operatorname{det}\left(1-A^{t}\right)=$ $\operatorname{det}(1-A)$, where $A^{t}=$ the transpose of $A=$ the matrix of $H^{1}(f)$: $H^{1}\left(T^{n}\right) \rightarrow H^{1}\left(T^{n}\right)$. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the characteristic roots of A. Then $L(f)=\prod_{i=1}^{n}\left(1-\lambda_{i}\right)$. Since $\lambda_{1}^{m}, \cdots, \lambda_{n}^{m}$ are the characteristic roots of A^{m} we have proved the following formula.

$$
\begin{equation*}
L\left(f^{m}\right)=\prod_{i=1}^{n}\left(1-\lambda_{i}^{m}\right) \tag{*}
\end{equation*}
$$

Lemma 5. Let $\lambda_{1}, \cdots, \lambda_{n}$ be complex numbers, none of them 1 , such that the set $\left\{\prod_{i=1}^{n}\left|1-\lambda_{i}^{m}\right| \mid m=1,2, \cdots\right\}$ is bounded, then $\left|\lambda_{i}\right| \leqq 1$ for all $i=1, \cdots, n$.

Proof. Suppose not. Divide $\{1, \cdots, n\}$ into four sets I, J, K, and L by setting $I=\left\{i| | \lambda_{i} \mid>1\right\}, J=\left\{i| | \lambda_{i} \mid<1\right\}, K=\left\{i \mid \lambda_{i}\right.$ is a root of unity $\}$, and $L=\left\{i| | \lambda_{i} \mid=1\right.$ and $\lambda_{i}^{q} \neq 1$ for all $\left.q \geqq 1\right\}$. For any $U \subset\{1, \cdots, n\}$, set $U_{m}=\Pi_{i \in U}\left|1-\lambda_{i}^{m}\right|$, with the convention that if $U=\varnothing$, then $U_{m}=1$ for all m. Formula (*) gives $\left|L\left(f^{m}\right)\right|=I_{m} J_{m} K_{m} L_{m}$. Since $I \neq \varnothing$ we clearly have

$$
\begin{equation*}
I_{m} \longrightarrow \infty . \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
J_{m} \longrightarrow 1 \tag{2}
\end{equation*}
$$

For each $i \in K$, let $q_{i} \geqq 1$ be such that $\lambda_{i}^{q_{i}}=1$ and $\lambda_{i}^{m} \neq 1$ for $1 \leqq m<q_{i}$. If $K \neq \varnothing$, set $q=\prod_{i \in K} q_{i}$. If $K=\varnothing$, set $q=1$. In either case, for $p \geqq 0$,

$$
\begin{equation*}
K_{q p+1}=K_{1}>0 \tag{3}
\end{equation*}
$$

Here we have used the hypothesis that $\lambda_{i} \neq 1$ for all i.
Set $N=\# L$. From the definition of L we see that $1 \notin\left\{\lambda_{i}^{q r} \mid i \in L\right.$, $r=1, \cdots, N\}$, and hence we can find an $\varepsilon>0$ such that $\left|1-\lambda_{i}^{q r}\right|>2 \varepsilon$ for $i \in L$ and $1 \leqq r \leqq N$.

Claim. For each $i \in L$, and each positive integer a, at most one member of the sequence $\lambda_{i}^{q m+1}$, where $a(N+1)<m \leqq(a+1)(N+1)$, satisfies

$$
\left|1-\lambda_{i}^{q m+1}\right| \leqq \varepsilon .
$$

Proof. Suppose not. Then there is an $i \in L, m$ and r such that $1 \leqq r \leqq N$, and $\left|1-\lambda_{i}^{q m+1}\right| \leqq \varepsilon$, and $\left|1-\lambda_{i}^{q(m+r)+1}\right| \leqq \varepsilon$. It follows that

$$
\begin{aligned}
2 \varepsilon \geqq\left|\lambda_{i}^{q(m+r)+1}-\lambda_{i}^{q m+1}\right| & =\left|\lambda_{i}^{q m+1}\right|\left|\lambda_{i}^{q r}-1\right| \\
& =\left|\lambda_{i}^{q r}-1\right|>2 \varepsilon,
\end{aligned}
$$

a contradiction. This proves the claim.
Since the number of m 's which satisfy $a(N+1)<m \leqq(a+1)(N+1)$ is $N+1$ and $N=\# L$, for each a there is an m such that $a(N+1)<$ $m \leqq(a+1)(N+1)$, and $\left|1-\lambda_{i}^{q m+1}\right|>\varepsilon$ for all $i \in L$. Hence $L_{m q+1} \geqq \varepsilon^{N}$ for an infinite number of m 's. Note that this also holds when $N=0$. Combining this with (1), (2), and (3) we see that $\left|L\left(f^{m}\right)\right|$ is unbounded, a contradiction. Hence $\left|\lambda_{i}\right| \leqq 1$ for all i.

Lemma 6. Given $a \operatorname{map} f: T^{n} \rightarrow T^{n}, n \geqq 1$, such that 1 is not a characteristic root of $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow H_{1}\left(T^{n}\right)$, and $L\left(f^{m}\right), m=1,2, \cdots$, are bounded. Then each nonzero characteristic root of $H_{1}(f)$ is a root of unity.

Proof. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the characteristic roots of $H_{1}(f)$. By Lemma 5 we know that $\left|\lambda_{i}\right| \leqq 1$ for all i.

Next we will show that for each $i,\left|\lambda_{i}\right|=0$ or 1 . Suppose not. Let $U=\left\{i \mid \lambda_{i} \neq 0\right\}$, and $q=\# U$. Let

$$
P(\lambda)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}
$$

be the characteristic polynomial of $H_{1}(f)$. Then $a_{q}=\Pi_{i \in U}\left(-\lambda_{i}\right) \neq 0$.

Since a_{q} is an integer, we have

$$
1 \leqq\left|a_{q}\right|=\prod_{i \in U}\left|\lambda_{i}\right|<1
$$

because $\left|\lambda_{i}\right| \leqq 1$ for all i, and $0<\left|\lambda_{i}\right|<1$ for some i. This contradiction shows that for each $i,\left|\lambda_{i}\right|=0$ or 1 .

Note that $a_{m}=0$ for $m>q$, and so

$$
P(\lambda)=\lambda^{n-q}\left(\lambda^{q}+a_{1} \lambda^{q-1}+\cdots+a_{q}\right)=\lambda^{n-q} Q(\lambda) .
$$

All the roots of $Q(\lambda)$ have unit modulus. It is known, [4] page 122, that if all the roots of a monic polynomial with integer coefficients have unit modulus, then they all are roots of unity. This completes the proof.

4. Geometric lemmas.

Lemma 7. Suppose the finite group G acts smoothly on a compact manifold M, and that $P=\{x \in M \mid g x=x$ for some $g \in G, g \neq 1\}$ is finite. Then there exists a Morse function $\varphi: M \rightarrow \boldsymbol{R}$ such that $\varphi \circ g=\varnothing$ for all $g \in G$. Furthermore, each $x \in P$ is a critical point of φ.

Proof. Following Milnor [5], we will say that a smooth map $f: M \rightarrow \boldsymbol{R}$ is "good" on a set $S \subset M$ if f has no degenerate critical points on S.

We begin by obtaining a first approximation, a smooth map $\Psi: M \rightarrow \boldsymbol{R}$, which is invariant (i.e., $\Psi \circ g=\Psi$ for all $g \in G$) and is good on a neighborhood V of P. Then we perturb Ψ equivariently to the desired Morse function φ.

It is easy to define a smooth map $h: M \rightarrow \boldsymbol{R}$ such that each $x \in P$ is a nondegenerate critical point of index zero, i.e., in a local coordinate system about x the first partial derivatives vanish and the matrix of second partial derivatives is positive definite at x. These same conditions also hold for each $h \circ g, g \in G$, and consequently $\Psi=\sum_{g \in G} h \circ g$ is a first approximation as desired. Clearly, the set V where Ψ is good, is open, contains P, and satisfies $g(V)=V$ for all $g \in G$.

Note that $g x \neq x$ for all $x \in M-V$ and $g \in G, g \neq 1$. Now a rather straightforward equivarient version of the argument used in Milnor [5], Theorem 2.7, to prove the existence of Morse functions serves to show that Ψ can be perturbed to an equivarient Morse function φ. A sketch of this equivarient version follows.

We may find coordinate neighborhoods U_{1}, \cdots, U_{r} such that

$$
M-V \subset \bigcup_{i=1}^{r} U_{i}, \quad P \cap \operatorname{cl}\left(\bigcup_{i=1}^{r} U_{i}\right)=\varnothing, \quad \text { and } \quad U_{i} \cap g\left(U_{i}\right)=\varnothing
$$

for $1 \leqq i \leqq r$ and $g \in G, g \neq 1$. Then $g^{\prime}\left(U_{i}\right) \cap g\left(U_{i}\right)=\varnothing$ for $1 \leqq i \leqq r$ and $g, g^{\prime} \in G, g \neq g^{\prime}$. We can also find compact sets $C_{i} \subset U_{i}$ such that C_{1}, \cdots, C_{r} cover $M-V$. We may alter Ψ in stages so that at the i th stage, the new Ψ is still equivarient and is good on

$$
V \cup\left(\bigcup_{j=1}^{i} \bigcup_{g \in G} g\left(C_{j}\right)\right)
$$

At the i th step we simply apply the procedure used in the proof of Theorem 2.7 of [5] to U_{i} and then alter Ψ on $g\left(U_{i}\right)$, for $g \in G, g \neq 1$, so as to preserve the property $\Psi \circ g=g$ for all $g \in G$.

Lemma 8. Suppose the finite group G acts smoothly on a compact connected m-dimensional manifold $M, m \geqq 2$, and that $P=$ $\{x \in M \mid g x=x$ for some $g \in G, g \neq 1\}$ is finite. Given a finite set $S \subset M-P$ and a point $x_{0} \in M$ such that $g x_{0}=x_{0}$ for all $g \in G$. Then there exists a smooth embedding $\Psi: D^{m} \rightarrow(M-P) \cup\left\{x_{0}\right\}$ such that $\Psi(0)=x_{0}, S \subset \Psi\left(\operatorname{int} D^{m}\right)$, and $g\left(\Psi\left(D^{m}\right)\right)=\Psi\left(D^{m}\right)$ for all $g \in G$. Furthermore, for each $g \in G, \Psi^{-1} \circ g \circ \Psi: D^{m} \rightarrow D^{m}$ is the restriction to D^{m} of an orthogonal linear map.

Proof. We will use induction on ${ }^{*} S$. First suppose $S=\varnothing$. It is an easy matter to embed M into R^{n} for some n such that for each $g \in G$ the map $x \rightarrow g x, x \in M$, is the restriction to M of an orthogonal $\operatorname{map} L_{g}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$. Just start with a smooth embedding $h: M \rightarrow \boldsymbol{R}^{k}$, for some k. Set $E_{g}=\boldsymbol{R}^{k}$ for each $g \in G$, and define $e: M \rightarrow \Pi_{g \in G} E_{g}=\boldsymbol{R}^{k{ }^{*} G}$ by $e(x)=\Pi_{g \in G} h(g x)$, for all $x \in M$. Then the maps $e(x) \rightarrow e(g x), x \in M$ are restrictions of maps $L_{g}: \boldsymbol{R}^{k^{\sharp} G} \rightarrow \boldsymbol{R}^{k^{\sharp} G}$ which simply permute the coordinates of $\boldsymbol{R}^{k \not{ }^{\sharp} \sigma}$.

Set $n=k^{\sharp} G$, and identify M with $e(M)$ via e. Let $T M_{x}$ be the tangent space of M at x, considered as a subspace of \boldsymbol{R}^{n}. Let $T=$ $x_{0}+T M_{x_{0}}$ be the geometric tangent space through the point x_{0}. Let $N: R^{n} \rightarrow T$ be the orthogonal projection onto T. Then $L_{g}(T) \subset T$ for all $g \in G$, and so $L_{g} \circ N=N \circ L_{g}$ for all $g \in G$. The restriction of N to a neighborhood of x_{0} in M is a diffeomorphism onto a neighborhood W of x_{0} in T. The desired Ψ is now easily constructed from the restriction of $(N \mid W)^{-1}$ to a ball about x_{0}.

Now assume that $\Psi: D^{m} \rightarrow M$ satisfies Lemma 8 as stated. We will show that for any $x \in M-(P \cup S), \Psi$ can be altered so as to satisfy Lemma 8 with S replaced by $S \cup\{x\}$. We will use a connectedness argument. Since $\operatorname{dim} M \geqq 2$ and $P \cup S$ is finite, the space $M-P \cup S$ is connected. Let $V=\{x \in M-P \cup S \mid$ Lemma 8 holds with S replaced by $S \cup\{x\}\}$.

The set V is clearly open in $M-(P \cup S)$. We will show that $(M-(P \cup S))-V$ is also open. Let $x \in(M-(P \cup S))-V$. If $g x \in S$
for some $g \in G$, then Ψ already satisfies $S \cup\{x\} \subset \Psi$ (int D^{m}). Hence $g x \notin S$ for all $g \in G$. Since $g x \neq x$ for all $g \in G, g \neq 1$, we may find a coordinate neighborhood U of x which is diffeomorphic to an open m-ball and such that $g(U) \subset M-(P \cup S)$, and $g(U) \cap U=\varnothing$ for all $g \in G, g \neq 1$. Then $g(U) \cap h(U)=\varnothing$ for $g, h \in G, g \neq h$. We claim that $U \subset(M-(P \cup S))-V$. Suppose not. Then we can find a $y \in U \cap V$. Let $k: M \rightarrow M$ be a diffeomorphism which is fixed outside of U and $k(y)=x$. Define $\bar{k}: M \rightarrow M$ by

$$
\bar{k}(p)=\left\{\begin{array}{cl}
p & \text { if } p \notin \bigcup_{g \in G} g(U) \\
g k g^{-1}(p) & \text { if } p \in g(U)
\end{array}\right.
$$

Then \bar{k} is a well defined diffeomorphism, and Lemma 8 is satisfied with Ψ replaced by $\bar{k} \circ \Psi$ and S replaced by $S \cup\{x\}$. In fact, for each $g \in G, \bar{k} \circ g=g \circ \bar{k}$ and so $(\bar{k} \circ \Psi)^{-2} \circ g \circ(\bar{k} \circ \Psi)=\Psi^{-1} \circ g \circ \Psi$. This proves the claim, and hence $(M-(P \cup S))-V$ is open.

Since $V \neq \varnothing$, we have $V=M-(P \cup S)$, and the induction step is complete.

5. Proofs of the theorems.

Proof of Theorem 4. First recall that a flow on M is a smooth map $F: M \times \boldsymbol{R} \rightarrow M$ such that with the notation $F_{t}(x)=F(x, t)$ we have $F_{s} \circ F_{t}=F_{s+t}$ for all $s, t \in \boldsymbol{R}$, and $F_{0}=1_{M}$. An orbit of F is a function of the form $F^{x}: \boldsymbol{R} \rightarrow M$ where $x \in M$ and $F^{x}(t)=F(x, t)$ for all $t \in \boldsymbol{R}$. An orbit F^{x} is periodic if $F^{x}(s)=F^{x}(0)$ for some $s \neq 0$. Thus the constant orbits are considered to be periodic.

The idea of the proof is to obtain a flow $H_{t}: M \rightarrow M$ such that the orbits H^{x} for $x \in P$ are constants and these are the only periodic orbits, and $H_{t} \circ f=f \circ H_{t}$. Then $g=H_{1} \circ f$ will satisfy the conclusions of the theorem. The desired flow H_{t} is obtained in several steps.

Since $f^{N}=1$, we have a smooth action of $Z / n \boldsymbol{Z}$ on M. Let $\varphi: M \rightarrow \boldsymbol{R}$ be the Morse function given by Lemma 7. It is easy to obtain an equivarient Riemannian metric on M. Just average over $\boldsymbol{Z} / n \boldsymbol{Z}$ any Riemannian metric. Then the gradient of φ with respect to this equivarient Riemannian metric is an equivarient vector field v. The vector field v determines a flow F on M which satisfies $F_{t}(f(x))=f\left(F_{t}(x)\right)$ for all $(x, t) \in M \times \boldsymbol{R}$. The flow also satisfies $\varphi\left(F_{t}(x)\right)>\varphi(x)$ whenever x is not a critical point of φ and $t>0$. Hence the only periodic orbits of F are the constant orbits at critical points of φ.

Let $S=\{x \in M \mid x$ is a critical point of $\varphi\}-P$. Let $\Psi: D^{m} \rightarrow M$ be given by Lemma 8. Pick $r \in(0,1)$ such that $S \subset \Psi\left(D_{r}^{m}\right)$, where $D_{r}^{m}=\left\{x \in \boldsymbol{R}^{m} \mid\|x\| \leqq r\right\}$. Let $b: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a smooth map satisfying
$b(t)=0$ for $t \leqq r, b(t)>0$ for $t>r$, and $b(t)=1$ for $t \geqq(1+r) / 2$. Define $\bar{b}: M \rightarrow \boldsymbol{R}$ by

$$
\bar{b}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \notin \Psi\left(D_{(r+1 / 2}^{m}\right) \\
b\left(\left\|\Psi^{-1}(x)\right\|\right) & \text { if } x \in \Psi\left(D^{m}\right)
\end{array}\right.
$$

It is clear that \bar{b} is well defined and smooth. Define a new vector field w by $w(x)=\bar{b}(x) v(x)$. Then w is equivarient under f and determines an equivarient flow G_{t}. The orbits of G, which are just the integral curves of w, are reparameterizations of portions of orbits of F. The orbits G^{x} for $x \in \Psi\left(D_{r}^{m}\right) \cup P$ are constant. All the other orbits are reparameterizations of portions of nonperiodic orbits of F by reparameterization functions which are strictly monotone increasing functions. Hence the orbits G^{x} for $x \in \Psi\left(D_{r}^{m}\right) \cup P$ are the only periodic orbits. Let $\theta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a smooth map satisfying $\theta(t)=r+t$ for $t \leqq 1 / 3(1-r), \theta^{\prime}(t)>0$ for all t, and $\theta(t)=t$ for $t \geqq r+2 / 3(1-r)$. We will use later the obvious fact that $\theta^{-1}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ exists and is smooth. Define $h: M-\left\{x_{0}\right\} \rightarrow M-\Psi\left(D_{r}^{m}\right)$ by

$$
h(x)=\left\{\begin{array}{cc}
x & \text { if } x \notin \Psi\left(D^{m}\right) \\
\frac{\theta(\|x\|) x}{\|x\|} & \text { if } x \in \Psi\left(D^{m}\right)
\end{array}\right.
$$

where we have identified $\Psi\left(D^{m}\right)$ with D^{m} via Ψ. Define $H_{t}(x)$ by

$$
H_{t}(x)=\left\{\begin{array}{cl}
h^{-1}\left(G_{t}(h(x))\right) & \text { for } x \neq x_{0} \\
x_{0} & \text { for } x=x_{0}
\end{array}\right.
$$

We wish to show that $H_{t}(x)$ is a smooth flow by showing that $H_{t}(x)$ is determined by a smooth vector field. Since $H_{s} \circ H_{t}=H_{s+t}$, and $H_{0}=1_{M}$, it is sufficient to show that $\eta(x)=d / d t H_{t}(x)$ at $t=0$ is a smooth vector field. It is clear that $\eta(x)$ is well defined for all $x \in M$ and $\bar{\eta}=\eta \mid M-\left\{x_{0}\right\}$ is smooth. Since $\eta\left(x_{0}\right)=0$, it is sufficient to show that $\eta(x)$ and all its derivatives approach 0 as $x \rightarrow x_{0}$. We calculate for $x \neq x_{0}$

$$
\begin{aligned}
\eta(x) & =\left.\frac{d}{d t}\left(H_{t}(x)\right)\right|_{t=0}=\left.\left.d h^{-1}\right|_{\sigma_{0}(h(x))} \frac{d}{d t}\left(G_{t}(h(x))\right)\right|_{t=0} \\
& =\left.d h^{-1}\right|_{h(x)} w(h(x))
\end{aligned}
$$

Since w and all its derivatives vanish on D_{r}^{m}, Taylor expansions show that for each derivative $a(x)$ of a component of $w(x)$ and each $n \geqq 1$ there is a constant c such that

$$
\begin{equation*}
|a(x)| \leqq c \mid\|x\|-r \|^{n} \quad \text { for } x \in \Psi\left(D^{m}\right) \tag{5}
\end{equation*}
$$

The form of $h(x)$ for $x \in \Psi\left(D^{m}\right)-\left\{x_{0}\right\}$ and $\|x\| \leqq(1-r) / 3$, is

$$
h(x)=\frac{(r+\|x\|) x}{\|x\|}
$$

and hence if $u(x)$ is a derivative of a component of h of order n, then there is a constant e such that

$$
\begin{equation*}
|u(x)| \leqq e\|x\|^{-n-1} \quad \text { for } 0<\|x\| \leqq \frac{1-r}{3} \tag{6}
\end{equation*}
$$

The map $h^{-1} \mid\left(\Psi\left(D^{m}\right)-\Psi\left(D_{r}^{m}\right)\right)$ has a smooth extention $\bar{h}^{-1}: \varphi\left(D^{m}\right)-$ $\left\{x_{0}\right\} \rightarrow \varphi\left(D^{m}\right)$ given by $\bar{h}^{-1}(y)=\theta^{-1}(\|y\|) y /\|y\|$. Consequently $\left.d h^{-1}\right|_{y}$ and all its derivatives are bounded. Using this and (5) and (6) we see that $\eta(x)=\left.d h^{-1}\right|_{h(x)} w(h(x))$ and all its derivatives approach 0 as $x \rightarrow x_{0}$. Hence $\eta(x)$ is smooth and therefore so is $H_{t}(x)$.

It is clear from the definition of $H_{t}(x)$ and the properties of $G_{t}(x)$ that the only periodic orbits of H are the constant orbits H^{x} for $x \in P$. It is also clear from the fact that $x \rightarrow \Psi^{-1}(f(\Psi(x)))$ is the restriction of a orthogonal linear map to D^{m}, that $f \circ h=h \circ f$ and hence $f \circ H_{t}=H_{t} \circ f$ for all t. The $\operatorname{map}(x, t) \rightarrow H_{t}(f(x))$ is a homotopy from $H_{0} \circ f=f$ to the smooth map $g=H_{1} \circ f$. It is easy to see that the set of periodic points of $H_{1} \circ f$ is P and that $H_{1} \circ f|P=f| P$. This completes the proof.

Lemma 9. Suppose there is given a map $g: T^{k} \rightarrow T^{k}, k \geqq 2$, which is covered by a linear $\operatorname{map} A: \boldsymbol{R}^{k} \rightarrow \boldsymbol{R}^{k}$, and an integer $N \geqq 2$, such that $g^{N}=1_{T^{k}}$, and $\lambda^{m} \neq 1$ for λ a characteristic root of A and $1 \leqq$ $m<N$. Then there exists a smooth map \bar{g} homotopic to g such that $P=\left\{x \in T^{k} \mid g^{m}(x)=x\right.$ for some $\left.m, 1 \leqq m<N\right\}=$ the set of all periodic points of $\bar{g}, \bar{g}|P=g| P$, and for $m \geqq 1 \#\left\{x \in T^{k} \mid \bar{g}^{m}(x)=x\right\} \leqq a_{m}(g)$.

Proof. We wish to apply Theorem 4. If follows from Lemma 2 that $P=\left\{x \in T^{k} \mid g^{r}(x)=x\right.$ for some $\left.r, 1 \leqq r<N\right\}$ is finite. Since $N \geqq 2, \lambda_{i}^{1} \neq 1$ for all characteristic roots λ_{i} and hence

$$
L(g)=\prod_{i=1}^{n}\left(1-\lambda_{i}\right) \neq 0
$$

by formula (*). Hence, we can find an $x_{0} \in T^{k}$ such that $g\left(x_{0}\right)=x_{0}$. Therefore Theorem 4 gives a smooth map \bar{g} homotopic to g such that $P=$ the set of periodic points of \bar{g}, and $\bar{g}|P=g| P$. It follows from Lemma 2 applied to g, and formula (*), that for $1 \leqq m<N$,

$$
\#\left\{x \in T^{k} \mid \bar{g}^{m}(x)=x\right\}=\#\left\{x \in T^{k} \mid g^{m}(x)=x\right\}=\left|L\left(g^{m}\right)\right|=a_{m}(g) .
$$

Then

$$
\begin{aligned}
\#\{x & \left.\in T^{k} \mid \bar{g}^{N}(x)=x\right\} \\
& =\sum_{\substack{m, N \\
m \mid N}} \#\left\{x \in T^{k} \mid x \text { is a periodic point of } \bar{g} \text { of period } m\right\} \\
& \leqq \sum_{m \mid N}\left|L\left(g^{m}\right)\right| \\
& =\sum_{m \mid N}\left|\prod_{i=1}^{k}\left(1-\lambda_{i}^{m}\right)\right| \\
& \leqq \prod_{i=1}^{k} \sum_{m \mid N}\left|1-\lambda_{i}^{m}\right| \\
& \leqq \prod_{i=1}^{k} a_{i N} \\
& =a_{N}(g)
\end{aligned}
$$

To complete the proof it is sufficient to show that if $m \geqq 1, q \geqq 1$, and $m \equiv q \bmod N$, then

$$
\left\{x \in T^{k} \mid \bar{g}^{m}(x)=x\right\}=\left\{x \in T^{k} \mid \bar{g}^{q}(x)=x\right\}
$$

We may assume $m<q$ and so $q=m+p N$ for some $p \geqq 1$. Assume $\bar{g}^{m}(x)=x$. Then $x \in P$ and so $\bar{g}^{N}(x)=g^{N}(x)=x$. Consequently $\bar{g}^{q}(x)=\bar{g}^{m+p N}(x)=\bar{g}^{m}(x)=x$. The reverse implication, " $\bar{g}^{q}(x)=x$ implies $\bar{g}^{m}(x)=x$ " follows similarly. This completes the proof.

Remark. In our application of Lemma 9 in the proof of Theorem 3, Lemma 9 needs to be augmented by the following observation. Lemma 9 also holds when $k=1$ and $N \geqq$. We verify this as follows. It is easy to deduce that $A=1_{R^{1}}$ or $A=-1_{R^{1}}$. In the first case, $A=$ $1_{R^{1}}$, we can homotopy $g=1_{T^{1}}$ to a rotation \bar{g} of the circle $S^{1}=T^{1}$ by an angle which has an irrational ratio to 2π. Such a \bar{g} has no periodic points and Lemma 9 is verified in this case.

In the second case, $A=-1_{R^{1}}, g$ is a reflection and there are exactly two fixed points x_{0} and x_{1}. It is easy to homotopy g to a map \bar{g} which leaves x_{0} and x_{1} fixed, and moves all other points away from x_{0} and closer to x_{1}. Then x_{0} and x_{1} will be the only periodic points of \bar{g}. It is easy to calculate that $a_{m}(g)=2$ for all $m \geqq 1$, and so Lemma 9 holds in this case also.

Proof of Theorem 3. We prove Theorem 3 by induction on n. By convention \boldsymbol{R}^{0} and T^{0} are singletons. Hence the case $n=0$ holds trivially. Now assume that $n>0$ and the theorem holds for all $m<n$. Let $f: T^{n} \rightarrow T^{n}$ be a map.

By Lemma 1 we may assume that f is covered by a linear map $F: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$. By Lemma 5 we have

$$
L\left(f^{m}\right)=\prod_{j=1}^{n}\left(1-\lambda_{i}^{m}\right)
$$

where $\lambda_{1}, \cdots, \lambda_{n}$ are the characteristic roots of F.
First consider the case where $\lambda_{i}^{m} \neq 1$ for all $m \geqq 1$ and $1 \leqq i \leqq n$. Then the theorem follows from Lemmas 2 and 5.

Consider now the remaining case where $\lambda_{i}^{m}=1$ for some $m \geqq 1$ and $1 \leqq i \leqq n$. Let N be the smallest such m. Let \bar{F}^{t} denote the transpose of \bar{F}. Since $\left(\bar{F}^{t}\right)^{N}$ has integer entries, we may find a $w \in \boldsymbol{Z}^{n}$ such that $w \neq 0$ and $\left(\bar{F}^{t}\right)^{N} w=w$. Set

$$
W=\operatorname{sp}_{R^{n}}\left\{\left(\bar{F}^{t}\right)^{m} w \mid 0 \leqq m<N\right\} .
$$

Then $\operatorname{dim} W \geqq 1, \bar{F}^{t} u \in W$ for all $u \in W$, and $\left(\bar{F}^{t}\right)^{N} x=x$ for all $x \in W$. Set $k=\operatorname{dim} W$. By Lemma 4, we can find a basis $w^{1}, w^{2}, \cdots, w^{n}$ for \boldsymbol{Z}^{n} such that $w^{1}, w^{2}, \cdots, w^{k}$ form a basis for W. Let $K: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ be the linear transformation whose matrix satisfies $\bar{K}^{t} e^{i}=w^{i}$. Then, both \bar{K} and \bar{K}^{-1} have integer entries. Thus, both K and K^{-1} induce maps $K^{\prime}: T^{n} \rightarrow T^{n}$, and $K^{-1 \prime}=K^{\prime-1}: T^{n} \rightarrow T^{n}$. We "change coordinates" by noting that it is sufficient to prove the theorem for

$$
g=K^{\prime} \circ f \circ K^{\prime-1}
$$

in place of f. The map g is covered by

$$
M=K \circ F \circ K^{-1}: \boldsymbol{R}^{n} \longrightarrow \boldsymbol{R}^{n}
$$

From $\bar{K}^{t} e^{i}=w^{i}$ and $\bar{F}^{t} u \in W$ for $u \in W$, it follows that the matrix \bar{M} of M has the form

$$
\bar{M}=\left(\begin{array}{c|c}
\bar{A} & 0 \\
\hline \bar{C} & \bar{B}
\end{array}\right)
$$

where $\bar{A}, \bar{B}, \bar{C}$, and 0 are $k \times k,(n-k) \times(n-k),(n-k) \times k$ and $n \times(n-k)$ matrices, and all entries of 0 are zero. It follows from $\bar{F}^{t N} x=x$ for all $x \in W$, that $\bar{A}^{N}=1$. Since $\bar{M}=\bar{K} \cdot \bar{F} \cdot \bar{K}^{-1}$ is similar to $\bar{F}, \lambda_{1}, \cdots, \lambda_{n}$ are the characteristic roots of \bar{M}. Hence, we may renumber the λ_{i} 's so that $\lambda_{1}, \cdots, \lambda_{k}$ and $\lambda_{k+1}, \cdots, \lambda_{n}$ are the characteristic roots of \bar{A} and \bar{B} respectively. Let

$$
B: \boldsymbol{R}^{n-k} \longrightarrow \boldsymbol{R}^{n-k}
$$

be the linear map whose matrix is \bar{B}. Then B induces a map $b: T^{n-k} \rightarrow T^{n-k}$. Since $k=\operatorname{dim} W \geqq 1$, we may apply our induction hypothesis to b and find a smooth map \bar{b} homotopic to b such that

$$
\#\left\{x \in T^{n-k} \mid \bar{b}^{m}(x)=x\right\} \leqq a_{m}(b)=\prod_{i=k+1}^{n} a_{i m} .
$$

Let $A: \boldsymbol{R}^{k} \rightarrow \boldsymbol{R}^{k}$ be the linear map whose matrix is \bar{A}. Let $a: T^{k} \rightarrow T^{k}$ be the map induced by A. Since $\bar{A}^{N}=1$, we have $a^{N}=1_{T^{k}}$. Because we choose N so that $\lambda_{i}^{m} \neq 1$ for $1 \leqq m<N$ and all i, and $N=1$ implies $k=1$, we see that Lemma 9 or the remark which follows it applies. Hence we can find a smooth map \bar{a} homotopic to a such that $P=\left\{x \in T^{k} \mid a^{m}(x)=x\right.$ for some $\left.m, 1 \leqq m<N\right\}=$ the set of all periodic points of $\bar{a}, \bar{a}|P=a| P$, and for $m \geqq 1$,

$$
\#\left\{x \in T^{k} \mid \bar{a}^{m}(x)=x\right\} \leqq a_{m}(a)=\prod_{i=1}^{k} a_{i m} .
$$

If we write $\boldsymbol{R}^{n}=\boldsymbol{R}^{k} \times \boldsymbol{R}^{n-k}$, then M has the form

$$
M(x, y)=(\bar{A} x, \bar{C} x+\bar{B} y) .
$$

Consequently, if we write $T^{n}=T^{k} \times T^{n-k}$, then $g(u, v)=(a(u), r(u, v))$ where $r: T^{k} \times T^{n-k} \rightarrow T^{k}$ is the map induced by the map $R: \boldsymbol{R}^{k} \times \boldsymbol{R}^{n-k} \rightarrow$ \boldsymbol{R}^{k} which is given by $R(x, y)=\bar{C} x+\bar{B} y$. The homotopy from a to \bar{a} gives rise to a homotopy from g to \bar{g} where

$$
\bar{g}(u, v)=(\bar{a}(u), r(u, v)) .
$$

The periodic points of \bar{g} must have the form

$$
(u, v) \in T^{k} \times T^{n-k} \quad \text { where } u \in P
$$

Partition P into orbits under \bar{a}. Let

$$
X=\left\{u_{i}=\bar{a}^{i}\left(u_{0}\right) \mid i=0,1, \cdots, m-1\right\}
$$

be one such orbit consising of m distinct point, where $1 \leqq m<N$ and $\bar{a}^{m}\left(u_{0}\right)=u_{0}$. Consider the maps

$$
g_{i}=\bar{g} \mid u_{i} \times T^{n-k}: u_{i} \times T^{n-k} \longrightarrow u_{i+1} \times T^{n-k}
$$

which are covered by the maps

$$
M_{i}=M \mid x_{i} \times \boldsymbol{R}^{n-k}: x_{i} \times \boldsymbol{R}^{n-k} \longrightarrow x_{i+1} \times \boldsymbol{R}^{n-k}
$$

where $u_{m}=\bar{a}^{m}\left(u_{0}\right)=u_{0}$ and x_{0} is chosen so that $\pi\left(x_{0}\right)=u_{0}$, and $x_{i}=$ $\bar{A}^{i} x_{0}$ for $i \geqq 1$, (recall that $\bar{a}|P=a| P$). Making the obvious identifications of $u_{i} \times T^{n-k}$ with T^{n-k}, and $x_{i} \times \boldsymbol{R}^{n-k}$ with \boldsymbol{R}^{n-k} we see that

$$
M_{i}(y)=\bar{C} x_{i}+\bar{B} y
$$

for all $y \in \boldsymbol{R}^{n-k}$. Define

$$
M_{i t}(y)=t \bar{C} x_{\imath}+\bar{B} y
$$

Then $M_{i 1}=M_{i}$ and $M_{i 0}$ has \bar{B} as its matrix. Because \bar{B} has integer entries and $t \bar{C} x_{i}$ does not depend on y, the homotopy $M_{i t}$ induces a
homotopy $g_{i t}$ from $g_{i 1}=g_{i}$ to the map induced by $M_{i 0}$, which is b. Since b is homotopic to \bar{b}, each g_{i} is homotopic to \bar{b}. Since both g_{i} and \bar{b} are smooth, we may find a smooth homotopy $h_{i}: T^{n-k} \times I \rightarrow$ T^{n-k} such that for some $\varepsilon>0, h_{i}(v, t)=\bar{b}(v)$ for all $t<\varepsilon$, and $h_{i}(v, t)=$ $g_{i}(v)=r\left(u_{i}, v\right)$ for all $t>1-\varepsilon$.

Pick coordinate charts $\left(U_{i}, \varphi_{i}\right)$ about the points u_{i} such that $\left\{u_{i}\right\}=$ $U_{i} \cap P, \varphi_{i}\left(U_{i}\right)=B_{1}(0) \subset \boldsymbol{R}^{k}$, and $\varphi_{i}\left(u_{i}\right)=0$. Using the natural group structure on T^{n-k} we define

$$
r_{t}: T^{k} \times T^{n-k} \longrightarrow T^{n-k} \quad \text { for } t \in[0,1]
$$

by

$$
r_{t}(u, v)=\left\{\begin{array}{cl}
r(u, v)+h_{i}\left(v, t\left\|\varphi_{i}(u)\right\|+1-t\right)-r\left(u_{i}, v\right) & \text { if } u \in U_{i} \\
r(u, v) & \text { if } u \notin \bigcup_{i=1}^{m} U_{i}
\end{array}\right.
$$

Using r_{t} we obtain a homotopy

$$
\bar{g}_{t}(u, v)=\left(\bar{a}(u), r_{t}(u, v)\right)
$$

from $\bar{g}_{0}=\bar{g}$ to \bar{g}_{1}, where $\bar{g}_{1}(u, v)=\left(\bar{a}(u), r_{1}(u, v)\right)$. Note that $r_{1}\left(u_{i}, v\right)=$ $\bar{b}(v)$ for each $i=0,1, \cdots, m-1$. Proceed similarly with the other orbits in P and call the final map \widetilde{g}.

The map \widetilde{g} will be smooth and homotopic \bar{g} and hence homotopic to g. For all $(u, v) \in T^{k} \times T^{n-k}, \widetilde{g}(u, v) \in(\bar{a}(u), \widetilde{r}(u, v))$ for some map $\widetilde{r}: T^{k} \times T^{n-k} \rightarrow T^{n-k}$ which satisfies $\widetilde{r}(u, v)=\bar{b}(v)$ for all $u \in P$.

Now suppose $\widetilde{g}^{m}(u, v)=(u, v)$. Then $\bar{a}^{m}(u)=u$ and so $u \in P$. Hence $\bar{a}^{i}(u) \in P$ for all i and so by an easy induction $\widetilde{g}^{i}(u, v)=$ $\left(\bar{a}^{i}(u), \bar{b}^{i}(v)\right)$. Applying this with $i=m$ we see that $\bar{b}^{m}(v)=v$. Hence

$$
\begin{aligned}
& \#\left\{(u, v) \in T^{k} \times T^{n-k} \mid \widetilde{g}^{m}(u, v)=(u, v)\right\} \\
& \quad \leqq \#\left\{u \in T^{k} \mid \bar{a}^{m}(u)=u\right\} \times \#\left\{v \in T^{n-k} \mid b^{m}(v)=v\right\} \\
& \quad \leqq \prod_{i=1}^{k} \alpha_{i m} \cdot \prod_{i=k+1}^{n} \alpha_{i m}=a_{m} .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 1. The "if" direction follows from the Nielsen fixed point theorem and Theorem 2.

Next we prove the converse direction. Assume that $L\left(f^{m}\right), m=$ $1,2, \cdots$, are bounded. We may assume $n \geqq 1$. Let g be the map given by Theorem 3. If 1 is a characteristic root of $H_{1}(f): H_{1}\left(T^{n}\right) \rightarrow$ $H_{1}\left(T^{n}\right)$, then g has no periodic points because $a_{m}(f)=0$ for all $m \geqq 1$. So assume that 1 is not a characteristic root of $H_{1}(f)$. Now from Lemma 6 we have $\left|\lambda_{i}\right| \leqq 1$ for all i, where $\lambda_{1}, \cdots, \lambda_{n}$ are the characteristic roots of $H_{1}(f)$. Consequently, there exists a B such that
$a_{i m} \leqq B$ for all $i=1, \cdots, n$, and $m \geqq 1$. Thus $a_{m}(f) \leqq B^{n}$ for all $m \geqq 1$.

We will show that the number of periodic points of g is bounded by B^{n}. Suppose on the contrary that $S=\left\{x_{i} \mid 1 \leqq i \leqq B^{n}+1\right\}$ is a set of $B^{n}+1$ distinct periodic points such that x_{\imath} has period m_{i}. Set

$$
m=\prod_{i=1}^{B^{n+1}} m_{i}
$$

Then $S \subset\left\{x \in T^{n} \mid g^{m}(x)=x\right\}$. But, by Theorem 3,

$$
\#\left\{x \in T^{n} \mid g^{m}(x)=x\right\} \leqq a_{m}(f) \leqq B^{n},
$$

a contradiction. This completes the proof.

References

1. R. Brooks, R. Brown, J. Pak, and D. Taylor, Nielsen numbers of maps of tori, Proc. Amer. Math. Soc., 52 (1975), 398-400.
2. R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, 1971.
3. M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.
4. Hecke E. Leipzig, Theorie der Algebraischen Zahlen, Akademische Verlagsgesellschaft, 1923.
5. J. Milnor, Lectures on the h-cobordism Theorem, Princeton Math. Notes, Princeton, New Jersey, 1965.

Received February 15, 1978 and in revised form December 4, 1978.
Indiana University
Bloomington, IN 47401

