ANALYTIC SUBGROUPS OF AFFINE ALGEBRAIC GROUPS, II

ANDY R. MAGID

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

Let H be Zariski-dense analytic subgroup of the connected linear complex algebraic group G. It is known that there is a torus T in G with G = HT and $H \cap T$ discrete in H. This paper gives equivalent conditions for $H \cap T$ to be trivial, and considers the connection between these conditions and left algebraic group structures on H induced from the coordinate ring of G.

Let G be a connected linear complex algebraic group, and let H be a Zariski-dense analytic subgroup of G which is integral in the sense of [2, Defn. 1, p. 386]. In [10, Thm. 3] it was shown that there exists an algebraic torus T in G with G = HT such that the Lie algebra of T is a vector space complement to the Lie algebra of H in the Lie algebra of G; T is called a *complementary torus* to H in G. The principal results of this paper deal with conditions under which such a complementary torus meets H trivially. The existence of such a torus is connected, by [10, Prop. 6] and [10, Prop. 7], to left algebraic group structures on H in the sense of [8, Defn. 2.1].

We recall some terminology: let H be an analytic group, let f be an analytic function on H, and let x be in H. Then $x \cdot f$ (respectively, $f \cdot x$ is the function on H whose value at y is f(yx) (respectively, f(xy)). f is representative if $\{x \cdot f | x \in H\}$ spans a finite-dimensional vector space, and R(H) denotes the Hopf algebra of all representative functions on H [5]. A representative function f on H is semi-simple if the representation of H on the span of $\{x \cdot f \mid x \in H\}$ is semi-simple, and $R(H)_s$ denotes the subalgebra of all semi-simple representative functions on H[5]. An analytic left algebraic group structure on H is a finite-type C-subalgebra A on R(H) such that (1) if $f \in A$ and $x \in H$, $f \cdot x \in A$, and (2) evaluations at element of H correspond bijectively to C-algebra maps from A to C [8, Defn. 2.1]. A nucleus of H is a closed, solvable, simply connected normal subgroup K such that H/K is reductive [6, p. 112]. An additive character of H is a homomorphism from H to the additive analytic group C and $X^+(H)$ is the free abelian group of additive characters of H. H is an FR group if H has a faithful finite-dimensional representation; if V is the space of such a representation then H is a Zariski-dense analytic subgroup of the Zariski-closure of H in GL(V) which is an algebraic group.

L(H) is the Lie algebra of H. If G is a complex algebraic group, k[G] denotes the affine coordinate ring of G, and we refer to the complex topology on G as the strong topology.

Let H be a connected, commutative FR analytic group. By [10, Lemma 1], $H = V \times T$, where V is a complex vector group and T is a multiplicative torus. Then T is the intersection of the kernels of the additive characters of H, so T is the unique maximal torus of H.

LEMMA 1. Let H be a connected commutative FR analytic group and let T be the unique maximal torus of H.

(1) A closed analytic subgroup U of H is a nucleus if and only if H = UT with $U \cap T = \{e\}$.

(2) There is a one-one correspondence between the nuclei of H and the vector space complements to L(T) in L(H).

Proof. Write $H = V \times T$ with V a complex vector group, and let $p_1: H \to V$ and $p_2: H \to T$ be the projections. Let U be a nucleus of H. Then $p_1(U)$ is a vector subgroup of V. If $p_1(U) \neq V$, there is a nonzero linear functional p on V with $p(p_1U) = 0$. Let $q = pp_1$. Then q is an additive character of H with q(U) = 0, so q induces an onto additive character of H/U. Since H/U is reductive and commutative, H/U is a torus and hence has no surjective additive characters. Thus $p_1(U) = V$ and hence $T \to H/U$ is onto. Then there is a subtorus T_1 of T such that $L(T_1) \to L(H/U)$ is an isomorphism. Since T_1 and H/U are tori, $T_1 \rightarrow H/U$ is algebraic, and hence an isogeny. In particular, $T_1 \cap U$ is finite. But U is simply connected, and hence a vector group, so $T_1 \cap U = \{e\}$. Then $H = T_1 \times U$, so T_1 is a maximal torus of H, so $T = T_1$. This establishes half of (1). For the other half, if H = UT with $U \cap T = \{e\}$, then L(H) = $L(U) \bigoplus L(T)$. Since Ker(exp_H) is contained in T, exp_H: $L(U) \rightarrow U$ is an isomorphism, so U is simply connected. U is solvable and normal, and H/U is isomorphic to T, and hence reductive, so U is a nucleus of H, and (1) obtains.

For (2), if U is a nucleus of H then (1) implies that $L(H) = L(U) \bigoplus L(T)$. Conversely, if $L(H) = M \bigoplus L(T)$, let $U = \exp_{H}(M)$. Then $\exp_{H}^{-1}(U) = M + \operatorname{Ker}(\exp_{H})$ is closed in L(H), so U is a closed analytic subgroup of H. Also, UT = H since $L(H) = M \bigoplus L(T)$ and M = L(U). If $x \in U \cap T$, there are $m \in M$ and $y \in L(T)$ with $\exp_{H}(m) = \exp_{H}(y) = x$. Then $m - y \in \operatorname{Ker}(\exp_{H}) \subseteq L(T)$ so $m \in L(T) \cap M = 0$ and x = e. Thus $U \cap T = \{e\}$ and by (1), U is a nucleus of H.

LEMMA 2. Let H be a connected analytic group, let R be the radical of H, and let K be a nucleus of H.

(1) $(H, R) \subseteq K \subseteq R$ and K is a nucleus of R.

(2) If L is a closed simply connected normal subgroup of H with $L \subseteq K$, then K/L is a nucleus of H/L.

Proof. (1) K is contained in R since K is a connected closed solvable normal subgroup of H. Let $f: H \to H/K$ denote the projection. Then f(R) is the radical of the reductive group H/K, so e = (H/K, f(R)) = f(H, R) and (H, R) is contained in K. Also, K is a closed, simply connected solvable normal subgroup of R, and R/K is the radical of H/K. Since H/K is reductive, its radical is a torus so K is a nucleus of R. (2) K/L is a closed, simply connected solvable normal subgroup of H/L and H/L/K/L = H/K is reductive, so K/L is a nucleus of H/L.

The preceding lemmas combine with [10, Thm. 10] to yield the following characterization of nuclei.

THEOREM 3. Let H be a connected FR analytic group, let R be the radical of H, let $\overline{R} = R/(H, R)$, let T be the unique maximal torus of \overline{R} , and let $f: R \to \overline{R}$ be the canonical map. Then the nuclei of H are the groups $f^{-1}(U)$, where U is a closed analytic subgroup of \overline{R} with $\overline{R} = UT$ and $U \cap T = \{e\}$.

Proof. [10, Thm. 10] shows that (H, R) is closed in H and that every $f^{-1}(U)$ is a nucleus. Conversely, if K is a nucleus of H then by Lemma 2, part (1), $(H, R) \subseteq K \subseteq R$ and K is a nucleus of R. By Lemma 2, part (2), with $L = (H, R) \subseteq R$, K/(H, R) is a nucleus of \overline{R} , and by Lemma 1, $K/(H, R) \times T = H$, so $K = f^{-1}(K/(H, R))$ is of the desired form.

Theorem 3 allows us to improve [10, Thm. 10] somewhat:

COROLLARY 4. Let G be a connected linear algebraic group, H a Zariski-dense analytic subgroup of G and K a nucleus of H. Then there is a reductive subgroup Q of H Zariski-closed in G and a complementary torus T of H in G such that H=KQ with $K\cap Q=\{e\}$ and $(T, Q) = \{e\}$.

Proof. [10, Thm. 10] establishes the existence of T and Q when K has the form $f^{-1}(U)$ as in Theorem 3, and Theorem 3 shows that K always has this form.

Also, Theorem 3 and Lemma 1 show that, in the notation of Theorem 3, the set of nuclei of H corresponds bijectively to the set

of vector space complements to L(T) in $L(\overline{R})$. We now show that this latter set carries the structure of a complex vector space.

To simplify notation, let V be a finite-dimensional complex vector space and let W be a subspace of V. Let S be the set of vector space complements to W in V. Fix M_0 in S, and let M be any element of S. Let $p: V \to M_0$ and $q: V \to W$ be the projections. Since $\operatorname{Ker}(p) =$ W and $W \cap M = 0$, $\operatorname{Ker}(p|M) = 0$. Since $\dim M = \dim V - \dim W =$ $\dim M_0, p | M$ is an isomorphism. Let $f_M = q \circ (p | M)^{-1} \colon M_0 \to W$. Then $M = \{m + f_M(m) | m \in M_0\}$, and $M \to f_M$ is a bijection between S and $\operatorname{Hom}_{\mathcal{C}}(M_0, W)$. Thus S carries the structure of a complex vector space.

We relate this calculation to sets of nuclei:

THEOREM 5. Let H be a connected FR analytic group, and let R be the radical of H. Then the set of nuclei of H is a complex vector space of dimension $rd - r_1d - d^2$, where $r = \dim(L(R))$, $r_1 = \dim L((H, R))$ and $d = \operatorname{rank}(X^+(H))$.

Proof. Let R = R/(H, R) and let T be the maximal torus of R. As noted above, the set of nuclei corresponds bijectively to the set of vector space complements to L(T) in $L(\overline{R})$ by Theorem 3 and Lemma 1. Let U be a vector subgroup of R with $R = U \times T$. By the above considerations, the set of vector space complements to L(T) in $L(\bar{R})$ is in bijection with $\operatorname{Hom}_c(L(U), L(T))$. Let $\overline{H} = H/(H, R)$. Then \overline{H} is also FR (since (H, R) is normal and Zariski-closed in any linear algebraic group in which H is a Zariski-dense analytic subgroup), and $\overline{H} = \overline{R}S$ where S is semi-simple since \overline{R} is the radical of \overline{H} . Also, \overline{R} is central in \overline{H} , so that $\overline{R} \cap S$ is central in S, and since S is semi-simple and FR, the center of S is finite. Thus $\overline{R} \cap S$ is finite. But every element of finite order of \overline{R} lies in T, so $\overline{R} \cap S \subseteq T$ and $\overline{H} = U \times (TS)$. Now $X^+(H) = X^+(H)$, and since TS is reductive, $X^+(\overline{H}) = X^+(U)$. Thus dim $(U) = \dim(L(U)) = \operatorname{rank}(X^+(H)) = d$. Also $\dim (L(T)) = \dim (L(\overline{R})) - \dim (L(U)) = \dim (L(R)) - \dim (L(H, R)) - \dim (L(H, R$ dim $L(U) = r - r_1 - d$. Thus dim $(Hom_c(L(U), L(T))) = (r - r_1 - d)d$.

A similar description of the set of nuclei as a vector space was obtained by other means in [9, Cor. 2.2].

We now consider some further implications of Corollary 4. Let G be a connected linear algebraic group, H a Zariski-dense analytic subgroup, K a nucleus of H, Q a reductive subgroup of G, and T a complementary torus of H in G such that H = KQ with $K \cap Q = \{e\}$, and $(T, Q) = \{e\}$, as in the corollary. Then P = TQ is a reductive subgroup of G with (P, P) = (Q, Q). We show now that P contains a complementary torus T'' of H in G with $T'' \cap Q = \{e\}$.

PROPOSITION 6. Let P be a reductive algebraic group and let Q be a reductive algebraic subgroup with (P, P) = (Q, Q). Then there is an algebraic torus T" in P such that P = QT" with $Q \cap T$ " = {e}.

Proof. Let S = (Q, Q) = (P, P). We note that S and Q are normal in P. Let R_0 be the radical of P and R_1 be the radical of Q, so R_1 is contained in R_0 . Let T_1 be a torus in S containing the center of S [1, Cor. 11.1, p. 270]. Then $T_0 = R_0 T_1$ is a torus in P and $T_1 \subseteq T_0 \cap S$. We claim that $T_0 \cap S = T_1$: for if $rt \in T_0 \cap S$ with $r \in R_0$ and $t \in T_1$, then $r \in R_0 \cap S$ which is central in S so $r \in T_1$ and $rt \in T_1$. Let $T'_0 = R_1T_1$. Then $T_1 \subseteq T'_0 \cap S \subseteq T_0 \cap S = T_1$, so $T'_0 \cap S =$ T_1 . Also, T_1 is a subtorus of T'_0 , so by [1, Cor., p. 206] there is a torus T' in T' so that $T'_0 = T_1T'$ and $T' \cap T_1 = \{e\}$. Since $T' \cap S \subseteq$ $T'_{0} \cap S = T_{1}, T' \cap S = \{e\}$. Since T'_{0} is a subtorus of T_{0} , by [1, Cor., p. 206] again there is a torus T'' in T_0 so that $T_0 = T'_0 T''$ and $T'_0 \cap$ $T'' = \{e\}$. Since $T'' \cap S \subseteq T_0 \cap S = T_1$ and $T_1 \subseteq T'_0$ so $T'' \cap T_1 = \{e\}$, then $T'' \cap S = \{e\}$. Let T = T'T''. Then $T_0 = T_1T$ and $T_1 \cap T = \{e\}$. Let $x = t_1 t_2$ be in $T \cap S$ with $t_1 \in T'$ and $t_2 \in T''$. Then $x \in T_0 \cap S = T_1$ so $x \in T \cap T_1 = \{e\}$ and $t_1 = t_2^{-1}$. Since $T' \cap T'' \subseteq T'_0 \cap T'' = \{e\}, t_1 = e$. Then $T \cap S = \{e\}$. Now $Q = R_1S$ so $Q = T'_0S$, and $T'_0 = T'T_1$ with $T_1 \subseteq S$, so Q = T'S. Similarly, since $P = R_0S$, $P = T_0S$ and $T_0 =$ $T_0^{\scriptscriptstyle 1}T'' = T_1T'T'' = T_1T$ with $T_1 \subseteq S$, P = TS. Since T = T''T', P =T''(T'S) = T''Q. Now let $x \in T'' \cap Q$. Since $x \in Q$ and Q = T'S, x = tswith $t \in T'$ and $s \in S$. Then $s = t^{-1}x$ is in T'T'' = T and in S, and we showed above that $T \cap S = \{e\}$. Thus s = e and x = t is in T'. But x is also in T'' and $T'' \cap T' = \{e\}$ so $x = \{e\}$. Thus $Q \cap T'' = \{e\}$, and the proposition follows.

COROLLARY 7. Let G be a connected linear algebraic group, H a Zariski-dense analytic subgroup of G and K a nucleus of H. Then there is a reductive subgroup Q of H Zariski-closed in G and a complementary torus T" to H in G such that H = KQ with $K \cap Q =$ $\{e\}, T" \cap Q = \{e\}, and T"$ normalizes Q.

Proof. Let Q and T be as in Corollary 4. Let P = TQ. Then P is reductive and (P, P) = (Q, Q). Let T" be as in Proposition 6. Then G = HT = KQT = KP = KQT" = HT", and $L(G) = L(H) \bigoplus L(T) = L(K) \bigoplus L(Q) \bigoplus L(T) = L(K) \bigoplus L(P) = L(K) \bigoplus L(Q) \bigoplus L(T") = L(H) \bigoplus L(T")$, so T" is a complementary torus to H in G, and Q and T" possess the desired properties.

The examples following [10, Thm. 3] show that, in the notation of Corollary 7, it is not always possible to find a T'' with $T'' \cap H = \{e\}$. Complementary tori with this property are connected to left algebraic group structures on H [10, Prop. 6], and we now examine when such exist.

We will need to use some facts about representation theory in this examination. We fix the following terminology: if H is an analytic group, an H-module V is a finite-dimensional complex vector space with an analytic left H-action; we let $r_{V}: H \rightarrow GL(V)$ be the corresponding representation. The associated semi-simple module to V is the direct sum V' of the H-module composition factors of H; we let $r'_{V} = r_{V'}$ and call r'_{V} the associated semi-simple representation. If H is an analytic subgroup of the analytic group G, then every G-module is, by restriction, an H-module. In this case, if V is an H-module, we say that r_{V} extends to G if there is a G-module Wcontaining V as an H-submodule. In [3], a criterion is given for determining when a representation of H extends to G in the case H is a normal semi-direct factor of G.

THEOREM 8. Let G be a connected linear algebraic group and H a Zariski-dense analytic subgroup of G. Then the following are equivalent:

(1) Every additive character of H is the restriction of an additive character of G.

(2) There is a complementary torus T to H in G with $T \cap H$ finite.

(3) There is a complementary torus T'' to H in G with $T'' \cap H = \{e\}$.

(4) Every nucleus of H is a nucleus of G.

(5) Every H-module is an H-submodule of a G-module.

Proof. (1) and (2) are equivalent by [10, Thm. 3] and (3) implies (2) trivially. We next show that (2) implies (4). Let K be a nucleus of H and let T, Q be as in Corollary 4. Let P = TQ. Then P is a reductive subgroup of G and G = KP. We assume $T \cap H$ is finite. By [10, Thm. 3], H is strongly closed in G, and hence K is a strongly closed simply connected analytic subgroup of G. K is normal in G since H is Zariski-dense in G and K is normal in H. $K \cap P$ is solvable and normal in P, so $K \cap P$ is contained in the center Z of the reductive group P. Z = TZ', where Z' is the center of Q. Let $x \in K \cap P$. Then x = tq where $t \in T$ and $q \in Z'$. Since $x \in H$ and $q \in H$, $t \in T \cap H$. Let *n* be the order of $T \cap H$. Then $x^n = q^n$, so $q^n \in K \cap Q = \{e\}$. Let ${}_nZ'$ denote the *n*-torsion in Z'. Then ${}_nZ'$ is finite since Q is reductive, and $K \cap P \subseteq (T \cap H)(_{w}Z')$ so $K \cap P$ is finite. Since K is simply connected, $K \cap P = \{e\}$. Thus G/K = P is reductive, so K is a nucleus of G and (2) implies (4). We now show that (4) implies (3). Let K, T, Q, P be as above. Since K is then

a nucleus of G, $G/K = P/K \cap P$ is reductive. The analytic map $f: P \to P/K \cap P$ is then a morphism of algebraic groups by [10, Lemma A1]. Since f induces an isomorphism on Lie algebras, it follows that f has finite kernel, i.e., $P \cap K$ is finite, and since K is simply connected, $P \cap K = \{e\}$. Thus G = KP with $P \cap K = \{e\}$. By Proposition 6, P = QT'' with $T'' \cap Q = \{e\}$. It follows that G =KQT'' = HT'' and $T'' \cap H = \{e\}$, so (4) implies (3). We next show that (3) implies (5): Assume condition (3) holds; i.e., G = HT with T a torus in G with $T \cap H = \{e\}$. Let V be an H-module and let $r = r_{\Gamma}$ be the corresponding representation. Let R be the radical of H. By [3, Thm. 2.2, p. 215], V is an H-submodule of a G-module if and only if r'((G, R)) = 1. We claim that (G, R) = (H, R). First, (H, R)is contained in the unipotent radical of G, so (H, R) is Zariski-closed in G. Let (), denote Zariski-closure. Then $(H, R)_c = (H_c, R_c)$ by [1, Prop., p. 108]. Thus $(G, R) = (H_c, R) \subseteq (H_c, R_c) = (H, R)_c = (H, R)$ and it follows that (G, R) = (H, R). Since (H, R) acts trivially on simple H-modules, r'((G, R)) = r'((H, R)) = 1, so every H-module is an H-submodule of a G-module. Finally, we show that (5) implies (1): Let $f \in X^+(H)$, $f \neq 0$ and let V be the two dimension complex space with basis e_1 , e_2 and let H act on V by $he_1 = e_1$ and $he_2 =$ $f(h)e_1 + e_2$ for $h \in H$. Then V is an H-module. Let W_0 be a G-module containing V as an H-submodule. Let K be the kernel of f. Since (G, G) = (H, H) is contained in K, K is normal in G. Let W = $\{x \in W_0 | kx = x \text{ for all } k \text{ in } K\}$. Since K is normal in G, W is a Gsubmodule of W_0 and W contains V. Let $\bar{H} = r_w(H)$ and $\bar{G} = r_w(G)$. W is a \overline{G} - and \overline{H} -module, and since $K \subseteq \operatorname{Ker}(r_w)$ and $(G, G) \subseteq K, \overline{G}$ is abelian. Let T be the unique maximal torus of \overline{G} . If every additive character of \overline{G} vanishes on \overline{H} , then \overline{H} is contained in T. W is semi-simple as a T-module, so W is semi-simple as an \overline{H} -module, if $\overline{H} \subseteq T$. But then V is also semi-simple as an \overline{H} -module, hence as an *H*-module, so f = 0, contrary to assumption. Thus there is an additive character of \overline{G} which is not trivial on \overline{H} . This character defines an additive character g on G whose kernel contains K but whose restriction to H is not trivial. Let g_1 be the restriction of g to H. Both g_1 and f induce isomorphisms $H/K \rightarrow C$, so there is a nonzero scalar α such that $\alpha g_1 = f$. It follows that f is the restriction of ag to H, and $ag \in X^+(G)$. Thus (5) implies (1), and Theorem 8 is complete.

Condition (3) of Theorem 8 is related to the existence of analytic left algebraic group structures on H by [10, Prop. 6] and [10, Prop. 7]. Thus the other conditions, especially condition (1), are also so related, as the following corollary makes precise.

COROLLARY 9. Let H be an FR analytic group, and B a Hopf-

subalgebra of R(H) a finite type over C. Then the following are equivalent:

(1) B contains an analytic left algebraic group structure on H.

(2) B separates the points of H and contains $X^+(H)$.

Proof. Assume (1) and let A be the left algebraic group structure. Let B' be the smallest sub-Hopf-algebra of R(H) containing A, and let G' be the algebraic group with k[G'] = B'. By [10, Prop. 7], H is a Zariski-dense and strongly closed analytic subgroup of G' and there is a complementary torus T' to H in G' with $T' \cap H = \{e\}$. By Theorem 8, every additive character of H extends to G'. Since additive analytic characters of algebraic groups are algebraic, the additive characters are in k[G'] = B'. Thus $X^+(H) \subseteq B' \subseteq B$. By definition, A separates points of H, hence so does B, so (1) implies (2). Conversely, assume (2). Let G be the algebraic group with k[G] = B. Then H becomes a Zariski-dense analytic subgroup of G. Then f is a primitive element of R(H): i.e., the Let $f \in X^+(H)$. comultiplication sends f to $f \otimes 1 + 1 \otimes f$, so f is primitive in B and hence defines an additive character of G. By Theorem 8, there is a complementary torus T to H in G with $T'' \cap H = \{e\}$. By [10, Prop. 6], $A = B^T$ is an analytic left algebraic group structure on H and A is contained in B so (2) implies (1).

Let H be an analytic group and A a subgroup of R(H). We recall that $A_s = A \cap R(H)_s$ denotes the semi-simple representative functions in A. If A is a left algebraic group structure on H, A is said to be normal basic if for every f in A_s and x in $H, x \cdot f$ and $f \cdot x$ are in A_s [6, p. 116], and a sub-Hopf-algebra of R(H) of finite type over C is regular if it contains a normal basic left algebraic group structure on H [7, p. 873]. We will now interpret this concept in terms of complementary tori. The following lemma determines the semi-simple part of the coordinate ring of an algebraic group.

LEMMA 10. Let G be a connected linear complex algebraic group and let U be its unipotent radical. Then $k[G]_s = k[G]^v$.

Proof. $k[G]^{v} = k[G/U]$ and since G/U is reductive, $k[G/U]_{s} = k[G/U]$. Thus $k[G]^{v}$ is contained in $k[G]_{s}$. Conversely, let $f \in k[G]_{s}$, let $V = \langle x \cdot f | x \in G \rangle$ and let $r = r_{v}$ be the associated representation. Since V is semi-simple, U is in the kernel of r. Since $f \in V$, $x \cdot f = r(x)f = f$ for all x in U, so f is in $k[G]^{v}$. Thus $k[G]_{s}$ is contained in $k[G]^{v}$ and the result follows.

THEOREM 11. Let G be a connected linear algebraic group and H a Zariski-dense analytic subgroup of G. Let Q be a maximal reductive subgroup of H. Then the following conditions are equivalent:

(1) Every additive character of H is the restriction of an additive character of G, and there is a normal algebraic subgroup L of G such that LQ = G and $L \cap Q = \{e\}$.

(2) There is a complementary torus T to H in G with $T \cap H = \{e\}$ and $(T, Q) = \{e\}$.

(3) $k[G]^T$ is a normal basic left algebraic group structure on H for some complementary torus T to H in G.

(4) k[G] is a regular sub-Hopf-algebra of R(H).

Proof. Assume condition (1) and let $g: G \to G$ be the algebraic endomorphism with $\operatorname{Ker}(g) = L$ and g(x) = x for all x in Q. Let $K = L \cap H$. Then K is the kernel of the restriction of g to H, and H = KQ with $K \cap Q = \{e\}$, so K is a connected closed normal subgroup of H. By [10, Thm. 10], $K = K_0 Q_0$ where K_0 is a nucleus of K and Q_0 is a reductive subgroup of K with $Q_0 \cap K_0 = \{e\}$. Since Q is maximal reductive in H, some conjugate of Q_0 is contained in Q: then there is an $x \in H$ with $xQ_0x^{-1} \subseteq Q$. But $xQ_0x^{-1} \subseteq K$ so $Q_0 = \{e\}$ and $K = K_0$. Thus K is simply connected and hence a nucleus of H. Let \overline{K} be the Zariski-closure of K in G. Then $\overline{K} \subseteq L$, and $\overline{K}Q$ is Zariski-closed in G. Since $H \subseteq \overline{KQ}$, and H is Zariski-dense in $\overline{KQ} = G$, it follows that $\overline{K} = L$. In particular, L is solvable. Since every additive character of H extends to G, Theorem 8 implies that K is a nucleus of G. Let P be a (necessarily maximal) reductive subgroup of Gsuch that G = KP with $K \cap P = \{e\}$. If necessary, we replace P by a conjugate so that $Q \subseteq P$. Let $T = L \cap P$. Then P = TQ with $T \cap Q = \{e\}$, and T is a closed connected normal algebraic subgroup of P which is solvable since L is solvable. It follows that T is a torus with $(T, Q) = \{e\}$, and G = KP = KTQ = HT with $T \cap H \subseteq K \cap P = \{e\}$. Thus condition (2) obtains.

Now assume T is as in condition (2). By [10, Prop. 6], $A = k[G]^T$ is an analytic left algebraic group structure on H. We need to show if $f \in A_s$ and $x \in H$, then $x \cdot f$ and $f \cdot x$ are in A_s . Let U be the unipotent radical of G and let L = UT. By Lemma 10, $A_s = k[G]^L$. Let K be a nucleus of H. Then G = HT = KQT and it follows that QT is a maximal reductive subgroup of G. By [4, Thm. 14.2, p. 96], G = UQT = LQ, and Q normalizes U and T so L is normal in G. Thus if $f \in k[G]^L$ and $x \in G$, $x \cdot f$ and $f \cdot x$ are in $k[G]^L$. So condition (3) obtains.

Condition (3) implies condition (4) by definition, and condition (4) implies condition (1) by [7, Thm. 2.1, p. 875].

ANDY R. MAGID

References

1. A. Borel, Linear Algebraic Groups, W. A. Benjamin, Inc., New York, 1969.

2. N. Bourbaki, Lie Algebras and Lie Groups, Part 1, Addison-Wesley, Reading, Mass., 1975.

3. G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.

4. ____, Introduction to Affine Algebraic Groups, Holden-Day, San Francisco, 1971.

5. G. Hochschild and G. D. Mostow, Representations and representative functions of Lie groups, Ann. Math., 66 (1957), 495-542.

6. _____, On the algebra of representative functions of an analytic group, Amer. J. Math., 83 (1961), 111-136.

7. ____, On the algebra of representative functions of an analytic group, II, Amer. J. Math., 86 (1964), 869-887.

8. A. Magid, Analytic left algebraic groups, Amer. J. Math., 99 (1977), 1045-1059.

9. ____, Moduli for analytic left algebraic groups, Trans. Amer. Math. Soc., (to appear).

10. ____, Analytic subgroups of affine algebraic groups, Duke J. Math., 44 (1977), 875-882.

Received April 3, 1978.

UNIVERSITY OF OKLAHOMA NORMAN, OK 73019