SUBOBJECTS OF VIRTUAL GROUPS

Arlan Ramsay

Abstract

Suppose a locally compact group G (always second countable) has a Borel action on an analytic Borel space S so that each element of G transforms a given measure μ into an equivalent measure. If S_{0} is the coset space for a closed subgroup H, then there is a natural action of G on S_{0} which comes from translations of G on itself and there is such a quasi-invariant measure. Thus it is reasonable to think of such a space (S, μ), for some purposes, as a generalized sort of subgroup, or a virtual subgroup of G. In fact, the set $S \times G$ can be given algebraic and measuretheoretic structure so that many of the procedures used with subgroups can be carried over to this general setting. There is a general notion of virtual group, not necessarily "contained in" a group, which can be derived from this, and it turns out to include equivalence relations with suitable measures as a special case. These virtual groups appear in studying group representations, operator algebras, foliations, etc. Since there is a general setting for virtual groups, it seems desirable to see whether the intuitive idea of an action of a group as representing a subobject fits into this framework in a compatible way. The purpose of this paper is to show that "images" under homomorphisms, "kernels", etc. do fit together properly.

In this introduction we seek to summarize some of the motivation for the theory and give further explanation of the reasons for developing the results presented in the paper. Let G be a locally compact group, and let N be a closed normal subgroup. Let \hat{N} (the dual of N) denote the space of equivalence classes of irreducible representations of N, with the Mackey Borel structure [3]. Suppose \hat{N} is analytic, i.e., that N is a type I group [3]. This is the context of the paper of G.W. Mackey [12], in which he studied the problem of finding \hat{G} in such a case. There is a natural action of G on representations of N : If L is a representation and $x \in G$, let $L^{x}(y)=\left(x y x^{-1}\right)$ for $y \in N$. This gives a (right) Borel action of G on \hat{N}. If U is an irreducible representation of $G, U \mid N$ is a direct integral relative to an ergodic quasi-invariant measure on \hat{N}. Mackey confined his attention to the case in which for every ergodic quasi-invariant measure λ there is a conull orbit (one whose complement has measure 0). In this case we say the action is essentially transitive relative to λ. Mackey takes an arbitrary point in that orbit and his constructions are done with the closed subgroup of G
which stabilizes that point. Another point in the orbit will lead to a conjugate subgroup, and the results turn out to depend only on the orbit. There are many examples of pairs G, N for which there are ergodic quasi-invariant measures λ on \hat{N} for which every G orbit has measure zero $[14,20]$. Then the class $[\lambda]$ of measures equivalent to λ is said to be a nontransitive quasi-orbit. This generalizes the notion of orbit in the same way that measure classes in general generalize the notion of subset of a set. For a nontransitive quasi-orbit, there is no subgroup which can be used to make the desired constructions. However, by introducing an algebraic structure in $\hat{N} \times G$, Mackey reformulated the essentially transitive case in a way which is meaningful in the general case.

Suppose S is any (right) G-space. Then for (s_{1}, x_{1}) and (s_{2}, x_{2}) in $S \times G$, the product is defined exactly when $s_{1} x_{1}=s_{2}$, and then the result is $\left(s_{1}, x_{1} x_{2}\right)$. Thus, only some pairs have a product, and the action determines which ones, while the group product from G shows itself in the formula for the product. With this product, $S \times G$ is a groupoid, i.e., a small category with inverses. There are several ways to formulate the definition of "groupoid", and we have chosen the following one for its intuitive content, preferring to think of the elements of a groupoid as abstractions of isomorphisms, i.e., mappings between objects of some type.

Definition. A groupoid is a set F with a subset $F^{(0)}$ (of units), a pair of functions $d, r: F \rightarrow F^{(0)}$ (domain and range) and a product $x y$ defined for pairs (x, y) in $F^{(2)}=\{(a, b) \in F \times F: d(a)=r(b)\}$. These must satisfy the following:
(a) (associativity) $d(x y)=d(y)$ and $r(x y)=r(x)$, and if $d(x)=$ $r(y)$ and $d(y)=r(z)$, then $(x y) z=x(y z)$.
(b) (units) If $u \in F^{(0)}$ then $u=d(u)=r(u)$. If $u=d(x)$ then $x u=x$, while if $v=r(x)$ then $v x=x$.
(c) (inverses) For each $x \in F$ there is a y with $x y=r(x), y x=$ $d(x)$.

Notice that a groupoid for which there is only one unit is a group. The y of part (c) is unique and denoted x^{-1}. In a concrete small category with inverses, i.e., a groupoid of isomorphisms, the units are the identity mappings of the various objects. For $F=$ $S \times G, r(s, x)=(s, e), d(s, x)=(s x, e)$, and $(s, x)^{-1}=\left(s x, x^{-1}\right)$.

If we identity S with $S \times\{e\}$, we can regard r and d as maps of $S \times G$ into S. Then points s_{1}, s_{2} in S are in the same orbit under G iff there is an x in G with $s_{1} x=s_{2}$ iff there is an element z in F with $r(z)=s_{1}$ and $d(z)=s_{2}\left(z=\left(s_{1}, x\right)\right)$. In general, we call units u, v equivalent if there is an x with $r(x)=u, d(x)=v$. A set of units is called saturated if it is a union of equivalence classes. For
a set A of units, its saturation $[A]$ is $r\left(d^{-1}(A)\right)=d\left(r^{-1}(A)\right)$.
Besides $S \times G$ there are many ways to construct groupoids (we give a few):

Example 1. Let S be a set of groups and let F be the set of isomorphisms with domain and range elements of S. If we want the multiplication to be function composition, the other parts of the structure follow naturally, and the equivalence classes are isomorphism classes.

Example 2. Let S be a partition of a set A, i.e., a collection of nonempty disjoint sets, and let F be the set of bijections between elements of S.

Example 3. Let F be an equivalence relation on a set S (say a foliation on a manifold S). Define $F^{(0)}=$ diagonal, $r(x, y)=(x, x)$, $d(x, y)=(y, y),(x, y)(y, z)=(x, z)$. Then $(x, y)^{-1}=(y, x)$.

Return now to the case of $S \times G$ and suppose S is the space of right cosets of a closed subgroup H, with s_{0} the identity coset. There is a Borel $\gamma: S \rightarrow G$ so that $\gamma(s) \in S$ for each $s \in S$, and $\gamma\left(s_{0}\right)=e$. Define $\psi(s, x)=\gamma(s) x \gamma(s x)^{-1}$ for $(s, x) \in S \times G$ and $\varphi(h)=\left(s_{0}, h\right)$ for $h \in H$. Then $\psi: S \times G \rightarrow H$ and $\varphi: H \rightarrow S \times G$ are groupoid homomorphisms. Hence, if L is a representation of H then $L \circ \psi$ is a representation of $S \times G$, and if R is a representation of $S \times G$, then $R \circ \varnothing$ is a representation of H. The pair (φ, ψ) establishes a kind of equivalence between H and $S \times G$ of which one consequence is the passing back and forth of representations. This equivalence is called similarity [15], which is defined as follows. Let F_{1}, F_{2} be groupoids. A function $\varphi: F_{1} \rightarrow F_{2}$ is a homomorphism if when $x y$ is defined so is $\varphi(x) \varphi(y)$ and it equals $\varphi(x y)$. If $\varphi_{1}, \varphi_{2}: F_{1} \rightarrow F_{2}$ are homomorphisms, a similarity of φ_{1} and φ_{2} is a function $\theta: F_{1}^{(0)} \rightarrow F_{2}$ such that for each $x \in F_{1}, \theta(r(x)) \varphi_{1}(x)$ and $\varphi_{2}(x) \theta(d(x))$ are defined and equal. We write $\varphi_{1} \approx \varphi_{2}$, and $\left[\varphi_{1}\right]$ is the similarity class of φ_{1}. (If we think of F_{1} and F_{2} as categories, a homomorphism is a functor and a similarity of homomorphisms is a natural equivalence of functors.) If F_{1} and F_{2} are groups, homomorphisms are the same, and since F_{1} has only one unit, for similarity we simply have an element $a=\theta(e)$ in F_{2} such that $\varphi_{2}(x)=a \varphi_{1}(x) a^{-1} . \quad F_{1}$ and F_{2} are similar if there are homomorphisms $\varphi_{1}: F_{1} \rightarrow F_{2}$ and $\varphi_{2}: F_{2} \rightarrow F$ such that $\varphi_{1} \circ \varphi_{2} \approx i_{F_{1}}$ and $\varphi_{2} \circ \varphi_{1} \approx i_{F_{2}}$.

In the example above, (φ, ψ) is a similarity of H with $S \times G$. In fact $\psi \circ \varphi=i_{H}=$ identity on H, but $\varphi \circ \psi(s, x)=\left(s_{0}, \gamma(s) x \gamma(s x)^{-1}\right)$. If we define $\theta(s)=\left(s_{0}, \gamma(s)\right)$, then $\varphi \circ \psi(s, x) \theta(s x)=\theta(s)(s, x)$. (Thus θ is a natural equivalence of $\varphi \circ \psi$ with the identity "functor" on $S \times G$.)

A consequence of this similarity is that the function taking L to $L \circ \psi$ induces a one-one map of equivalence classes of representations of H onto the same for $S \times G$. (Two representations R_{1}, R_{2} of $S \times G$ are equivalent if there is a unitary operator valued function V on S such that $V(s) R_{1}(s, x)=R_{2}(s, x) V(s x)$ always.) This is important for the theory of virtual groups, because it is part of the basic pattern of using "virtual subgroup" (next paragraph) to extend the subgroup concept. We want the results to be consistent with the subgroup results in case the G-space is transitive.

Mackey used this connection between H and $S \times G$ even to derive a definition of homomorphism. If H_{1} is a subgroup of G_{1} with coset space S_{1}, and H_{2}, G_{2}, S_{2} are another such triple, then we have $\gamma_{1}, \varphi_{1}, \psi_{1}$ and $\gamma_{2}, \varphi_{2}, \psi_{2}$. If $\varphi: H_{1} \rightarrow H_{2}$ is a homomorphism then $\varphi_{2} \circ \varphi \circ \psi_{1}$ should be a homomorphism and if $\varphi^{\prime}: S_{1} \times G_{1} \rightarrow S_{2} \times G_{2}$ is a homomorphism then $\psi_{2} \circ \varphi^{\prime} \circ \varphi_{1}$ should be a homomorphism. The result is the one we used above. Now we want to use this to get the "virtual subgroup" idea. If $i(h)=h$ for $h \in H$, then $i \circ \psi=\psi$. Thus ψ is related to the inclusion of H into G. If we define $j_{s}(s, x)=x$, then for $(s, x) \in S \times G$ we have $\psi(s, x) \gamma(s x)=\gamma(s) j_{s}(s, x)$. Thus ψ and j_{s} are similar. Now j_{S} makes sense in general, although ψ does not, and the notion of similarity of homomorphism allows us to think of j_{s}, or rather $\left[j_{S}\right.$], as an inclusion in general, and $S \times G$ as a virtual subgroup of G. To carry this one more step, suppose subgroups H_{1} and H_{2} have coset spaces S_{1} and S_{2}. If $H_{1} \subseteq$ $H_{2}, p\left(H_{1} a\right)=H_{2} a$ defines a G-equivariant map of S_{1} onto S_{2}, and $j(s, x)=(p(s), x)$ corresponds to the inclusion of H_{1} into H_{2}. Thus we define $S_{1} \times G$ to be "contained" in $S_{2} \times G$ if there is an equivariant map p of S_{1} onto S_{2}. In section 5 of this paper we consider another way to define "subobject", also derived from group theory, and one purpose of the paper is to show the two ways agree. So far, we have arrived at a category of groupoids in which the maps are similarity classes of homomorphisms, so that $\left[j_{s}\right]$ is an "inclusion".

For a coset space $S, S \times G$ also has topological and measure theoretic structures. In this paper we are mainly concerned with the latter, and recall here some of the facts. It is known that on a coset space S there is exactly one quasi-invariant (σ-finite) measure, up to equivalence. If ν is a probability measure in the class of Haar measure on G, and s_{0} is the identity coset, then we can define $\mu(A)=\nu\left(\left\{x \in G: s_{0} x \in A\right\}\right)$ to get a quasi-invariant μ. Then $\mu \times \nu$ is quasi-invariant under $(s, x) \rightarrow(s, x)^{-1}=\left(s x, x^{-1}\right)$ (Fubini). Now $\mu \times$ $\nu=\int \varepsilon_{s} \times \nu d \mu(s)$, where ε_{s} denotes a unit point mass at s, and $\mu=$ $r_{*}(\mu \times \nu)$. Thus we have $\mu \times \nu$ decomposed relative to r over
$r_{*}(\mu \times \nu)$. Since ν is quasi-invariant under left translation, for any (s, x), the map taking $(s x, y)$ to $(s, x y)=(s, x)(s x, y)$ carries $\varepsilon_{s x} \times \nu$ to a measure equivalent to $\varepsilon_{s} \times \nu$. These properties suggest the measure theoretic structure we will use in the general case. If we take $F=S \times G$ and $\lambda=\mu \times \nu$, then (F, λ) is a measured groupoid in the sense of the definition below.

It is convenient to denote the equivalence class of a measure μ by [μ]. Then a measure μ is quasi-invariant iff [μ] is invariant as a set. Suppose F is an analytic Borel groupoid, i.e., it is analytic as a Borel space and $r, d,()^{-1}$ and multiplication are Borel functions. Let λ be a probability measure on F, and denote by $(\lambda)^{-1}$ the measure whose value at a Borel set A is $\lambda\left(\left\{x^{-1}: x \in A\right\}\right)$. We say that λ is quasi-symmetric if $(\lambda)^{-1} \sim \lambda$; this is true iff $[\lambda]$ is symmetric, and iff there is a symmetric $\lambda_{1} \sim \lambda\left(\right.$ take $\left.\lambda_{1}=1 / 2\left(\lambda+(\lambda)^{-1}\right)\right)$. Now let $\tilde{\lambda}=r_{*}(\lambda)$ be the image of λ in $F^{(0)}$ via r, and decompose λ over $\tilde{\lambda}$ relative to $r[15,18], \lambda=\int \lambda^{u} d \tilde{\lambda}(u)$. For $x \in F$ define $x \lambda^{d(x)}$ to be the measure whose value at a set A is $\lambda^{d(x)}(\{y: r(y)=d(x)$ and $x y \in A\})=\lambda^{d(x)}\left(x^{-1} A\right)$. We say the decomposition is left quasi-invariant if there is a $\tilde{\lambda}$-conull set $U \subseteq F^{(0)}$ such that $x \lambda^{d(x)} \sim \lambda^{r(x)}$ when x is in the set $r^{-1}(U) \cap d^{-1}(U)$, which is denoted $F \mid U$ and called the contraction or reduction of F to U. When U is conull this is an inessential contraction (i.c.). An i.c. is a conull set in F, but also a subgroupoid, and it is important to use an i.c. in the definition of quasi-invariant decomposition. If the set U can be taken to be $F^{(0)}$ we say the decomposition is strictly quasi-invariant. If λ has a (strictly) quasi-invariant decomposition and $\lambda_{1} \sim \lambda$ let g be a strictly positive and finite Radon-Nikodym derivative $d \lambda_{1} / d \lambda$. If $\tilde{\lambda}_{1}=r_{*}\left(\lambda_{1}\right)$, then $\tilde{\lambda}_{1} \sim \tilde{\lambda}$, so there is a strictly positive and finite Radon-Nikodym derivative $f=d \widetilde{\lambda} / d \widetilde{\lambda}_{1}$. Then

$$
\lambda_{1}=\int g \lambda^{u} d \tilde{\lambda}(u)=\int f(u) g \lambda^{u} d \tilde{\lambda}_{1}(u)
$$

so we can get a (strictly) left quasi-invariant decomposition of λ_{1} by taking $\lambda_{1}^{u}=f(u) g \lambda^{u}$. Thus the existence of a (strictly) left quasi-invariant decomposition depends only on the measure class. The same holds for right quasi-invariance, defined using d. In particular, for $F=S \times G$, since $\mu \times \nu$ has a strictly left quasiinvariant decomposition and is quasi-symmetric, it also has a strictly right quasi-invariant decomposition, although a direct construction of it is less obvious.

With this background, we define a measured groupoid to be a pair (F, λ) or ($F,[\lambda]$) where F is an analytic Borel groupoid and λ is a probability measure on F which is quasi-symmetric and has a
left (or equivalently, right) quasi-invariant decomposition. When convenient, we may take λ to be symmetric.

Now we want to define homomorphisms for measured groupoids. There are at least two possibilities. We have given an example in [18, p. 282] showing why we choose the null set condition we use. There the definition was given for virtual groups (defined below), and here we extend it to measured groupoids in general. Suppose $\varphi: F_{1} \rightarrow F_{2}$ is a Borel function. For φ to be a homomorphism of measured groupoids $\left(F_{1}, \lambda_{1}\right),\left(F_{2}, \lambda_{2}\right)$ we require two conditions:
(a) There is an i.c. of F_{1} on which φ is algebraically a homomorphism.
(b) For saturated analytic sets $A \subseteq F_{2}^{(0)}$,

$$
\varphi_{*}\left(\widetilde{\lambda}_{1}\right)(A)=0 \text { iff } \tilde{\lambda}_{2}(A)=0 .
$$

A measured groupoid is called ergodic, or a virtual group iff every saturated Borel set is null or conull. Then the same is true of saturated analytic sets, and one can show that (b) follows from a weaker condition:
$\left(\mathrm{b}^{\prime}\right) \quad \widetilde{\lambda}_{2}(A)=0$ and A saturated implies $\rho_{*}\left(\widetilde{\lambda}_{1}\right)(A)=0$.
If the i.c. in condition (a) can be taken to be F_{1}, we say φ is strict homomorphism.

We have given a brief explanation of how to derive the measure theoretic definition of measured groupoid. For homomorphisms, the allowance for an i.c. and condition (b) are more complicated to motivate. One reason for (b) is given in [18]. The use of the i.c. arises because there are necessary constructions which only produce that amount of good algebraic bebavior. The author has been able to sharpen this under additional hypotheses (unpublished), but only to improve the type of i.c. By further study of the connection between $S \times G$ and H for coset spaces S, Mackey has extended several other group theoretic notions to groupoids. A primary example is that of induced representation. Suppose μ is a quasiinvariant measure on S, and let $\rho(s, x)=(d \mu(s x) / d \mu(s))^{1 / 2}$. If R is a unitary representation of $S \times G$ on a Hilbert space K and $\mathscr{H}^{\prime}=$ $L^{2}\left(\mu^{\prime} K\right)$, we can induce R to get a representation U of G on \mathscr{K} : $\left(U_{1} f\right)(s)=\rho(s, x) R(s, x) f(s x)$. If $R=L \circ \psi$, this is one of the standard forms for inducing from H to G, but it is meaningful in general.

Another example of a notion extended from groups is that of the closure of the range of a homomorphism into a group $[15,16$, 18]. Suppose H_{1} is a closed subgroup of G_{1} with coset space S_{1}. Take $\gamma_{1}: S_{1} \rightarrow G_{1}$ and $\psi_{1}: S_{1} \times G_{1} \rightarrow H_{1}$ as before. If $\varphi: H_{1} \rightarrow G_{2}$ is a homomorphism, so is $\varphi_{1}=\varphi \circ \psi_{1}$. Now $S_{1} \times G_{1}$ acts on $G_{2} \times S_{1}$ as follows: $\left(x_{2}, s_{1}\right)\left(s_{1}, x_{1}\right)=\left(x_{2} \varphi_{1}\left(s_{1}, x_{1}\right), s_{1} x_{1}\right)$, and G_{2} acts via $\left(x_{2}, s_{1}\right) y_{2}=$
$\left(y_{2}^{-1} x_{2}, s_{1}\right)$. Then orbits under $S_{1} \times G_{1}$ partition $G_{2} \times S_{1}$ and are permuted by G_{2}. The quotient space of $G_{2} \times S_{1}$ is analytic iff $\varphi\left(H_{1}\right)$ is closed, but in general there is a G_{2} equivariant map f of $G_{2} \times S_{1}$ onto the coset space S_{2} of $\varphi\left(H_{1}\right)^{-}$such that for any Borel equivariant $g: G_{2} \times S_{1} \rightarrow S$ there is a Borel h with $g=h \circ f$. By our earlier definition of "containment" this makes $S_{2} \times G_{2}$ "the smallest subobject containing $\varphi\left(S_{1} \times G_{1}\right)$ ". This construction can be carried out for groupoids in general. It generalizes the construction of a "flow built under a function" [16]. Details of one approach to this can be found in [18], and another approach is spelled out in the Appendix.

These definitions are obtained by use of the similarity between H and $(G / H) \times G$, and we arrive at a category whose objects are groupoids and whose maps are similarity classes of homomorphisms. In this category we define relationships and constructions (e.g., subobject and range closure) by extension from the groups. Another approach would be to apply the standard definitions of category theory. An earlier version of this paper nearly ignored the category theory approach, but in this one we explain some of the relationships between the two approaches. Our primary purpose for the theory is to have a workable extension of group and subgroup methods to the context of ergodic group actions. If the definitions are workable, we are not committed to agreement with category theory. However it may be of interest to compare the two approaches.

As one example, we point out that already the category of groups with similarity classes of homomorphisms is noticeably different. A group is a groupoid with only one unit, so homomorphisms φ_{1}, φ_{2} from a group G to a group H are similar iff there is an element $a \in H$ such that for all x in G we have $\varphi_{2}(x)=a \varphi_{1}(x) \alpha^{-1}$. Thus an inner automorphism is identified with the identity function. This reflects the fact that stabilizers of different points in a transitive G-space are conjugate subgroups. Now suppose N is a normal subgroup of G for which there is an inner automorphism α of G such that $\alpha \mid N$ is outer (these are easy to find). Let φ be the identity homomorphism of N and let $\psi=\alpha \mid N$. If i is the inclusion of N into $G, i \circ \varphi$ and $i \circ \psi$ are similar homomorphisms of N into G, but φ and ir are not similar homomorphisms of N into N. Thus in our category the map which is the similarity class of i is not left-cancellable, even though we surely want to regard it as an imbedding.

The outline of the rest of the paper is as follows. In the first four sections we give definitions and statements of results which are needed later. Some of these are generalizations to groupoids of
published results on groups. The methods are not always the same, but we have relegated most of the proofs to an appendix, in order to get the reader more quickly to $\S 5$. In $\S 1$ we define measured groupoids and actions and state a few results about them. Section 2 is about ergodic decompositions. The existence proof, in § 2 of the Appendix, depends on a simple characterization of ergodicity for groupoids and hence for group actions. Peter Hahn has given an independent proof, using other methods [7, Theorem 6.1]. The basic technical result in Section 3 is that if two groupoids have commuting actions on a given space, then each will have an action on the space of ergodic parts for the other. This provides a way to construct "range closures" of homomorphism into groupoids in the manner suggested by Mackey in [15] and close to that of K. Lange in [10]. It is also similar to the reasoning used by C. C. Moore in pages 112-117 of [1]. The Boolean G-space approach used in [18] seems harder to implement when G is no longer a group. The present method applies, for example to construct the "range closure" of a homomorphism into a virtual subgroup ($S \times G$, [$\mu \times \nu]$) of a group G, without referring directly to G itself. The result in section four is that the assignment of G-spaces to homomorphisms of groupoids into G is functorial.

We have mentioned above one group theoretic motivation for thinking of $S \times G$ as a subobject of G when a group G acts on a space S. In section five we develop another approach to this and related questions. The general problem is to find measure theoretic equivalences to topological and algebraic notions. For example, let H be a subgroup of a locally compact group G. Then H is closed iff the coset space is countably separated, and hence analytic, in the quotient Borel structure [11]. If F and G are groups and $\varphi: F \rightarrow G$ is a continuous homomorphism, then F acts on $G: g \cdot f=g \varphi(f)$, and $\varphi(F)$ is closed iff the orbit space in G for the action of F is analytic. Such equivalences allow us to define "closed range", "imbedding", etc., and we show that these properties are invariant under similarity of homomorphisms. In $\S 6$ we show that the relation of being a subobject is transitive and is consistent with Mackey's definition of virtual subgroup of a group. We also show that a composition of two homomorphisms with dense range has dense range, and that the composition of an irreducible representation with a homomorphism having dense range is an irreducible representation. What is different here is that these notions are defined measure theoretically rather than topologically. In §7, we discuss trivial homomorphisms, imbeddings, surjections, etc., in connection with "containment of subobjects" and various notions of category theory. For instance, we show that a homomorphism
which has dense range is an epimorphism in the category sense.
For most terminology and notation we refer the reader to [18, 19, 20]. We point out that measures are assumed to be finite unless described otherwise. If \mathscr{C} is a Hilbert space then $\mathscr{L}(\mathscr{C})$ is the space of bounded operators on \mathscr{H} and $\mathscr{C}(\mathscr{C})$ is the (Polish) group of unitary operators on \mathscr{H} and (:) is the usual notation for the inner product. ($)^{-1}$ is used for the function taking x to x^{-1}, and if μ is a measure $(\mu)^{-1}$ may be used for ()$_{*}^{-1}(\mu)$. In decomposing a measure μ relative to f the measures may be $\mu(f, t), \mu_{t}$ or μ^{t}. We will use * instead of \times for relative products of sets or measures.

The author is indebted to Caroline Series for the opportunity to see her Harvard thesis [21] and for results and ideas in it, and to Raymond Fabec for pointing out an error in an earlier proof of Lemma A.1.7. I also thank Alain Connes, Peter Hahn and Calvin Moore for suggesting ways to improve the paper.

1. Actions of groupoids and equivariant maps. In this section we discuss an algebraic aspect of groupoid actions and revise the terminology of [18] to agree with that of [5]. We also discuss various notations of action and equivariant map when measures are involved. We give some results relating these notions among themselves, and finally consider a 'universal G-space' construction for groupoids [13]. These are technicalities, intended to make things run more smoothly later.

Thinking only algebraically for the moment, let G be a groupoid with a right action on a set S, and set $F=S^{*} G=\{(s, x) \in S \times G$: $s x$ is defined\}. We want to make a groupoid of F, in precisely the same way as when G is a group. Thus we want $(s, x)(t, y)$ to be defined iff $s x=t$, and then the product is $(s, x y)$. For this to define a product in $F, x y$ and $s(x y)$ must be defined whenever $s x$ and ($s x$) y are defined. In other words, to make $S * G$ a groupoid by the definition used when G is a group, the action must be true [18, p. 258]. Therefore we will adopt the following definition of action, in agreement with [5].

Definition 1.1. If G is a groupoid and S is a set, an action of G on S (on the right) is a pair (p, a) where p is a function from S onto $G^{(0)}$ and a is a function from $S * G=\{(s, x) \in S \times G$: $p(s)=r(x)\}$ to S such that whenever $(s, x) \in S * G$ and $(x, y) \in G^{(2)}$, then $p(a(s, x))=d(x)$ and $a(s, x y)=a(a(s, x), y)$. If G and S are Borel, we say the action is Borel iff p and a are Borel functions. We also will refer to (S, p, a) as a (Borel) G-space if (p, α) is an action (a Borel action) of G on S. If G_{1} is a contraction of G and
$B \subseteq S$, we say B is G_{1}-invariant iff $s \in B, x \in G$ and $(s, x) \in S * G$ imply $a(s, x) \in B$. To give a weak action of G on S, we give for each $x \in G$ sets $D(x)$ and $R(x) \subseteq S$ and a bijection $\psi(x): D(x) \rightarrow R(x)$. If $\psi^{\prime}(x)(s)$ is denoted $s x$, we require
(i) $S=\bigcup\{D(x): x \in G\}$
(ii) $u \in G^{(0)}$ and $s \in D(u)$ imply $s u=s$
(iii) $(x, y) \in G^{(2)}$ and $s \in D(x)$ imply $s x \in D(y), s \in D(x y)$ and $(s x) y=$ $s(x y)$.
This is Borel if F and $(s, x) \mapsto\left(s x, x^{-1}\right)$ are Borel.

Remarks. (1) $(a(s, x), y) \in S^{*} G$ because $p(a(s, x))=d(x)$.
(2) We will ordinarily write $s x$ for $a(s, x)$ and refer to the G-space (S, p). We may even let the function p be implicit and refer to the G-space S.
(3) The associative law holds under this definition, i.e., if either of $s(x y)$ and $(s x) y$ is defined, then the other is also defined and they are equal. We leave it for the reader to verify that $S * G$ is in fact a groupoid.
(4) $j_{S}(s, x)=x$ defines a homomorphism of $S * G$ into G called the inclusion.
(5) B is G-invariant iff $\{(s, p(s)): s \in B\}$ is saturated in $S * G$, and B is G_{1}-invariant iff $B \cap p^{-1}\left(G_{1}^{(0)}\right)$ is G_{1}-invariant.
(6) Define $s_{1} \sim s_{2}$ iff there is an x with $s_{1} x=s_{2}$. Then \sim is an equivalence relation on S.

Definition 1.1 is suitable when no measures are involved, but when we deal with measured groupoids, there may be null sets which we want to discard. This needs to be considered in making the definitions. For homomorphisms of measured groupoids, we found it convenient to have the most used term include the possibility of some null sets on which there is imprecise behavior. This avoids repetitions of such phrases as "there is an i.c. G_{0} on which φ is a homomorphism." We simply say, " φ is a homomorphism." For the same kind of reason, we want to allow for a carefully controlled amount of algebraic imprecision in the definitions for ($G,[\mu]$)-spaces and ($G,[\mu]$)-equivariant functions. This is one way to simplify the statements of theorems.

Suppose (S, p, a) is a G-space and G_{1} is a contraction of G, and set $S_{1}=p^{-1}\left(G_{1}^{(0)}\right)$. Then S_{1} is G_{1}-invariant. If $p\left(S_{1}\right)=G_{1}^{(0)}$ and S_{1} is G_{1}-invariant, let $p_{1}=p \mid S_{1}$ and $a_{1}=a \mid S_{1} * G_{1}$; then (S_{1}, p_{1}, a_{1}) is a G_{1}-space. Also notice that $S_{1} * G_{1}$ is the contraction of $S * G$ to $\left\{(s, p(s)): s \in S_{1}\right\}$. For $S_{1} \cong S$, the contraction to $\left\{(s, p(s)): s \in S_{1}\right\}$ is $S_{1} * G_{1}$ iff S_{1} is invariant under $G_{1}=G \mid p\left(S_{1}\right)$.

DEFINITION 1.2. Let $(G,[\mu])$ be a measured groupoid, let S be an analytic Borel space, let p be Borel from S onto $G^{(0)}$ and let $a: S \times G \rightarrow S$.
(a) (S, p, a) is a ($G,[\mu]$)-space if there is an i.c. G_{1} of G such that $S_{1}=p^{-1}\left(G_{1}^{(0)}\right)$ is a G_{1}-space under $p \mid S_{1}$ and $a \mid S_{1} * G$. A measure λ on S is then called quasi-invariant iff $p_{*}(\lambda) \sim \tilde{\mu}$ and λ has a decomposition $\lambda=\int \lambda_{u} d \tilde{\mu}(u)$ such that $\left(\lambda_{r(x)}\right) x \sim \lambda_{d(x)}$ for almost all x in G. In this case we call (S, λ, p, a) or (S, λ) or even $(S,[\lambda])$ a ($G,[\mu]$)-space.
(b) If we can take $G_{1}=G$ we call S a strict G-space, and if $\left(\lambda_{r(x)}\right) x \sim \lambda_{d(x)}$ for every x, we say λ, or its decomposition, is strictly quasi-invariant.

Let (S, p) be a strict ($G,[\mu]$)-space and let λ be a finite Borel measure on S with $p_{*}(\lambda) \sim \tilde{\mu}$. Decompose λ as $\int \lambda_{u} d \tilde{\mu}(u)$ relative to p. By Theorem 2.9 of [16], λ is quasi-invariant iff $\lambda * \mu$ is quasiinvariant under $\tau(s, x)=\left(s x, x^{-1}\right)$, the inverse map in $S * G$. Suppose λ is quasi-invariant and let

$$
\nu=\lambda * \mu=\int \lambda_{u} \times \mu^{u} d \tilde{\mu}(u)=\int \lambda_{r(x)} \times \varepsilon_{x} d \mu(x)=\int \varepsilon_{s} \times \mu^{p(s)} d \lambda(s)
$$

[16, pages 63, 64]. We have $r(s, x)=(s, r(x))$ and $d(s, x)=(s x, d(x))$, and $(S * G)^{(0)}$ is just the graph of p, which is isomorphic to S via the coordinate projection onto S. Hence $r_{*}(\nu)=\int \lambda_{u} \times \varepsilon_{u} d \tilde{\mu}(u)$, by Lemma 1.2 of [19]. This is just the image of λ in $(S * G)^{(0)}$, so the last formula for ν above is its decomposition relative to r, i.e., $\nu(r,(s, p(s)))=\varepsilon_{s} \times \mu^{p(s)}$. Let G_{1} be an i.c. of G such that $x \in G_{1}$ implies $x \mu^{d(x)} \sim \mu^{r(x)}$ for $x \in G_{1}$ [19, Lemma 6.2], and let $S_{1}=p^{-1}\left(G_{1}^{(0)}\right)$. Then $S_{1} * G_{1}$ is an i.c. and for $(s, x) \in S_{1} * G_{1}$ we have $(s, x)\left[\varepsilon_{s x} \times \mu^{d(x)}\right]=$ $\varepsilon_{s} \times\left(x \mu^{d(x)}\right) \sim \varepsilon_{s} \times \mu^{r(x)}$. Hence $(S * G,[\nu])$ is a measured groupoid. Thus the process of forming $S * G$ does not give a new kind of object when applied the second time.

Here are some examples of G-spaces.
Example 1. Any G-space for a group G is a strict G-space. Any quasi-invariant measure on it is strictly quasi-invariant.

Example 2. Let G be a groupoid, $S=G^{(0)}, p=$ the identity function. Then $S * G=\{(r(x), x): x \in G\}$. Define $a(r(x), x)=d(x)$. If ($G,[\mu]$) is a measured groupoid, $\tilde{\mu}$ is strictly quasi-invariant. The orbit of $u \in G^{(0)}$ is its equivalence class. Thus every equivalence relation is induced by an action.

Example 3. Suppose $U \subseteq G^{(0)}$ meets each equivalence class in
$G^{(0)}$ and let $S=r^{-1}(U)$. Let $p=d \mid S$. Then $S * G=S \times G \cap G^{(2)}$. If $(s, x) \in S * G$, let $a(s, x)=s x$. The orbit of $s \in S$ is then $r^{-1}(r(s))$. In the proof of Theorem 3.5, we show how to get some quasiinvariant measures.

Example 4. Let φ be a homomorphism from G to a groupoid H. Let $T(\varphi)=\left\{(\xi, u) \in H \times G^{(0)}: d(\xi)=\varphi(u)\right\}$. Define $p(\xi, u)=u$. Then $T(\varphi)^{*} G=\{((\xi, r(x)), x): \xi \in H, x \in G$ and $d(\xi)=r \circ \varphi(x)\}$. Define $a((\xi, r(x)), x)=(\xi \varphi(x), d(x))$. This generalizes correctly the action of one group on another via a homomorphism. We use this space to construct the "closure of the range" of φ, in section three.

The term for a function between spaces on which a group acts, which preserves the group action, is equivariant. Next we want to define this word in the context of groupoid actions.

Definition 1.3. Let $(G[\mu])$ be a measured groupoid.
(a) If $\left(S_{1}, \lambda_{1}\right)$ and (S_{2}, λ_{2}) are ($G,[\mu]$)-spaces and $f: S_{1} \rightarrow S_{2}$ is Borel, we say f is ($G,[\mu]$)-equivariant if
(i) there are an i.c. G_{0} of G and conull G_{0}-invariant analytic sets $S_{3} \subseteq S_{1}$ and $S_{4} \subseteq S_{2}$ such that when $(s, x) \in S_{3} * G_{0}$ then $(f(s), x) \in$ $S_{4} * G_{0}$ and $f(s x)=f(s) x$, and
(ii) for saturated analytic sets $A \subseteq S_{2}, \lambda_{1}\left(f^{-1}(A)\right)=0$ iff $\lambda_{2}(A)=0$.
(b) If we can take G_{0}, S_{3} and S_{4} so that (a) holds and f takes S_{3} one-one onto S_{4}, we call f an isomorphism.
(c) If we can take $G_{0}=G, S_{3}=S_{1}$ and $S_{4}=S_{2}$, we say f is strictly equivariant or a strict isomorphism.
(d) If S_{2} has no measure, we delete the requirement that S_{4} be conull, as well as condition (ii) in (a).
(e) We say f is almost equivariant if $\left\{(s, x) \in S_{1} * G: f(s) x\right.$ is defined and equal to $f(s x)$ \} is conull [21].

It may be of interest to note that for an equivariant map $f, f_{*}\left(\lambda_{1}\right) \sim \lambda_{2}$. This means they are what C. Series called normalized [21]. This is Lemma A1.4 in the Appendix. Another useful fact is the following regularization result for almost equivariant maps. It is a little stronger than we can get by applying the homomorphism regularization lemma to $f^{*} i$, and its proof is also in the Appendix, as Lemma A1.1.

Lemma 1.4. Let $(G,[\mu])$ be a measured groupoid, let (S, λ, p) be an analytic Borel ($G,[\mu]$)-space and let T be a strict analytic Borel ($G,[\mu]$)-space. If $f_{1}: S \rightarrow T$ is almost (G, $[\mu]$)-equivariant, then there is an equivariant function $f: S \rightarrow T$ which agrees with f_{1} a.e. Furthermore, $f_{1 *}(\lambda)=f_{*}(\lambda)$ and is quasi-invariant. The function f exists even if T is a weak G-space.

We also need a notion of similarity of equivariant functions. Suppose $f, g:\left(S_{1}, \lambda_{1}\right) \rightarrow\left(S_{2}, \lambda_{2}\right)$ are strictly ($G,[\mu]$)-equivariant and let $\theta: S_{1} \rightarrow S_{1} * G$ give a strict similarity of $f * i$ and $g * i$, i.e., suppose $\theta(s)(f(s), x)=(g(s), x) \theta(s x)$ for $(s, x) \in S_{1} * G$. Let $\theta(s)=(\alpha(s), \beta(s))$ where $\alpha: S_{1} \rightarrow S_{2}, \beta: S_{1} \rightarrow G$. Then the similarity equation is equivalent to these: $\alpha=g, g(s) \beta(s)=f(s)$ for $s \in S_{1}$ and $\beta(s) x=x \beta(s x)$ for $(s, x) \in S_{1} * G$. This motivates our definition.

Definition 1.5. (a) Let $f, g:\left(S_{1}, \lambda_{1}\right) \rightarrow\left(S_{2}, \lambda_{2}\right)$ be strictly ($G,[\mu]$)-equivariant. They are strictly similar iff there is a Borel function $\beta: S_{1} \rightarrow G$ such that $g(s) \beta(s)=f(s)$ for $s \in S_{1}$ and $\beta(s) x=$ $x \beta(s x)$ for $(s, x) \in S_{1} * G$.
(b) Let $f, g:\left(S_{1}, \lambda_{1}\right) \rightarrow\left(S_{2}, \lambda_{2}\right)$ be $(G,[\mu])$-equivariant. They are similar if there are an i.c. G_{1} and conull strict (G_{1}, $[\mu]$)-spaces $S_{3} \subseteq S_{1}$ and $S_{4} \subseteq S_{2}$ such that $f \mid S_{3}$ and $g \mid S_{3}$ are strict and strictly similar, from S_{3} to S_{4}.

Let $T=\{t \in G: r(t)=d(t)\}$, which is the "union of the stabilizers" if G comes from a group action. Let $p=d \mid T$ and define $a(t, x)=$ $x^{-1} t x$ for $(t, x) \in T * G$. Then the equation $\beta(s) x=x \beta(s x)$ just says that β is strictly equivariant from S_{1} to T. The next lemma is proved as Lemma A1.10.

Lemma 1.6. Let $(G,[\mu])$ be a measurable groupoid and let $\left(S_{1},\left[\lambda_{1}\right]\right)$ and $\left(S_{2},\left[\lambda_{2}\right]\right)$ be analytic $(G,[\mu])$-spaces. Suppose $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{1}$ are equivariant maps with $f \circ g$ similar to the identity on S_{2} and $g \circ f$ similar to the identity on S_{1}. Then ($S_{1},\left[\lambda_{1}\right]$) and ($S_{2},\left[\lambda_{2}\right]$) are isomorphic.

Now let us turn to the construction of a 'universal G-space'. For groups the locally square-integrable functions make a good space, but we have no topology and hence no compact sets. However, we work with finite measures, so any bounded function is in L^{2}. For each unit $u \in G^{(0)}$ and each Borel $f: G \rightarrow[0,1]$ we can define $[f]_{u}=\{g: g$ is Borel from G to C and $g=f$ a.e. $d \mu(r, u)\}$. Then let $\mathscr{F}(u)=\left\{[f]_{u}: f\right.$ is Borel from G to $\left.[0,1]\right\}$. Now $\mathscr{F}(u)$ may be regarded as a subset of $L^{2}(\mu(r, u))$ and as such it is a weakly closed norm-bounded set and hence is weakly compact. We now form a bundle over $G^{(0)}$ as one does with Hilbert bundles. Let $G^{(0)} * \mathscr{F}=$ $\cup\left\{\{u\} \times \mathscr{F}(u): u \in G^{(0)}\right\}$, and give $G^{(0)} * \mathscr{F}$ the Borel structure it inherits as a subset of $G^{(0)} * \mathscr{\mathscr { C }}=\cup\left\{\{u\} \times L^{2}(\mu(r, u)): u \in G^{(0)}\right\}$, which is a Hilbert bundle [18, 20]. This is the smallest Borel structure for which the projection onto $G^{(0)}$ is Borel along with all the functions ψ_{g}, for bounded Borel functions g where

$$
\psi_{g}\left(u,[f]_{u}\right)=\int f g d(\mu(\gamma, u))
$$

If . \mathscr{C} is a countable algebra generating the Borel sets then $G^{(0)} * \mathscr{F}=$ $\left\{\left(u,[f]_{u}\right) \in G^{(0)} * \mathscr{C}: A \in . \mathscr{A}\right.$ implies $\left.0 \leqq \psi_{\phi_{A}}\left(u,[f]_{u}\right) \leqq 1\right\}$. Hence $G^{(0)} * \mathscr{F}$ is a Borel subset of $G^{(0)} * \mathscr{C}$ and must be analytic. Now G acts on $G^{(0)} * \mathscr{F}$ as follows: $\left(r(x),[f]_{r(x)}\right) x=\left(d(x),[g]_{d(x)}\right)$ where $g(y)=f(x y)$ for $y \in r^{-1}(d(x))$ and $g(y)=0$ otherwise. This is well defined if μ has a left quasi-invariant decomposition. The next lemma is proved as Lemma A1.11.

LEMMA 1.7. $G^{(0)} * \mathscr{F}^{-}$is an analytic G-space, provided the given decomposition of μ relative to r is quasi-invariant.
2. Ergodic decompositions of measurable groupoids. John von Neumann proved that a measure preserving flow can be decomposed into ergodic flows [17]. This decomposition into ergodic parts has also been done for other groups of transformations [2, 9]. We shall need to decompose groupoids of transformations into ergodic parts. This follows from a decomposition of measurable groupoids, since we can simply form the new groupoid $S * G$. It will be convenient to begin with a Hilbert bundle characterization of ergodic groupoids. It is possible to work with measure algebra bundles, but Hilbert bundles are more familiar, so we shall use them instead.

Let (G, C) be a measurable groupoid and suppose $\lambda \in C$ is a symmetric probability measure and has a quasi-invariant decomposition $\lambda=\int \lambda_{u} d \widetilde{\lambda}(u)$ relative to d. Define $\mathscr{C}_{r}=\left\{f \circ r: f \in L^{2}(\widetilde{\lambda})\right\}, \mathscr{C}_{d}=$ $\left\{f \circ d: f \in L^{2}(\tilde{\lambda})\right\}$. Since almost every fiber measure is a probability measure, $f \rightarrow f \circ r$ and $f \rightarrow f \circ d$ are isometric imbeddings of $L^{2}(\tilde{\lambda})$ into $L^{2}(\lambda)$. If $(J f)(x)=f\left(x^{-1}\right)$, J is a unitary operator on $L^{2}(\lambda)$ with $J^{2}=I$, and $J\left(\mathscr{H}_{r}^{\prime}\right)=\mathscr{C}_{d}$. Notice that $\mathscr{C}_{r} \cap \mathscr{P}_{d}$ contains the constant functions.

LEMMA 2.1. The measurable groupoid (G,C) is ergodic iff $\mathscr{\mathscr { C }}_{r} \cap$ \mathscr{H}_{d} is one-dimensional.

Definition 2.2. Let $(G,[\lambda])$ be a measurable groupoid. A strict ergodic decomposition of $(G,[\lambda])$ is a mapping q of $G^{(0)}$ into an analytic Borel space T such that if $\nu=q_{*}(\widetilde{\lambda})$ and $\widetilde{\lambda}=\int \tilde{\lambda}(p, t) d \nu(t)$ is a decomposition of $\tilde{\lambda}$ relative to q, then for ν-almost all $t, q^{-1}(t)$ is saturated and $\left(G \mid q^{-1}(t),\left[\lambda^{t}\right]\right)$ is an ergodic groupoid, where

$$
\lambda^{t}=\int \lambda_{u} d(\tilde{\lambda}(p, t))(u)
$$

An ergodic decomposition of ($G,[\lambda]$) is a Borel mapping q of $G^{(0)}$ into an analytic space T such that for some conull Borel set $U \subseteq G^{(0)}$, $q \mid U$ is a strict ergodic decomposition of ($G \mid U,[\lambda]$).

If U is conull in $G^{(0)}$, then it is conull for almost every $\tilde{\lambda}(q, t)$. Thus $G \mid(q \mid U)^{-1}(t)$ is 'almost always an i.c. of $G \mid q^{-1}(t)$, so the basic difference between strict and nonstrict decompositions is that in the strict case the sets $q^{-1}(t)$ are almost all saturated, whereas in the nonstrict case there is a conull set U such that the sets $q^{-1}(t) \cap U$ are almost all saturated relative to $G \mid U$.

There is a property which characterizes ergodic decompositions and which is more useful than the definition in most cases. This property is stated in terms of factoring of functions. This is a measure theoretic version of a familiar procedure in elementary algebra: If f maps X onto Y and g maps X to Z and is constant on level sets of f then there is an $h: Y \rightarrow Z$ with $g=h \circ f$. After this lemma we state first the uniqueness and then the existence of ergodic decompositions.

Lemma 2.3. Let $(G,[\mu])$ be a measured groupoid, and let a Borel function q from $G^{(0)}$ to an analytic space T be an ergodic decomposition. If a Borel function g from $G^{(0)}$ to an analytic space Z is constant on equivalence classes, then there is a Borel $h: T \rightarrow A$ such that $h \circ q=g$ a.e. Such an h is determind a.e. relative to $\mu=q_{*}(\widetilde{\lambda})$.

Theorem 2.4. (Uniqueness of Ergodic Decompositions). Let $q_{1}: G^{(0)} \rightarrow T_{1}$ and $q_{2}: G^{(0)} \rightarrow T_{2}$ be ergodic decompositions of the measured groupoid ($G,[\lambda]$). Then there are a conull Borel set $U \subseteq G^{(0)}$ and a Borel isomorphism $f: q_{1}(U) \rightarrow q_{2}(U)$ such that $q_{2}=f \circ q_{1}$ on U. Also, q_{1} and q_{2} have the same level sets in U. If q_{1} and q_{2} are strict decompositions, U may be taken to be saturated.

THEOREM 2.5. If $(G,[\lambda])$ is a measured groupoid, then ($G,[\lambda]$) has an ergodic decomposition. If λ has a (right or left) quasiinvariant decomposition, then ($G,[\lambda]$) has a strict ergodic decomposition.

Definition 2.6. Let ($G,[\mu]$) be a measurable groupoid and let (S, λ) be an analytic Borel G-space with q.i. measure. The measure λ is ergodic iff ($S * G,[\lambda * \mu]$) is an ergodic groupoid. An ergodic decomposition of (S, λ) relative to G is a Borel mapping q of S into an analytic Borel space T such that if $\lambda=\int \lambda_{t} d q_{*}(\lambda)(t)$ is a decomposition of λ relative to q then for $q_{*}(\lambda)$-almost all t in T the set
$q^{-1}(t)$ is invariant and the measure λ_{t} is concentrated on $q^{-1}(t)$ and is q.i. and ergodic.

Corollary 2.7. If (S, λ) is an analytic G-space with a quasiinvariant measure for a measurable groupoid (G, C) and C has an element with a left quasi-invariant decomposition then S has a decomposition into ergodic parts, which is essentially unique.

Lemma 2.8. The converse of Lemma 2.3 is true.
3. Commuting groupoid actions and closing of ranges of homomorphisms. In constructing the closure of the range of a homomorphism $\varphi: F \rightarrow G$, the idea is to make a G-space out of the space of ergodic parts for the action of F on $G * F^{(0)}[16,18]$. The reason this should work is that F and G have actions on $G * F^{(0)}$ which commute in the sense of Definition 3.1 below. Theorem 3.2 is a precise formulation of a theorem needed for working with such pairs of actions, and we apply it in Theorem 3.5 to construct range closures. Parts of the proof seem easier than when done as in [18].

Definition 3.1. If S is an F-space and a G-space, we say the actions commute iff for $s \in S, \xi \in F$ and $x \in G$, if $s x$ and $s \xi$ are defined then so are $(s x) \xi$ and $(s \xi) x$ and they are equal.

Theorem 3.2. Let $(F,[\mu])$ and (G, [$[\mathcal{H}]$) be measured groupoids and let (S, λ, p) and (S, λ, q) be strict ($F,[\mu]$)- and ($G,[\nu]$)-spaces respectively. Suppose these actions commute. Then there is a strictly G-equivariant function $f: S \rightarrow G^{(0)} * \mathscr{F}$ which is an ergodic decomposition of $S * F$. If S^{\prime} is an analytic (G, [ν])-space and $f^{\prime}: S \rightarrow S^{\prime}$ is a (G, [$\left.\nu\right]$)-equivariant ergodic decomposition of $S * F$, then $\left(G^{(0)} * \mathscr{F}, f_{*}(\lambda)\right)$ and $\left(S^{\prime}, f_{*}^{\prime}(\lambda)\right)$ are isomorphic ($\left.G,[\nu]\right)$-spaces.

In the process of constructing the closure of the range of a homomorphism, it will be necessary to construct some quasi-invariant measures. The next lemma gives one of the basic ingredients. First some preparation is needed.

Let ($G,[\nu]$) be a measured groupoid and let E be the equivalence relation on $G^{(0)}$ induced by $G: E=(r, d)(G) \subseteq G^{(0)} \times G^{(0)}$. We take $\nu^{\prime}=(r, d)_{*}(v)$ and are interested in a special kind of decomposition of ν relative to ν^{\prime}. The important thing about ν is that one of these decompositions exist.

Definition 3.3. We shall say that ν is (r, d)-quasi-invariant if
it has decompositions $\nu=\int \nu_{u} d \tilde{\nu}(u)$ and $\nu=\int \nu_{v, u} d \nu^{\prime}(v, u)$ such that
(a) for $(v, u) \in E, \nu_{v, u}$ is concentrated on $r^{-1}(v) \cap d^{-1}(u)$,
(b) for $(v, u) \in E,\left(\nu_{v, u}\right)^{-1} \sim \nu_{u, v}$.
(c) if $r(x) \sim u$, then $\nu_{u, r(x)} \cdot x \sim \nu_{u, d(x)}$ and $x \cdot \nu_{d(x), u} \sim \nu_{r(x), u}$, and
(d) for $u \in G^{(0)}, \nu_{u}=\int \nu_{v, u} d\left(r_{*}\left(\nu_{u}\right)\right)(v)$.

If we assume ν is (r, d)-quasi-invariant, we mean that such decompositions should be used. By Lemma 6.8 of [19] there is a measure $\nu^{*} \sim \nu$ and an i.c. G_{0} of G such that $\nu^{*} \mid G_{0}$ is (r, d)-quasiinvariant. Now take ρ to be an everywhere positive and finite version of $d \nu / d \nu^{*}, \rho^{\prime}$ the same for $d \nu^{* \prime} / d \nu^{\prime}$ and define $\nu_{v, u}=\rho^{\prime}(v, u) \rho \nu_{v, u}^{*}$. If $G_{0}=G \mid U_{0}$ and $E_{0}=E \mid U_{0}$, then (a) (b) and (c) hold for E_{0} and G_{0}. Hence $\nu_{u}=\int \nu_{v, u} d\left(r_{*}\left(\nu_{u}\right)\right)(v)$ for almost all u, by uniqueness of decompositions. By removing another null set, we see that we have an i.c. G_{1} on which ν is (r, d)-quasi-invariant. Thus in matters where we can safely pass to an i.c., we may assume that ν is (r, d)-quasiinvariant for technical convenience. Of course in concrete situations one would expect this to hold globally anyway.

Lemma 3.4. Let (G, [ν]) be a measured groupoid and suppose ν is (r, d)-quasi-invariant. Let λ be a finite measure on $G^{(0)}$ such that $\lambda(A)=0$ iff $\tilde{\nu}(A)=0$ for saturated analytic sets $A \subseteq G^{(0)}$. Let $\nu_{1}=\int \nu_{u} d \lambda(u)$, and let $y \in G$ act on $x \in G$ by $x * y=y^{-1} x$ provided $r(x)=r(y)$. Then ν_{1} is quasi-invariant.

Theorem 3.5. Let $(F,[\mu])$ be a measured grupoid, let ($G,[\nu]$) be a measured groupoid for which ν is (r, d)-quasi-invariant and let $\varphi: F \rightarrow G$ be a homomorphism. Then there are i.c.'s F_{0} and G_{0} of F and G, a strict ($G_{0},[\nu]$)-space (S_{ϕ}, λ) and a strict homomorphism $\varphi^{\prime}: F_{0} \rightarrow S_{\phi} * G_{0}$ such that $\varphi \mid F_{0}=j \circ \varphi^{\prime}$, where $j: S_{\phi} * G_{0} \rightarrow G_{0}$ is the inclusion (coordinate projection).

Definition 3.6. We call $\left(S_{\phi} * G,[\lambda * \nu]\right)$ the closure of the range of φ, and will denote j by j_{ϕ} when necessary to identify its connection with φ.

Notice here that $S_{\phi} * G=S_{\phi} * G_{0}$, and that the proof is by a construction. The very statement of the theorem allows some ambiguity in the choice of S_{ϕ}, because F_{0} and G_{0} are not unique. The construction, given in the Appendix, produces S_{ϕ} as an ergodic decomposition space of $T(\varphi)=\left\{(x, u) \in G \times F^{(0)}: d(x)=\varphi(u)\right\}$ for a certain action of F on $T(\varphi)$ and a natural measure on $T(\varphi)$ (see Lemma 3.7). As such, it is determined up to isomorphism modulo null sets, which is sufficient. This also depends on ν being (r, d) -
quasi-invariant, but we know that ($G,[\nu]$) always has an i.c. G_{0} on which ν is (r, d) quasi-invariant, and φ is similar to a homomorphism φ_{0} taking values in G_{0}. We need to see that $S_{\phi_{0}}$ does not really depend on the choice of φ_{0}, as the following lemma shows.

Lemma 3.7. Let $(G,[\nu])$ be a measured groupoid in which ν is (r, d)-quasi-invariant and let φ_{1}, φ_{2} be similar homomorphisms of a measurable groupoid ($F,[\mu]$) into ($G,[\nu]$). Let $T_{1}=T\left(\varphi_{1}\right)=\{(x, u) \in$ $\left.G \times F^{(0)}: d(x)=\varphi_{1}(u)\right\}$ and take the measure $\nu_{1}=\int \nu_{u} d\left(\varphi_{1} *(\tilde{\mu})\right)(u)$ on $d^{-1}\left(\varphi_{1}\left(F^{(0)}\right)\right)$ and $\nu_{1} * \tilde{\mu}$ on T_{1}. Similarly form $T_{2}=T\left(\varphi_{2}\right), \nu_{2}$ and $\nu_{2} * \tilde{\mu}$. Then there are i.c.'s F_{0} and G_{0} of F and G and F_{0} and G_{0}-invariant conull analytic sets $T_{1}{ }^{*} \subseteq T_{1}$ and $T_{2}{ }^{*} \subseteq T_{2}$ which are strictly isomorphic as F_{0} and G_{0}-spaces under a measure-class-preserving function f. Hence $\left(S_{\varphi_{1}}, \lambda_{1}\right)$ and $\left(S_{\varphi_{2}}, \lambda_{2}\right)$ have strictly isomorphic analytic conull G_{0}-invariant subspaces.

Starting with an arbitrary φ, if we choose a G_{0} on which ν is (r, d)-quasi-invariant and a φ_{0} similar to φ taking values in G_{0}, we have i.c.'s F_{1} and G_{1} and $\varphi_{0}^{\prime}: F_{1} \rightarrow S_{\varphi_{0}} * G$ such that $j \circ \varphi_{0}^{\prime}=\varphi_{0} \mid F_{1}$. Then $j \circ \mathscr{P}_{0}^{\prime} \sim \varphi \mid F_{1}$, but we do not have equality. In fact, there probably would not be a $\varphi^{\prime}: F_{1} \rightarrow S_{\varphi_{0}} * G_{1}$ with $j \circ \varphi^{\prime}=\varphi \mid F_{1}$, because φ may not carry F_{1} into G_{1}. Thus we speak of $S_{\varphi_{0}} * G$ as "the" range closure of φ in the following sense: it is constructed from φ by way of a choice of G_{0} and $\varphi_{0} \sim \varphi$, but if we choose instead an i.c. G_{1} on which ν is (r, d)-quasi-invariant and a $\varphi_{1} \sim \varphi$ taking values in G_{1}, then there is a $\varphi_{2} \sim \varphi$ taking values in $G_{2}=G_{0} \cap G_{1}$, and Lemma 3.7 says we have isomorphisms $S_{\varphi_{0}} \sim S_{\varphi_{2}}$ and $S_{\varphi_{1}} \sim S_{\varphi_{2}}$, so $S_{\varphi_{0}} \sim S_{\varphi_{1}}$. Since we could never have an S_{φ} determined more than within isomorphism, it is agreeable to take $S_{\varphi}=S_{\varphi_{0}}$. Also, we actually can choose $S_{\varphi_{1}}=S_{\varphi_{2}}$ whenever $\varphi_{1} \sim \varphi_{2}$.

It seems natural to ask about the uniqueness of S_{φ} in the following way. Suppose $\varphi: F \rightarrow G$ and there exists a G-space S and a homomorphism $\varphi^{\prime}: F \rightarrow S * G$ such that $j \circ \varphi^{\prime} \sim \varphi$. Is S determined up to isomorphism? According to Lemma 4.1, there is a map $M\left(\varphi^{\prime}\right): S_{j o \varphi^{\prime}} \rightarrow S_{j}$. We have $S_{j \circ \varphi^{\prime}} \simeq S_{\varphi}$. By Lemma $6.3, S_{j} \simeq S$ and by Theorems 6.7 and 6.11, $M\left(\phi^{\prime}\right)$ is an isomorphism, so the answer is, yes.
4. Functorial properties of the range closure construction. It seems worthwhile to extend some of the results of [10] to our situation. We restrict our attention to a few facts, but presumably the other results extend also.

Recall from [18] that if $(F,[\lambda])$ and $(G,[\mu])$ are measurable groupoids and $\psi:(F,[\mu]) \rightarrow(G,[\mu])$ is a homomorphism then $[\psi, F]$ or
[$\psi]$ denotes the set of homomorphisms similar to ψ. If $\psi:(F,[\lambda]) \rightarrow$ $(G,[\mu])$ and $\varphi:(G,[\mu]) \rightarrow(H,[\nu])$ then there are $\psi \psi_{1} \sim \psi$ and an i.c. G_{1} so that φ is strict on G_{1} and $\psi_{1}(F) \subseteq G_{1}$, i.e., $\left(\varphi, \psi_{1}\right)$ is composable [18, Definition 6.7]. Then [$\left.\rho \circ \psi_{1}\right]$ depends only on $[\psi]$ and $[\varphi]$ and is denoted $[\varphi] \circ[\psi]$. This operation is associative [18, Lemma 6.13].

If ($G,[\mu]$) is a measured groupoid, let $\mathscr{M}(G)$ denote the class of pairs $((F,[\lambda]), \varphi)$ where $(F,[\lambda])$ is a measurable groupoid and $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ is a homomorphism. If we insist that $F \cong$ $[0,1]$ as a Borel space, then $\mathscr{M}(G)$ becomes a set. For $\mathscr{F}_{1}=\left(\left(F_{1}\right.\right.$, $\left.\left.\left[\lambda_{1}\right]\right), \varphi_{1}\right)$ and $\mathscr{F}_{2}=\left(\left(F_{2},\left[\lambda_{2}\right]\right), \varphi_{2}\right)$ in $\mathscr{M}(G)$, a homomorphism $\psi: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ is a homomorphism $\psi:\left(F_{1},\left[\lambda_{1}\right]\right) \rightarrow\left(F_{2},\left[\lambda_{2}\right]\right)$ such that $\left[\varphi_{2}\right] \circ[\psi]=\left[\varphi_{1}\right]$. We denote by $M((F,[\lambda]), \varphi)$ the G-space $\left(S_{\varphi}, \nu\right)$ for which the groupoid ($S_{\varphi} * G,[\nu * \mu]$) is the closure of the range of φ, and we want to define $M[\psi]$ so as to make a functor out of M. We have a series of lemmas generalizing those of [10, §2]. The proofs are clearly related to those of [10], but are not identical, because we have a groupoid for G and because we have a different construction for S_{φ}. Since we start with homomorphisms which need not be strict, we will expect to product G-space maps which are not strictly equivariant. In fact, we may need to restrict to a conull analytic set which is invariant for some i.c. G_{0} in order to get strictness. Thus if we take some i.c.'s in the process nothing will be lost, and we can work with strict homomorphisms when necessary.

Lemma 4.1. Suppose $\mathscr{F}_{1}=\left(\left(F_{1},\left[\lambda_{1}\right]\right), \varphi_{1}\right)$ and $\mathscr{F}_{2}=\left(\left(F_{2},\left[\lambda_{2}\right]\right), \varphi_{2}\right)$ are in $\mathscr{M}(G), \varphi_{2}$ is strict, ψ is a homomorphism of \mathscr{F}_{1} to \mathscr{F}_{2} and $\theta: F_{1}^{(0)} \rightarrow G$ is a Borel function for which $\theta \circ r(\xi) \varphi_{2} \circ \psi(\xi)=\varphi_{1}(\xi) \theta \circ d(\xi)$ for almost all ξ. Then there is a G-equivariant normalized $h=$ $M(\dot{\psi}, \theta): S_{\varphi_{1}} \rightarrow S_{\varphi_{2}}$ obtained as the essential quotient of the function f^{θ} from $T_{1}=G * F_{1}^{(0)}$ to $T_{2}=G * F_{2}^{(0)}$ defined by $f^{e}(x, u)=(x \theta(u), \psi(u))$.

Lemma 4.2. Under the hypotheses of Lemma 4.1, if δ is another similarity of $\varphi_{2} \circ \psi$ with φ_{1} and φ_{2} is strict, then $M(\psi, \delta)$ is similar. to $M(\psi, \theta)$.

Definition 4.3. Call this class of maps $[M(\psi)]$.
Lemma 4.4. If μ is (r, d)-quasi-invariant on G and $\psi_{1}: \mathscr{F}_{1} \rightarrow$ \mathscr{F}_{2} is a homomorphism, where $\mathscr{F}_{2}=\left(\left(F_{2}\left[\lambda_{2}\right]\right), \varphi_{2}\right)$ with φ_{2} strict, and $\psi_{2}:\left(F_{1},\left[\lambda_{1}\right]\right) \rightarrow\left(F_{2},\left[\lambda_{2}\right]\right)$ is a homomorphism with $\left[\psi_{2}\right]=\left[\psi_{1}\right]$ then $\psi_{2}: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ is a homomorphism and $\left[M\left(\psi_{1}\right)\right]=\left[M\left(\psi_{2}\right)\right]$.

Now we can define $M[\psi]$ for any $\psi: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ by $M[\psi]=\left[M\left(\psi_{1}\right)\right]$ where (φ_{2}, ψ_{1}) is composable and $\psi_{1} \sim \psi$. Indeed, in such circum-
stances we may pass to an i.c. F_{4} of F_{2} on which φ_{2} is strict and an i.c. F_{3} of F_{1} such that $\psi_{1}\left(F_{3}\right) \subseteq F_{4}$, and the construction of $M\left(\psi_{1}\right)$ is valid. If also $\psi_{2} \sim \psi$ and $\left(\varphi_{2}, \psi_{2}\right)$ is composable, there are i.c.'s F_{5} of F_{1} and F_{6} of F_{2} such that $\psi_{2}\left(F_{4}\right) \subseteq F_{6}$ and $\varphi_{2} \mid F_{6}$ is strict. Hence $F_{4} \cap F_{6}$ is an i.c. on which φ_{2} is strict, and there is a $\psi_{3}: F_{1} \rightarrow$ F_{2} such that $\psi_{3}\left(F_{1}\right) \subseteq F_{4} \cap F_{6}$ and $\psi_{3} \sim \psi^{\prime}$. Then $\psi_{3} \sim \psi_{1}$ and by Lemma 4.4 we have $\left[M\left(\psi_{3}\right)\right]=\left[M\left(\psi_{1}\right)\right]$, similarly $\left[M\left(\psi_{3}\right)\right]=\left[M\left(\psi_{2}\right)\right]$. Thus $M[\psi]$ is well defined.

Finally, we can remove the restriction that μ be (r, d)-quasiinvariant on G, as follows. If $\mathscr{F}_{1}=\left(\left(F_{1},\left[\lambda_{1}\right]\right), \varphi_{1}\right)$ and $\mathscr{F}_{2}=\left(\left(F_{2}\right.\right.$, $\left.\left.\left[\lambda_{2}\right]\right), \varphi_{2}\right)$ are in $\mathscr{L}(G)$, there is an i.c. G_{0} on which μ is (r, d)-quasiinvariant and then there are $\varphi_{3} \sim \varphi_{1}$ and $\varphi_{4} \sim \varphi_{2}$ taking values in G_{0}. To construct a space called $S_{\varphi_{1}}$ in $\S 3$, we used $S_{\varphi_{3}}$, and also $S_{\varphi_{2}}=S_{\varphi_{4}}$. If $\psi:\left(F_{1},\left[\lambda_{1}\right]\right) \rightarrow\left(F_{2},\left[\lambda_{2}\right]\right)$ then $\left[\varphi_{2}\right] \circ[\psi]=\left[\varphi_{4}\right] \circ[\psi] \quad$ and $\left[\varphi_{3}\right]=\left[\varphi_{1}\right]$, so ψ is an $\mathscr{M}(G)$-homomorphism of \mathscr{F}_{1} to \mathscr{F}_{2} iff it is such from $\left(\left(F_{1},\left[\lambda_{1}\right]\right), \varphi_{3}\right)$ to $\left(\left(F_{2},\left[\lambda_{2}\right]\right), \varphi_{4}\right)$. To get a class of maps $M[\psi]$ from $S_{\varphi_{1}}$ to $S_{c_{2}}$, we may use the ones we constructed from ir using φ_{3} and φ_{4}. Suppose now that we choose instead $\varphi_{5} \sim \varphi_{1}$ and $\varphi_{6} \sim \varphi_{2}$. We want to see that $M[\psi]$ is invariant. We may assume we have $\theta_{1}: F_{1}^{(n)} \rightarrow G$ and $\theta_{2}: F_{2}^{(0)} \rightarrow G$ so that $\theta_{1} \circ r(\xi) \varphi_{5}(\xi)=$ $\varphi_{3}(\xi) \theta_{1} \circ d(\xi)$ for $\xi \in F_{1}$ and $\theta_{2} \circ r(\eta) \varphi_{6}(\eta)=\varphi_{4}(\eta) \theta_{2} \circ d(\eta)$ for $\eta \in F_{2}$. We start with a $\theta: F_{1}^{(0)} \rightarrow G$ so that $\theta \circ r(\xi) \varphi_{4} \circ \psi(\xi)=\varphi_{3}(\xi) \theta \circ d(\xi)$ for $\xi \in F_{1}$, and define $\theta^{\prime}(u)=\theta_{1}(u)^{-1} \theta(u) \theta_{2} \circ \widetilde{\psi}(u)$ for $u \in F_{1}^{(0)}$. Then $\theta^{\prime} \circ r(\xi) \varphi_{6} \circ \psi(\xi)=$ $\varphi_{4}(\xi) \theta^{\prime} \circ d(\xi)$ for $\xi \in F_{1}$. There are isomorphisms $f_{1}: T\left(\varphi_{3}\right) \rightarrow T\left(\varphi_{5}\right)$ and $f_{2}: T\left(\varphi_{4}\right) \rightarrow T\left(\varphi_{6}\right)$ given by $f_{1}(x, u)=\left(x \theta_{1}(u), u\right)$ and $f_{2}(x, u)=\left(x \theta_{2}(u), u\right)$ (proof of Lemma A3.7). These satisfy $f^{\theta^{\prime}} \circ f_{1}=f_{2} \circ f^{\theta}$ and induce isomorphisms $S_{\varphi_{3}} \rightarrow S_{\varphi_{5}}$ and $S_{\varphi_{4}} \rightarrow S_{\varphi_{6}}$. Hence $M(\psi, \theta)$ is equivalent to $M\left(\psi^{\prime}, \theta^{\prime}\right)$ under these isomorphisms, so the class $M[\psi]$ transfers from maps of $S_{\varphi_{3}}$ to $S_{\varphi_{4}}$ to maps of $S_{\varphi_{5}}$ to $S_{\varphi_{6}}$ in a consistent way.

Lemma 4.5. If $\psi_{1}: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ and $\psi_{2}: \mathscr{F}_{2} \rightarrow \mathscr{F}_{3}$ are homomorphisms, for $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}$ in $\mathscr{M}(G)$, then $M\left(\left[\psi_{2}\right] \circ\left[\psi_{1}\right]\right)=M\left[\psi_{2}\right] \circ M\left[\psi_{3}\right]$.
5. Special properties of groupoid homomorphisms. Here we give definitions of several properties a homomorphism of measured groupoids may have. In keeping with the viewpoint expressed in the introduction, we begin with an interpretation of certain properties of continuous group homomorphisms in ways which apply to groupoids. Suppose F and G are locally compact groups and $\varphi: F \rightarrow G$ is a continuous homomorphism. Then F acts on G via φ by $x \cdot \xi=x \varphi(\xi)$, and we have the following equivalences, by which we learn how to define the terms for groupoids:
(1) φ is one-one iff F acts freely on G iff the groupoid $G \times F$ (thinking of G as an F-space) is principal.
(2) $\varphi(F)$ is dense in G iff the natural homomorphism of $\varphi(F)^{-}$ into G is an isomorphism onto.
(3) $\varphi(F)$ is closed in G iff the space of orbits in G under the action of $F, G / F$, is analytic [11, Theorem 7.2].
(4) $\varphi(F)=G$ iff φ has dense, closed range iff G / F consists of one point up to a null set.
(5) φ is a topological embedding iff φ is an isomorphism of F onto $\varphi(F)^{-}$iff $G \times F$ is principal and G / F is analytic.

Definition 5.1. Let ($F,[\mu]$) and ($G,[\nu]$) be measurable groupoids and let $\varphi:(F,[\mu]) \rightarrow(G,[\nu])$ be a strict homomorphism, and suppose $\varphi^{*} \sim \varphi$ and φ^{*} takes values in an i.c. on which ν is ($\left.r, d\right)$-quasiinvariant. Set $T=T\left(\varphi^{*}\right)=\left\{(x, u) \in G \times F^{\left({ }^{()}\right)}: d(x)=\varphi^{*}(u)\right\}$,

$$
\nu_{1}=\int \nu_{u} d\left(\varphi_{*}^{*}(\tilde{\mu})\right)(u)
$$

and $\lambda_{1}=\nu_{1}{ }^{*} \tilde{\mu}$. Form the measured groupoid $\left(T * F,\left[\lambda_{1} * \mu\right]\right)$. Let $\left(S_{\varphi}, \lambda\right)=\left(S_{\varphi} *, \lambda\right)$ as in Theorem 3.5.
(a) φ is called strictly immersive iff $T * F$ is principal.
(a') φ is called immersive iff $\varphi \mid F_{1}$ is strictly immersive for some i.c. F_{1} of F.
(b) We say $\varphi(F)$ is dense or φ has dense range iff there is an i.c. G_{0} of G and a conull strict G_{0}-space $S_{0} \cong S_{\varphi}$ such that $j \mid S_{0} * G_{0}$ is an isomorphism onto G_{0}.
(c) We say $\varphi(F)$ is closed or φ has a strictly closed range iff the orbit space T / F is analytic.
(c') We say φ has closed range iff $\varphi \mid F_{1}$ has strictly closed range for some i.c. F_{1} of F.
(d) We say φ is surjective iff φ has a dense closed range.
(e) We say φ is a strict imbedding iff $T * F$ is principal and T / F is analytic.
(e') We say φ is an imbedding iff $\varphi \mid F_{1}$ is a strict imbedding for some i.c. F_{1} of F.

Remarks. (1) There can always be sets of measure zero which are basically irrelevant, as when a null set of units is adjoined to a group, and the nonstrict forms of the definitions are to take account of such cases, even though they should be exceptional. The nonstrict definitions may also be much easier to verify in concrete cases, even when the strict definitions are satisfied. The extra freedom makes the machinery a little more tractable.
(2) We will see in Theorem 6.7 that for any homomorphism φ the φ^{\prime} associated with it by Theorem 3.5 has dense range. (3) The definition of "dense range" is phrased so that it says the range-
closure is isomorphic to G (up to null sets) under its natural imbedding. This sounds natural. However another formulation is more convenient for applications of the concept. The function p taking (x, u) to $r(x)$ is the projection of $T(\phi)$ onto $G^{(0)}$ relative to which the action of G on $T(\varphi)$ is defined and it is constant on F-orbits. Thus it factors through the ergodic decomposition $f: T(\varphi) \rightarrow S_{\varphi}$ via the projection $q: S_{\varphi} \rightarrow G^{(0)}$ in the definition of the action of G on S_{φ}. The units of $S_{\varphi} * G$ are just the graph of q, and if $j \mid\left(S_{\varphi} * G\right)^{(0)}$ is oneone a.e., that means q is one-one a.e. Thus whenever ρ has dense range the projection p is an ergodic decomposition. We use this in Theorems 7.16, 7.17 and 7.18.
(4) Let (S, μ) be an ergodic Z-space and let $\varphi: S \times Z \rightarrow \boldsymbol{R}$ be a homomorphism for which the function f defined by $f(s)=\varphi(s, 1)$ has constant sign, say $f>0$ everywhere. Then the set $T_{0}=\{(s, x) \in$ $S \times R$: $-f(s)<x \leqq 0\}$ meets each Z-orbit exactly once. Hence φ has closed range. Furthermore, \boldsymbol{Z} acts freely on almost all of S and hence on $S \times \boldsymbol{R}$, so φ is in fact an imbedding. (The set T_{0} is the space for the flow built under f; see [16].)

Before proceeding to our main objective, we prove the following theorem, which asserts that a properly ergodic groupoid cannot be mapped onto a group. A consequence is that in Corollaries 2.1 and 3.3 of [22], "dense range" cannot be strengthened to "onto".

Theorem 5.2. If $(F,[\mu])$ is a measurable groupoid which has a homomorphism ρ onto a locally compact group G, then $(F,[\mu])$ is similar to a group, i.e., is essentially transitive.

Proof. The groupoid $\left(G \times F^{(0)}\right) * F$ has a homomorphism into F and the assumption that φ is onto implies that $\left(G \times F^{(0)}\right) * F$ is essentially transitive. It follows that F is essentially transitive.

Now we want to show that these definitions are similarity invariant in $\mathscr{M}(G)$. The first lemma is immediate from Lemma 3.7.

Lemma 5.3. Suppose $\left(\left(F_{1},\left[\mu_{1}\right]\right), \varphi_{1}\right)$ and $\left(\left(F_{2},\left[\mu_{2}\right]\right), \varphi_{2}\right)$ are similar. elements of $\mathscr{M}(G)$. Then φ_{1} has dense range iff φ_{2} has dense range.

Lemma 5.4. Suppose $\left(\left(F_{1},\left[\mu_{1}\right]\right), \varphi_{1}\right)$ and $\left(\left(F_{2},\left[\mu_{2}\right]\right), \varphi_{2}\right)$ are similar. elements of $\mathscr{M}(G)$. Then φ_{1} has closed range iff φ_{2} has closed range.

Proof. Because of the symmetry, we need only prove one implication. Let $\psi_{1}: F_{1} \rightarrow F_{2}$ and $\psi_{2}: F_{2} \rightarrow F_{1}$ be a similarity. These may be replaced by similar homomorphisms, if needed, so we may begin with (φ_{1}, ψ_{2}) composable. Then we may choose an i.c. F_{4} of
F_{2} such that if $\varphi_{4}=\varphi_{2} \mid F_{4}$ and $\dot{\psi}_{4}=\dot{\psi}_{2} \mid F_{4}$ then φ_{4} and $\dot{\psi}_{4}$ are strict, $\varphi_{1} \circ \psi_{4}$ is strictly similar to φ_{4} and $T\left(\varphi_{4}\right) / F_{4}$ is analytic. Next, choose ψ_{1} and an i.c. F_{3} of F_{1} so that $\psi_{3}=\psi_{1} \mid F_{3}$ is strict, $\psi_{3}\left(F_{3}\right) \subseteq F_{4}$, $\psi=\psi_{4} \circ \psi_{3}$ is strictly similar to the identity on F_{3}, and $\varphi_{4} \circ \psi_{3}$ is strictly similar to $\varphi_{3}=\varphi_{1} \mid F_{3}$.

There exist strict similarities θ_{1}, θ_{2} and θ :

$$
\begin{aligned}
& \theta_{1} \circ r(\xi) \varphi_{4} \circ \psi_{3}(\xi)=\varphi_{3}(\xi) \theta_{1} \circ d(\xi) \text { for } \xi \in F_{3}, \\
& \theta_{2} \circ r(\xi) \varphi_{3} \circ \psi_{4}(\xi)=\varphi_{4}(\xi) \theta_{2} \circ d(\xi) \text { for } \xi \in F_{4},
\end{aligned}
$$

and

$$
\theta \circ r(\xi) \forall(\xi)=\xi \theta \circ d(\xi) \text { for } \xi \in F_{3}
$$

Define $f^{0_{1}}(x, u)=\left(x \theta_{1}(u), \dot{\psi}_{1}(u)\right)$, for $(x, u) \in T\left(\varphi_{3}\right), f^{\theta_{2}}(x, u)=\left(x \theta_{2}(u)\right.$, $\psi_{2}(u)$) for $(x, u) \in T\left(\varphi_{2}\right)$ and $f(x, u)=\left(x \varphi_{3} \circ \theta(u), u\right)$ for $(x, u) \in T\left(\mathcal{P}_{3}\right)$. Then $(x, u) \sim(y, v)$ in $T\left(\varphi_{3}\right) \Rightarrow f^{\theta_{1}}(x, u) \sim f^{\theta_{1}}(y, v)$ in $T\left(\varphi_{2}\right)$. If $f^{\theta_{1}}(x, u) \sim$ $f^{\theta_{1}}(y, v)$ in $T\left(\varphi_{2}\right)$, then $f^{\theta_{2} \circ} f^{\theta_{1}}(x, u)$ is in $T\left(\varphi_{3}\right)$ because $\psi(u) \in F_{3}^{(0)}$, and so is $f^{\theta_{2} \circ} f^{\theta_{1}}(y, v)$, and these are equivalent under F_{3} because they are equivalent under F_{1} and both units are in $F_{3}(\psi(u)$ and $\psi(v))$. Thus $\left(x \theta_{1}(u) \theta_{2} \circ \psi_{1}(u), \psi(u)\right) \sim\left(y \theta_{1}(v) \theta_{2} \circ \psi_{1}(v), \psi(v)\right)$.

Now $w \in F_{3}^{(0)} \Rightarrow d \circ \theta(w)=\psi(w)$ and $r \circ \theta(w)=w$, so we can operate on the points with $\theta(u)^{-1}$ and $\theta(v)^{-1}$, getting two points which are equivalent in $T\left(\mathscr{\varphi}_{3}\right)$:

$$
\left(x \theta_{1}(u) \theta_{2} \circ \psi_{1}(u) \varphi_{3}\left(\theta(u)^{-1}\right), u\right) \sim\left(y \theta_{1}(v) \theta_{2} \circ \psi_{1}(v) \varphi_{3}\left(\theta(v)^{-1}\right), v\right) .
$$

Now $\varphi_{3} \circ \theta$ is a similarity (strict) of $\varphi_{3} \circ \psi$ with φ_{3}, so the function f defined above is an isomorphism of $T\left(\varphi_{3}\right)$ onto $T\left(\varphi_{3} \circ \psi\right)$. Hence there is a $\xi \in F_{3}$ with $r(\xi)=u, d(\xi)=v$ and

$$
x \theta_{1}(u) \theta_{2} \circ \psi_{1}(u) \varphi_{3} \circ \psi(\xi)=y \theta_{1}(v) \theta_{2} \circ \varphi_{1}(v) .
$$

Since $\psi^{\prime}=\psi_{2} \circ \psi_{1} \mid F_{3}$, the similarity equations give

$$
\begin{aligned}
\theta_{1}(u) \theta_{2} \circ \psi_{1}(u) \varphi_{3} \circ \psi_{2} \circ \psi_{1}(\xi) & =\theta_{1}(u) \varphi_{2} \circ \psi_{1}(\xi) \theta_{2} \circ \psi_{1}(v) \\
& =\varphi_{3}(\xi) \theta_{1}(v) \theta_{2} \circ \varphi_{1}(v) .
\end{aligned}
$$

Thus $(x, u) \xi=(y, v)$ in $T\left(\varphi_{3}\right)$, i.e., $(x, u) \sim(y, v)$. Hence $f^{\theta_{1}}$ induces an imbedding of $T\left(\mathscr{\varphi}_{3}\right) / F_{3}$ into $T\left(\varphi_{2}\right) / F_{2}$, as a G-space.

The next proof includes the fact that immersiveness is equivalent to a sort of one-one-ness.

Lemma 5.5. Suppose $\left(\left(F_{1},\left[\mu_{1}\right]\right), \varphi_{1}\right)$ and $\left(\left(F_{2},\left[\mu_{2}\right]\right), \varphi_{2}\right)$ are similar elements of $\mathscr{C}(G)$. Then φ_{1} is immersive iff φ_{2} is.

Proof. Again the symmetry means we need to prove only one implication. By passing to similar homomorphisms, as permitted
by Definition 5.1 and Lemma 3.7, we may arrange that φ_{1} and φ_{2} take values in an i.c. on which ν is (r, d)-quasi-invariant and then that $\left(\varphi_{1}, \psi_{2}\right)$ is composable. Next choose an i.c. F_{4} of F_{2} on which φ_{2} and ψ_{2} are strict, $\varphi_{1} \circ \psi_{2}$ is strictly similar to φ_{2} and φ_{2} is strictly immersive. Then there is a choice of ψ_{1} and an i.c. F_{3} of F_{1} such that $\varphi_{1} \mid F_{3}$ is strict, $\psi_{1} \mid F_{3}$ is strict, $\psi_{1}\left(F_{3}\right) \subseteq F_{4}, \psi_{2} \circ \psi_{1}$ is strictly similar to the identity on F_{3}, and $\varphi_{2} \circ \psi_{1}$ is strictly similar to φ_{1} on F_{3}.

Now we will show that φ_{2} is one-one on sets of the form $r^{-1}(v) \cap d^{-1}(u)$ for $u, v \in F_{4}^{(0)}$. Suppose $r(\xi)=r(\eta)=v, d(\xi)=d(\eta)=u$ and $d(x)=\varphi_{2}(v)$, and let $\varphi_{2}(\xi)=\varphi_{2}(\eta)$. Then $(x, v) \xi=(x, v) \eta$, so $\xi=\eta$.

From this we see that the same holds for φ_{1} on F_{3}. Suppose $\xi, \eta \in F_{1}, d(\xi)=d(\eta), r(\xi)=r(\eta)$ and $\varphi_{1}(\xi)=\varphi_{1}(\eta)$. Then $\varphi_{2} \circ \gamma_{1}(\xi)=$ $\varphi_{2} \circ \psi_{1}(\eta)$ because of the similarity. Hence $\psi_{1}(\xi)=\psi_{1}(\eta)$, so $\psi_{2} \circ \psi_{1}(\xi)=$ $\psi_{2} \circ \psi_{1}(\eta)$. By use of the strict similarity of $\psi_{2} \circ \psi_{1}$ with the identity on F_{3}, we see that $\xi=\eta$. By reversing the argument for φ_{2} above, we see that $\varphi_{1} \mid F_{3}$ is strictly immersive.

Corollary 5.6. If $\left(\left(F_{1},\left[\mu_{1}\right]\right), \varphi_{1}\right)$ and $\left(\left(F_{2},\left[\mu_{2}\right]\right), \varphi_{2}\right)$ are similar elements of $\mathscr{M}(G)$, then φ_{1} is an imbedding iff φ_{2} is an imbedding.
6. Some results about immersions, imbeddings, etc. A variety of questions arise naturally about the definitions of $\S 5$. We prove that a composition of imbeddings is an imbedding and a composition of homomorphisms with dense range has dense range. We prove that the homomorphism φ^{\prime} of Theorem 3.6 has dense range, i.e., that "the range of φ is dense in the closure of the range of φ." There are other results here, and some obvious questions are not answered. Our purpose is to develop some useful facts and answer enough of these questions to justify the definitions.

The first lemma is a rather obvious fact, and we tend to use it without explicit reference, but it may help to state it once. It says that a homomorphism which is an isomorphism of i.c.'s is actually a monomorphism in the sense of category theory.

Lemma 6.1. Let $(F,[\lambda]),(G,[\mu])$ and $(H,[\nu])$ be measured groupoids and let $\psi:(G,[\mu]) \rightarrow(H,[\nu])$ be a homomorphism such that there are i.c.'s G_{0} of G and H_{0} of H with $\psi \mid G_{0}$ a strict isomorphism. of G_{0} onto H_{0}. If φ_{1}, φ_{2} are homomorphisms of $(F,[\lambda])$ into ($G,[\mu]$) with $[\psi] \cdot\left[\varphi_{1}\right]=[\psi] \cdot\left[\varphi_{2}\right]$, then $\left[\varphi_{1}\right]=\left[\varphi_{2}\right]$.

Proof. We may assume that $\varphi_{1}(F) \cup \varphi_{2}(F) \subseteq G_{0}$, so $\psi \circ \varphi_{1}(F) \cup$ $\psi \circ \varphi_{2}(F) \subseteq H_{0}$. In that case, a similarity θ of $\psi \circ \varphi_{1}$ to $\psi \circ \varphi_{2}$ must take values in H_{0} and $\left(\psi \mid G_{0}\right)^{-1} \circ \theta$ is a similarity of φ_{1} to φ_{2}.

Next we give the characterization of imbeddings in terms of groupoids given by actions. The first step is a lemma related to the notion of the kernel of a homomorphism. For homomorphisms of virtual groups F into compact groups G, the ergodic groupoids into which $\left(G \times F^{(0)}\right) * F$ decomposes correspond to the kernel [13]. This relates to condition (b) of Lemma 6.2.

Lemma 6.2. Let $(F,[\mu])$ be a measured groupoid and let (T, λ) be an analytic strict $(F,[\mu])$-space. These conditions are equivalent:
(a) There are an i.c. F_{1} of F and a conull analytic F_{1}-invariant set $T_{1} \subseteq T$ such that $T_{1} * F_{1}$ is principal and T_{1} / F_{1} is analytic.
(b) Almost every groupoid in an ergodic decomposition of ($T * F,[\lambda * \mu])$ is similar to the trivial group.

Proof. To prove (a) \Rightarrow (b) we may suppose $T_{1}=T, F_{1}=F$. Then $S=T / F$ is analytic. Let $q: T \rightarrow S$ be the quotient map and let S_{1} be standard and $q_{*}(\lambda)$-conull. By the von Neumann selection lemma there are a Borel function $c: S \rightarrow T$ and a conull Borel set $S_{0} \subseteq S_{1}$ such that $q \circ c$ is the identity on S_{0}. Denote the saturation of A by $[A]$ as usual and define $G_{s}=(T * F) \mid[c(s)]$ for $s \in S$. Now $q\left(\left[c\left(S_{0}\right)\right]\right)=S_{0}$ and the level sets of q on $\left[c\left(S_{0}\right)\right]$ are exactly the F orbits. Thus the decomposition of $T * F$ given by q produces transitive groupoids which are therefore ergodic, so q is an ergodic decomposition. Since F acts freely, $T * F$ is principal. Then the decomposition of $\left[c\left(S_{0}\right)\right] * F$ must produce principal groupoids. Since a principal transitive groupoid is similar to the trivial group, condition (a) implies condition (b).

For the converse, suppose $q: T \rightarrow S$ is an ergodic decomposition of $T * F$. Let S_{0} be a conull set in S such that $G_{s}=(T * F) \mid q^{-1}(s)$ is similar to $\{1\}$ for $s \in S_{0}$. Then G_{s} is essentially transitive and essentially principal, so there is an equivalence class in $G_{s}^{(0)}=q^{-1}(s)$ which is conull and to which the contraction of G_{s} is principal. Let $\lambda=\int \lambda_{s} d q_{*}(\lambda)(s)$ be the decomposition of λ relative to q which we are using. Let $E=\{(t, t x) \in T \times T:(t, x) \in T * F\}$. Then $s \in S_{0}$ implies that λ_{s} is concentrated on some orbit, and that orbit is [t] iff $\varepsilon_{t} \times$ $\lambda_{s}(E)>0$, and then $q(t)=s$. Choose Borel sets E_{1}, E_{2} with $E_{1} \subseteq E \subseteq$ E_{2} so that $\lambda * \lambda\left(E_{2}-E_{1}\right)=0$. Define $K=\left\{t \in T: \lambda_{q(t)}([t])>0\right\}=\{t \in$ $\left.T: \varepsilon_{t} \times \lambda_{q(t)}(E)>0\right\}$, and define $K_{i}=\left\{t \in T: \varepsilon_{t} \times \lambda_{q(t)}\left(E_{i}\right)>0\right\}(i=1,2)$. We have $K_{1} \subseteq K \subseteq K_{2}$ and $\lambda * \lambda=\int \varepsilon_{t} \times \lambda_{q(t)} d \lambda(t)$, so that $\varepsilon_{t} \times \lambda_{q(t)}\left(E_{1}\right)=$ $\varepsilon_{t} \times \lambda_{q(t)}\left(E_{2}\right)$ for almost all t, so $\lambda\left(K_{2}-K_{1}\right)=0$ and $\lambda_{s}\left(K_{2}-K_{1}\right)=0$ for almost all s. Thus K is measurable for λ and for almost all λ_{s} and $t \in K$ implies $[t] \subseteq K$, so $s \in S_{0}$ implies $\lambda_{s}(X / K)=0$. Hence K_{1} is conull. Thus $q\left(K_{1}\right)$ is conull and the von Neumann selection lemma
gives rise to a Borel function $c: S \rightarrow T$ such that the Borel set $S_{1}=$ $\left\{s \in S_{0}: q \circ c(s) \in K_{1}\right\}$ is conull. Then $T_{1}=\left[c\left(S_{1}\right)\right]$ is contained in K, and T_{1} is analytic, conull and invariant. The set $F_{1}=\left\{\xi \in F: \xi\right.$ and ξ^{-1} act on $\left.T_{1}\right\}$ is an i.c. of $F, T_{1} * F_{1}$ is principal and T_{1} / F_{1} is Borel isomorphic to $q\left(T_{1}\right)$, which is analytic.

Lemma 6.3. Let (S, λ, p) be a $(G,[\nu])$ space and form $F=S * G$ and $\mu=\lambda * \nu$ and let $j: S * G \rightarrow G$ be the coordinate projection. Then j is an imbedding, and the space S_{j} is isomorphic to S.

Proof. First, $F^{(0)}$ is the "graph" of p, which is naturally identified with S. Hence $G * F^{(0)}=T(j)$ is isomorphic to $\{(x, s) \in G \times S$: $s x^{-1}$ is defined\}, and the action of $(s, y) \in F$ on $(x, s) \in T(j)$ is $(x, s)(s, y)=(x j(s, y), s y)=(x y, s y)$. Hence $(x, s)\left(s, x^{-1}\right)=\left(r(x), s x^{-1}\right)$, so $X=\{(p(s), s): s \in S\}$ meets each orbit. Now if $\left(x_{1}, s_{1}\right)(s, y)=\left(x_{2}, s_{2}\right)$ then $s=s_{1}$ and $y=x_{1}^{-1} x_{2}$, so the action of F on $T(j)$ is free. It follows that X meets each orbit only once. Hence the quotient space $T(j) / F$ is isomorphic to X, and hence to S, so it is analytic.

Theorem 6.4. Let $(G,[\nu])$ be a measured groupoid and suppose $\mathscr{F}=((F,[\mu]), \varphi) \in \mathscr{L}(G)$. Set $\left(S_{\varphi},[\lambda]\right)=M(\mathscr{F})$ as in §4 and $\mathscr{F}_{\varphi}=$ $\left(\left(S_{\varphi} * G_{0},[\lambda * \nu]\right), j\right)$ where j projects $S_{\varphi} * G_{0}$ onto G_{0}. Then ρ is an imbedding iff there is a homomorphism $\psi: \mathscr{F}_{\bullet} \rightarrow \mathscr{F}$ such that ($\varphi^{\prime}, \gamma^{\prime}$) is a similarity.

Proof. If such a homomorphism exists, then Corollary 5.5 and Lemma 6.3 combine to show that φ is an imbedding. The rest of the proof is somewhat tedious, so to help keep the parts straight we shall announce the major divisions in the proof. We only need to find $\psi: \mathscr{F}_{\varphi} \rightarrow \mathscr{F}$ so that $\left(\varphi^{\prime}, \psi\right)$ is a similarity of $(F,[\mu])$ with ($S_{\varphi} * G,[\lambda * \nu]$). By restricting to i.c.'s, we may assume φ is a strict imbedding.

The existence of ψ : Let $T=G * F^{(0)}$, let p be the quotient map of T onto T / F, and form ν_{1} and $\lambda_{1}=\nu_{1} * \tilde{\mu}$ as before. By the proof of Lemma 5.3, p is an ergodic decomposition of ($T,\left[\lambda_{1}\right]$). Since the actions commute, T / F is already a G-space, and we can use it for S_{φ}. Set $F_{\varphi}=S_{\varphi} * G$. Recall that $\varphi^{\prime}(\xi)=(p(\varphi \circ r(\xi), r(\xi)), \varphi(\xi))$ for $\xi \in F$. The von Neumann selection lemma gives us a Borel function $c: S_{\varphi} \rightarrow T$ such that the Borel set $S_{1}=\left\{s \in S_{\varphi}: p \circ c(s)=s\right\}$ is conull relative to $p_{*}\left((\varphi \times i)_{*}(\tilde{\mu})+\lambda_{1}\right)$. This latter measure is used because it gives weight to the image under p of the "graph of $\widetilde{\rho}$ " in $G * F^{(0)}$. Let $T_{1}=p^{-1}\left(S_{1}\right)$. Then T_{1} is F-invariant, Borel and conull and $\left[c\left(S_{1}\right)\right]=T_{1}$ because $c \circ p(t) \sim t$ if $p(t) \in S_{1}$.

Now let $E=\left\{\left(t_{1}, t_{2}\right) \in T^{2}: t_{1} \sim t_{2}\right\}$, which is the one-one image of $T * F$ in T^{2} under the map $(t, \xi) \rightarrow(t, t \xi)$. By composing the projection of $T * F$ onto F with the inverse of this function, we get a Borel function $f: E \rightarrow F$ such that $\left(t_{1}, t_{2}\right) \in E$ implies $t_{1} f\left(t_{1}, t_{2}\right)=t_{2}$. Define θ on T_{1} by $\theta(t)=f(c \circ p(t), t)$. Then for $t \in T_{1}$ we have $c \circ p(t) \theta(t)=t$, and θ is Borel. If $(s, x) \in F_{\varphi} \mid S_{1}$, then s and $s x \in S_{1}$, and $s=p(t)$ for some $t \in T_{1}$ with $t x$ defined. Then $c(s)$ is in the F-orbit of t since $p(t)=p \circ c(s)=s$, so $c(s) x$ is defined. Then $p(c(s) x)=$ $p(c(s)) x=s x$, so $c(s) x \sim c(s x)$. Since the action of F is free, there is exactly one element of F which carries $c(s) x$ to $c(s x)$ and we shall call it $\psi(s, x)$. This defines ψ on $F_{\varphi} \mid S_{1}$. Let ψ be constant on the rest of F_{φ}. For $t \in T_{1}, c \circ p(t) \theta(t)=t$ so if $(p(t), x) \in F_{\varphi} \mid S_{1}$ we have $(c \circ p(t) x) \theta(t)=t x$. Hence $\psi(p(t), x)=\theta(t) \theta(t x)^{-1}$, so ψ is Borel on $F_{\varphi} \mid S_{1}$ and hence Borel.
is is a homomorphism of measurable groupoids: Suppose (s, x) and $(s x, y) \in F_{\varphi} \mid S_{1}$, and that $\xi, \eta \in F$ are such that $c(s) x \xi=c(s x)$ and $c(s x) y \eta=c(s x y)$. Then $c(s) x y \xi \eta=c(s x y)$, and by the uniqueness defining ψ we see that $\psi(s, x y)=\psi(s, x) \psi(s x, y)$. Thus ψ is algebraically a homomorphism of $F_{\varphi} \mid S_{1}$. For the measure theoretic part let $A \subseteq F^{(0)}$ be analytic, saturated and null for $\tilde{\mu}$. The set $G * A=$ $\{(x, u) \in G \times A: d(x)=\varphi(u)$ and $u \in A\}$ is null in T and is invariant under both F and G. Thus $p(G * A)$ is null for $\lambda=p_{*}\left(\nu_{1} * \mu\right)$. Now $c(s) x_{\psi}(s, x)$ is defined for $(s, x) \in F_{\varphi} \mid S_{1}$, so $c(s) \psi(s, x)$ is defined and hence $\psi(s, p(s))=r \circ \psi(s, x)$ is the second component of $c(s)$, so $\psi(s, p(s)) \in A$ iff $c(s) \in G * A$ iff $s \in p(G * A)$. Hence $\tilde{\psi}^{-1}(A)$ is null.
$[\varphi] \circ[\psi]=\left[j, F_{\varphi}\right]$ and $\left[\varphi^{\prime}\right] \circ[\psi]=[i, F]$: First notice that (φ, ψ) and (φ^{\prime}, ψ) are composable since φ and φ^{\prime} are strict homomorphisms. Write $c=(a, b)$, so $a: S_{\varphi} \rightarrow G, b: S_{\varphi} \rightarrow F^{(0)}$ and for each $s, \varphi \circ b(s)=$ $d \circ a(s)$. Also $(\varphi \circ b(s), b(s)) a(s)^{-1}=(a(s), b(s))=c(s)$, and $p(\varphi \circ b(s)$, $b(s)) a(s)^{-1}$ is defined and equal to $p \circ c(s)$, which is s if $s \in S_{1}$. Let $\theta_{1}(s)=\left(p(\varphi \circ b(s), b(s)), a(s)^{-1}\right)$. Then θ_{1} is Borel from S_{φ} to F_{φ} and $d \circ \theta_{1}(s)=s$ if $s \in S_{1}$, so $\theta_{1}(s)(s, x) \theta_{1}(s x)^{-1}$ makes sense if $(s, x) \in F_{\varphi} \mid S_{1}$. We must show this product is in fact $\phi^{\prime} \circ \psi(s, x)$. If $(y, u)=t \in T$, $s=p(t)$ and $(s, x) \in F_{\varphi} \mid S_{1}$, then with θ as used in constructing ψ we have $(a(s), b(s)) \theta(t)=c(s) \theta(t)=t=(y, u)$ so $a(s) \varphi \circ \theta(t)=y$. Similarly $a(s x) \varphi \circ \theta(t x)=x^{-1} y$, so $\varphi \circ \psi(s, x)=\varphi \circ \theta(t) \varphi \circ \theta(t x)^{-1}=a(s)^{-1} x a(s x)$. This shows $\varphi \circ \psi \sim j$. Now $r \circ \psi(s, x)=r \circ \theta(t)=b(s)$ since $c(s) \theta(t)$ is defined, so

$$
\begin{aligned}
\theta_{1}(s)(s, x) \theta_{1}(s x)^{-1} & =\left(p(\varphi \circ b(s), b(s)), a(s)^{-1} x a(s x)\right) \\
& =(p(\varphi \circ r \circ \psi(s, x), r \circ \psi(s, x)), \varphi \circ \psi(s, x)) \\
& =\varphi^{\prime} \circ \psi(s, x),
\end{aligned}
$$

as desired.
$[\psi] \cdot\left[\phi^{\prime}\right]=[i, F]:$ Since S_{1} is $p_{*}\left((\widetilde{\mathcal{P}} \times i)_{*}(\widetilde{\mu})+\lambda_{1}\right)$-conull, the set $U=\left\{u \in F^{(0)}: p(\varphi(u), u) \in S_{1}\right\}=\left\{u \in F^{(0)}: \varphi^{\prime}(u) \in F_{\varphi} \mid S_{1}\right\}$ is conull in $F^{(0)}$. Hence (ψ, ϕ^{\prime}) is composable. The function θ from above is Borel on T_{1} so $u \rightarrow \theta_{2}(u)=\theta(\varphi(u), u)$ is Borel on U. Also $c(p(\varphi(u), u)) \theta_{2}(u)=$ ($\varphi(u), u$) by the definition of θ. Now if $\xi \in F \mid U$, then $\varphi(\xi) \in G$ and $\varphi^{\prime}(\xi) \in F_{\varphi} \mid S_{1}$, and since the actions commute the following makes sense:

$$
\begin{aligned}
& c(p(\varphi \circ r(\xi), r(\xi))) \varphi(\xi)\left(\theta_{2} \circ r(\xi) \xi \theta_{2} \circ d(\xi)^{-1}\right) \\
&=(\varphi \circ r(\xi), r(\xi)) \varphi(\xi)\left(\xi \theta_{2} \circ d(\xi)^{-1}\right) \\
& \quad=\left(\varphi(\xi)^{-1}, r(\xi)\right) \xi \theta_{2} \circ d(\xi)^{-1} \\
&=(\varphi \circ d(\xi), d(\xi)) \theta_{2} \circ d(\xi)^{-1} \\
& \quad=c(p(\varphi \circ d(\xi), d(\xi))) \\
& \quad=c\left(p\left(\varphi(\xi)^{-1}, r(\xi)\right)\right) \\
& \quad=c(p(\varphi \circ r(\xi), r(\xi)) \varphi(\xi)) .
\end{aligned}
$$

By the defining property of $\psi, \psi \circ \varphi^{\prime}(\xi)=\theta_{2} \circ r(\xi) \xi \theta_{2} \circ d(\xi)^{-1}$.
It is desirable for a subobject of a subobject to be a subobject, in a natural way. The characterization of imbeddings given by Theorem 6.4 makes one form of this property relatively easy to establish, as we see below. Notice that having $S_{1} * G$ a subobject of $S_{2} * G$ involves a map of S_{1} onto S_{2} as G-spaces, as expected [16].

Theorem 6.5. Let $(G,[\mu])$ be a measured groupoid and let ($S_{0},\left[\lambda_{0}\right]$) be a strict ($G,[\mu]$)-space. Let $F=S_{0} * G$ so that ($F,\left[\lambda_{0} * \mu\right]$) is a measurable groupoid, and let ($S_{1},\left[\lambda_{1}\right]$) be a strict ($\left.F,\left[\lambda_{0} * \mu\right]\right)$ space. Then $\left(S_{1},\left[\lambda_{1}\right]\right)$ is also a strict ($G,[\mu]$)-space in such a way that $\left(S_{1} * F,\left[\lambda_{1} *\left(\lambda_{0} * \mu\right)\right]\right)$ is isomorphic to $\left(S_{1} * G,\left[\lambda_{1} * \mu\right]\right)$, by mean of an isomorphism ρ such that $j_{1} \circ \rho=j_{0} \circ j$, where $j_{1}: S_{1} * G \rightarrow G, j_{0}: S_{0} * G \rightarrow$ G, and $j: S_{1} * F \rightarrow F$ are the natural projections.

Proof. Let $p_{0}: S_{0} \rightarrow G^{(0)}$ be such that $s x$ is defined iff $p_{0}(s)=r(x)$, i.e., $S_{0} * G=\left\{(s, x) \in S_{0} \times G: p_{0}(s)=r(x)\right\}$. Let $p_{1}: S_{1} \rightarrow S_{0}$ be such that $s_{1}(s, x)$ is defined iff $p_{1}\left(s_{1}\right)=s$, for $s_{1} \in S_{1}$ and $(s, x) \in F$. Set $p=p_{0} \circ$ p_{1}. Now if $p\left(s_{1}\right)=r(x)$, then $\left(p_{1}\left(s_{1}\right), x\right) \in F$ and $s_{1}\left(p_{1}\left(s_{1}\right), x\right)$ is defined, so we can define $s_{1} x=s_{1}\left(p_{1}\left(s_{1}\right), x\right)$. Now in that case,

$$
\left(s_{1}\left(p_{1}\left(s_{1}\right), x\right)\right)\left(p_{1}\left(s_{1}\right) x, x^{-1}\right)
$$

is defined, so $p_{1}\left(s_{1} x\right)=p_{1}\left(s_{1}\right) x$. If $p\left(s_{1}\right)=r(x)$ and $d(x)=r(y)$ then $s_{1}(x y)=s_{1}\left(p_{1}\left(s_{1}\right), x y\right)=s_{1}\left(\left(p_{1}\left(s_{1}\right), x\right)\left(p_{1}\left(s_{1}\right) x, y\right)\right)=\left(s_{1}\left(p_{1}\left(s_{1}\right), x\right)\right)\left(p_{1}\left(s_{1}\right) x, y\right)=$ $\left(s_{1} x\right)\left(p_{1}\left(s_{1} x\right), y\right)=\left(s_{1} x\right) y$, and if $p_{1}\left(s_{1}\right)=r(x), p_{1}\left(s_{1} x\right)=r(y)$ then $d(x)=r(y)$
and the calculation is reversible. Thus we do have a strict action of G on $S_{1}\left(p\left(S_{1}\right)=G^{(0)}\right.$ because $p_{0}\left(S_{0}\right)=G^{(0)}$ and $\left.p_{1}\left(S_{1}\right)=S_{0}\right)$. The action is clearly Borel.

From $p_{1} *\left(\lambda_{1}\right) \sim \lambda_{0}$ and $p_{0} *\left(\lambda_{0}\right) \sim \tilde{\mu}$ it follows that $p_{*}\left(\lambda_{1}\right) \sim \tilde{\mu}$. By changing λ_{0} and then λ_{1} we may arrange that $p_{1} *\left(\lambda_{1}\right)=\lambda_{0}$ and $p_{0} *\left(\lambda_{0}\right)=\tilde{\mu}$. Then $p_{*}\left(\lambda_{1}\right)=\tilde{\mu}$. Let $\varphi\left(s_{1},\left(p_{1}\left(s_{1}\right), x\right)\right)=\left(s_{1}, x\right)$; then φ is a Borel groupoid isomorphism of $S_{1} * F$ onto $S_{1} * G$. If the measures agree then $\left(S_{1} * G,\left[\lambda_{1} * \mu\right]\right)$ is a measured groupoid and the isomorphism statement is proved. Let $\mu=\int \mu^{u} d \tilde{\mu}(u)$ be a decomposition of μ relative to r. Then $\lambda_{0} * \mu=\int \varepsilon_{s} \times \mu^{p_{0}(s)} d \lambda_{0}(s)$ and this is the decomposition of $\lambda_{0} * \mu$ relative to r. Thus $\lambda_{1} *\left(\lambda_{0} * \mu\right)=\int \varepsilon_{s} \times\left(\varepsilon_{p_{1}(s)} \times \mu^{\rho(s)}\right) d \lambda_{1}(s)$ which maps to $\lambda_{1} * \mu=\int \varepsilon_{s} \times \mu^{\rho(s)} d \lambda_{1}(s)$ under φ.

To complete the proof, we observe that $j_{1} \circ \varphi=j_{0} \circ j$ is obvious.
For measured groupoids, similarities are like isomorphisms for many other categories. The next result shows that this idea is compatible with the idea that a surjective imbedding should be like an isomorphism, namely a similarity.

Theorem 6.6. Let ($F,[\lambda]$) and ($G,[\mu]$) be measured groupoids and let $\varphi: F \rightarrow G$ be a homomorphism. There is a homomorphism $\psi: G \rightarrow F$ such that (ρ, ψ) is a similarity, iff ρ is both surjective and an imbedding.

Proof. If φ is an imbedding, Theorem 6.3 says there is a homomorphism $\psi_{1}: S(\varphi) * G \rightarrow F$ such that ($\varphi^{\prime}, \psi_{1}$) is a similarity. If φ is also surjective, then φ has dense range (by definition), so the inclusion $j: S(\mathscr{P}) * G \rightarrow G$ (i.e., coordinate projection) is a strict isomorphism of some $S_{0} * G_{0}$ onto G_{0} where G_{0} is an i.c. of G and S_{0} is a conull strict G_{0}-space in $S(\varphi)$. Let $j_{0}=j \mid\left(S_{0} * G_{0}\right)$ and take φ_{0} to be similar to φ with $\varphi_{0}(F) \subseteq G_{0}$. Then $\left(\varphi_{0}, \psi_{1} \circ j_{0}^{-1}\right)$ is a similarity, so the desired ψ exists.

Now suppose (φ, ψ) is a similarity. We prove first that for $u, v \in F^{(0)}, \varphi$ takes $r^{-1}(v) \cap d^{-1}(u)$ one-one onto $r^{-1}(\varphi(v)) \cap d^{-1}(\varphi(u))$. If $r(x)=v$ and $d(x)=u$, then $\psi \circ \varphi(x)=\theta(v) x \theta(u)^{-1}$. If $v_{1}=\psi \circ \varphi(v)$ and $u_{1}=\psi \circ \varphi(u)$, this shows that $\psi \circ \varphi$ takes $r^{-1}(v) \cap d^{-1}(u)$ one-one onto $r^{-1}\left(v_{1}\right) \cap d^{-1}\left(u_{1}\right)$. In particular φ is one-one on $r^{-1}(v) \cap d^{-1}(u)$. By symmetry, ψ is one-one on $r^{-1}(\varphi(v)) \cap d^{-1}(\varphi(u))$, but it also must take this set onto $r^{-1}\left(v_{1}\right) \cap d^{-1}\left(u_{1}\right)$. Thus $\varphi\left(r^{-1}(v) \cap d^{-1}(u)\right)=r^{-1}(\varphi(v)) \cap$ $d^{-1}(\mathcal{P}(u))$.

Now let (x, u) and $\left(x_{1}, u_{1}\right) \in T(\varphi)=\left\{(y, v) \in G \times F^{(0)}: d(y)=\varphi(v)\right\}$, and suppose $r(x)=r\left(x_{1}\right)$. Then $x^{-1} x_{1} \in r^{-1}(\varphi(u)) \cap d^{-1}\left(\varphi\left(u_{1}\right)\right)$, so there is a $\xi \in r^{-1}(u) \cap d^{-1}\left(u_{1}\right)$ with $\varphi(\xi)=x^{-1} x_{1}$. Then $(x, u) \xi=\left(x_{1}, u_{1}\right)$. Thus the level sets of $\boldsymbol{r}^{+}\left(\boldsymbol{r}^{+}(x, u)=r(x)\right)$ are exactly the F-orbits. Hence
φ has a dense range and a closed range.
Thus $S(\varphi) * G$ is essentially isomorphic to G via the projection j. Under this isomorphism, φ corresponds to φ^{\prime} and the fact that (φ, ψ) is a similarity means that $\left(\varphi^{\prime}, \psi \circ j\right)$ is a similarity. Thus φ is an imbedding, by Theorem 6.3.

The following theorem is another result which is not surprising in its basic content. We have defined separately the terms range closure and dense range. For $\varphi: F \rightarrow G, S_{\varphi} * G$ is the range closure and $\varphi=j \circ \varphi^{\prime}$ (Theorem 3.5) is the formula that says φ factors through this subobject. We will discuss this further in §7, but now we prove the fact that the range is dense in the range closure.

Theorem 6.7. Let $(F,[\lambda])$ and $(G,[\mu])$ be measured groupoids and let φ be a homomorphism from $(F,[\lambda])$ to ($G,[\mu]$). Take $S(\varphi)$ and φ^{\prime} as in Theorem 3.5. Then φ^{\prime} has dense range.

Proof. Let $T(\varphi)=\left\{(x, u) \in G \times F^{(0)}: d(x)=\varphi(u)\right\}$. The method used in Theorem 3.6 was that of Theorem 3.2, which produces a $\operatorname{map} f: T(\varphi) \rightarrow G^{(0)} * \mathscr{F}$. In fact we may take $S=S(\phi)=f(T(\varphi))$. If $p: S \rightarrow G^{(0)}$ is the function such that $s x$ is defined iff $p(s)=r(x)$, then $p \circ f(x, u)=r(x)$ for $(x, u) \in T(\varphi)$. Define $q(u)=f(\varphi(u), u)$ for $u \in F^{(0)}$. Then $\xi \in F$ implies $\phi^{\prime}(\xi)=(q(r(\xi)), \varphi(\xi))$, and

$$
\begin{aligned}
T\left(\varphi^{\prime}\right) & =\left\{(s, x, u)=((s, x), u) \in(S * G) \times F^{(0)}:(s x, d(x))=\varphi^{\prime}(u)\right\} \\
& =\left\{\left(q(u) x^{-1}, x, u\right): d(x)=\varphi(u)\right\}
\end{aligned}
$$

If we define $g(s, x, u)=(x, u), g$ is a Borel space isomorphism of $T\left(\mathcal{P}^{\prime}\right)$ onto $T(\mathscr{P})$. A simple calculation shows that g is a strict F space isomorphism.

Now let us verify that g preserves the relevant measure classes. Let ν be the image on S of $\mu * \tilde{\lambda}$ under f. Then $\nu * \mu=\int_{S_{s}} \times \mu^{p(s)} d \nu(s)$ is the measure on $S * G$, so $(\nu * \mu)^{(s, p(s))}=\varepsilon_{s} \times \mu^{p(s)}$ is the integrand in the decomposition of $\nu * \mu$ relative to r over $\nu=r_{*}(\nu * \mu)$. Thus $\left(\varepsilon_{s} \times \mu^{p(s)}\right)^{-1}$ is the integrand if we decompose $(\nu * \mu)^{-1}$ relative to d over $\nu=d_{*}\left((\nu * \mu)^{-1}\right)$. Since $(\nu * \mu)^{-1} \sim \nu * \mu$, the measure class on $T\left(\varphi^{\prime}\right)$ is that of $\int_{F^{(0)}}\left(\varepsilon_{q(u)} \times \mu^{\varphi(u)}\right)^{-1} \times \varepsilon_{u} d \widetilde{\lambda}(u)$. For almost all u we have $\mu^{\varphi(u)} \sim\left(\mu_{\varphi(u)}\right)^{-1}$. Define h on $T(\varphi)$ by $h(x, u)=\left(\left(q(u), x^{-1}\right)^{-1}, u\right)$: note that $\left(q(u), x^{-1}\right) \in S * G$. Then $h(\cdot, u)_{*}\left(\mu_{\varphi(u)}\right) \sim\left(\varepsilon_{q(u)} \times \mu^{\varphi(u)}\right)^{-1} \times \varepsilon_{u}$ for almost all $u \in F^{(0)}$. Now $\left(q(u), x^{-1}\right)^{-1}=\left(q(u) x^{-1}, x\right)$, so $g_{*}\left(h(\cdot, u)_{*}\left(\mu_{\varphi(u)}\right)\right)=$ $\mu_{\varphi(u)} \times \varepsilon_{u}$. Thus g is a measure class isomorphism, giving an isomorphism of $T\left(\varphi^{\prime}\right) * F$ onto $T(\varphi) * F$.

Define $f^{\prime}\left(q(u) x^{-1}, x, u\right)=f(x, u)$. Then $f^{\prime}: T\left(\varphi^{\prime}\right) \rightarrow S$ is an ergodic decomposition of $T\left(\phi^{\prime}\right) * F$. Now S is a strict $S * G$ space by the
formula $s(s, y)=s y$, and $T\left(\phi^{\prime}\right)$ is a strict $S * G$-space by the formula $(s, x, u)(s, y)=\left(s y^{-1}, y^{-1} x, u\right)$. Now if $s=f(x, u), s y=f\left(y^{-1} x, u\right)$. Thus f^{\prime} is a strict $S * G$-space map. Hence we may use S as $S\left(\phi^{\prime}\right)$. Let p^{\prime} be the map of S to $(S * G)^{(0)}=S$ involved in the $S * G$-space structure. As above for $S * G$, we have $p^{\prime} \circ f^{\prime}(s, x, u)=s$. Also $s=$ $q(u) x^{-1}=f(\varphi(u), u) x^{-1}=f\left((\varphi(u), u) x^{-1}\right)=f(x, u)$. Hence p^{\prime} is the identity on S. Thus φ^{\prime} has dense range.

The next theorem is of minor interest, and will not be used, so the proof is omitted. After that we have a useful technical lemma.

THEOREM 6.8. Let $\left(F_{1},\left[\mu_{1}\right]\right),\left(F_{2},\left[\mu_{2}\right]\right)$ be measured groupoids with associated equivalence relations $\left(E_{1},\left[\nu_{1}\right]\right)$ and $\left(E_{2},\left[\nu_{2}\right]\right)$, respectively. If $\psi_{0} F_{1} \rightarrow F_{2}$ has dense range, then $\psi_{0}=(\tilde{\psi} \times \tilde{\psi}) \mid E_{1}$ has range dense in E_{2}.

Lemma 6.9. Let $\left(F_{1},\left[\mu_{1}\right]\right),\left(F_{2},\left[\mu_{2}\right]\right)$ be measured groupoids and let $\varphi: F_{1} \rightarrow F_{2}$ be a homomorphism with dense range. If $p: F_{2}^{(0)} \rightarrow S$ is an ergodic decomposition of F_{2}, then $p \circ \widetilde{\rho}$ is an ergodic decomposition of F_{1}.

Proof. Define $q: T(\varphi) \rightarrow F_{1}^{(0)}$ by $q(x, u)=u, r^{+}: T(\varphi) \rightarrow F_{2}^{(0)}$ by $r^{+}(x, u)=r(x)$. We will use Lemma 2.8. Suppose $g: F_{1}^{(0)} \rightarrow Z$ is Borel and constant on equivalence classes, where Z is countably separated. If $x \in F_{2}, \xi \in F_{1}$ and $(x, r(\xi)) \in T(\varphi)$, then $q((x, r(\xi)) \xi)=$ $d(\xi) \sim r(\xi)=q(x, r(\xi))$. Hence $g \circ q$ is constant on equivalence classes, and there is a Borel function $g_{1}: F_{2}^{(0)} \rightarrow Z$ such that $g_{1} \circ r^{+}=g \circ q$ a.e., because r^{+}is an ergodic decomposition. If $(x, u) \in T(\varphi)$ and $r(x)=$ $r(y)$, where $y \in F_{2}$, then $q((x, u) y)=q\left(y^{-1} x, u\right)=u=q(x, u)$, so $g \circ q((x, u) y)=g \circ q(x, u)$. Now $g_{1} \circ r^{+}=g \circ q$ on some conull set $K \subseteq T(\varphi)$. Then K is $\mu_{2, \varphi(u)} \times \varepsilon_{u}$-conull for $\tilde{\mu}_{1}$-almost all u, and for any such u, g_{1} is constant on $\{r(x): d(x)=\varphi(u)$ and $(x, u) \in K\}$. Thus g_{1} is essentially constant on almost every orbit in $F_{2}^{(0)}$. There is a g_{2} which agrees a.e. with g_{1} and is constant on almost every orbit: regard $Z \subseteq[0,1]$ and define $g_{2}(u)=\int g_{1} d r_{*}\left(\mu_{u}\right)$ for almost all u. Now there is an $h: S \rightarrow Z$ with $h \circ p=g_{2}$ a.e. Then $h \circ p \circ r^{+}=g_{2} \circ r^{+}=g \circ q$ a.e. Let $T_{1}=\left\{t \in T(\varphi): h \circ p \circ r^{+}(t)=g \circ q(t)\right\}$. Then T_{1} is conull and invariant under both F_{1} and F_{2}. If $\gamma(u)=(\varphi(u), u)$ for $u \in F_{1}^{(0)}$, this implies that $\gamma(u) \in T_{1}$ for almost all u. Thus $h \circ p \circ r^{+} \circ \gamma=g \circ q \circ \gamma=g$ a.e. Now $r^{+} \circ \gamma=\widetilde{\varphi}$, so we have $g=h \circ p \circ \widetilde{\varphi}$ a.e. Thus $p \circ \widetilde{\rho}$ has the factorization property and is, therefore, an ergodic decomposition, by Lemma 2.8 .

Lemma 6.10. Let $\left(F_{1},\left[\mu_{1}\right]\right)$ and $\left(F_{2},\left[\mu_{2}\right]\right)$ be measured groupoids
and let $\psi: F_{1} \rightarrow F_{2}$ have dense range. Let ($S,[\nu]$) be an ($F_{2},\left[\mu_{2}\right]$)space with $p: S \rightarrow F_{2}^{(0)}$ determining when $s x$ is defined. Then ψ can be used to make an F_{1}-space of $S * F_{1}^{(0)}=\{(s, u): p(s)=\psi(u)\}$, and $S * F_{1}=\{(s, x): p(s)=\psi \circ r(x)\}$ is a groupoid. The function $\psi^{+}: S * F_{1} \rightarrow$ $S * F_{2}$ defined by $\psi^{+}(s, x)=(s, \psi(x))$ is a homomorphism with dense range.

Proof. First, we suppose ψ is strict. We define $\left(s_{1}, x_{1}\right)\left(s_{2}, x_{2}\right)=$ $\left(s_{1}, x_{1} x_{2}\right)$ for (s_{1}, x_{1}) and $\left(s_{2}, x_{2}\right) \in S * F_{1}$, when $s_{1} \psi\left(x_{1}\right)=s_{2}$ and $d\left(x_{1}\right)=$ $r\left(x_{2}\right)$. It is easy to verify that this makes a groupoid, and $\left(S * F_{1}\right)^{(0)}=$ $S * F^{-(0)}$, while ψ^{+}is algebraically a homomorphism.

Now let $\nu=\int \nu_{u} d \tilde{\mu}_{2}(u)$ be a decomposition of ν relative to p, and observe that $\left\{x: \nu_{r(x)} x \sim \nu_{d(x)}\right\}$ is closed under multiplication. It is conull because we assumed [ν] is invariant [19, Theorem 2.9]. Thus the set contains an i.c. Since we may replace ψ by a similar homomorphism, we may assume ψ takes values in this i.c. Then Theorem 2.9 of [19] shows that [ν] is F_{1}-invariant, and ($S * F_{1},\left[\nu * \mu_{1}\right]$) is a measured groupoid.

Now $T\left(\psi^{+}\right)=\left\{((s, x),(s x, u)) \in\left(S * F_{2}\right) \times\left(S * F_{1}\right)^{(0)}: d(x)=\psi(u)\right\}$, and if $(s, x) \in S * F_{2}, \xi \in F_{1}$ and $\forall \circ \sim(\xi)=d(x)$, then

$$
\begin{aligned}
((s, x),(s x, r(\xi)))(s x, \xi) & =\left((s, x) \psi^{+}(s x, \xi),((s x) \psi(\xi), d(\xi))\right) \\
& =((s, x \psi(\xi)),((s x) \psi(\xi), d(\xi)))
\end{aligned}
$$

Thus $T\left(\psi^{+}\right)$is naturally isomorphic to $S *\left(F_{2} * F_{1}^{(0)}\right)$, carrying the action to the one in which F_{1} operates only on the factor $F_{2} * F_{1}^{(0)}$, as in the construction of $S(\psi)$. Thus every invariant set is of the form $A * B$ where $A \subseteq S$ and B is invariant in $F_{2} * F_{1}^{(0)}$. Hence $(s, x, u) \rightarrow(s, r(x))$ is an ergodic decomposition relative to F_{1}. Transferred to $T\left(\psi^{+}\right)$, this says ψ^{+}has dense range.

Theorem 6.11. Let $\left(F_{1},\left[\mu_{1}\right]\right),\left(F_{2},\left[\mu_{2}\right]\right)$ and $(G,[\lambda])$ be measured groupoids, and suppose that $\psi: F_{1} \rightarrow F_{2}, \varphi_{1}: F_{1} \rightarrow G$ and $\varphi_{2}: F_{2} \rightarrow G$ are homomorphisms such that $\left[\varphi_{2}\right] \cdot[\psi]=\left[\varphi_{1}\right]$. If ψ has dense range, then $M[\psi]$ is an isomorphism.

Proof. By taking i.c.'s and replacing homomorphisms by similar ones, we may arrange that φ_{2} and ψ are strict and that $\varphi_{2} \circ \psi=\varphi_{1}$. Then φ_{1} is also strict. Now $T\left(\varphi_{2}\right)$ is an F_{2}-space so $T\left(\varphi_{2}\right) * F_{1}^{(0)}=$ $\left\{((x, v), u) \in T\left(\varphi_{2}\right) \times F_{1}^{(0)}: \psi(u)=v\right\}$ is an F_{1}-space, and carries an invariant measure class. This space is naturally isomorphic to $T\left(\varphi_{1}\right)=\left\{(x, u) \in G \times F_{1}^{(0)}: d(x)=\varphi(u)\right\}$ as an F_{1}-space, via g, where $g(x, u)=((x, \psi(u)), u)$. The measure on $T\left(\varphi_{1}\right)$ is $\lambda * \tilde{\mu}_{1}=\int \lambda_{\varphi(u)} \times \varepsilon_{u} d \tilde{\mu}_{1}(u)$,
which g carries to $\int\left(\lambda_{\varphi(u)} \times \varepsilon_{\psi_{(u)}}\right) \times \varepsilon_{u} d \tilde{\mu}_{1}(u)$. Now the measure we use on $T\left(\varphi_{2}\right)$ is $\int \lambda_{v} \times \varepsilon_{v} d \tilde{\mu}_{2}(v)$, so the measure we want on $T\left(\varphi_{2}\right) * F_{1}^{(0)}$, as in Lemma 6.10, is just $g_{*}\left(\lambda * \widetilde{\mu}_{1}\right)$. Also, under this isomorphism with $T\left(\varphi_{2}\right) * F_{1}^{(0)}$, the function $(x, u) \mapsto(x, \psi(u))$, which has $M(\psi)$: $S\left(\varphi_{1}\right) \rightarrow S\left(\varphi_{2}\right)$ as a quotient, just corresponds to $\left(\psi^{+}\right)^{\sim}$. If $f: T\left(\varphi_{2}\right) \rightarrow$ $S\left(\varphi_{2}\right)$ is a G-equivariant ergodic decomposition of $T\left(\varphi_{2}\right) * F_{2}$, then $f \circ\left(\psi^{+}\right)^{\sim}$ is a G-equivariant ergodic decomposition of $T\left(\mathscr{\varphi}_{1}\right) * F_{1}$. Hence $(x, u) \mapsto f(x, \psi(u))$ is a G-equivariant ergodic decomposition of $T\left(\varphi_{1}\right) *$ F_{1} and may be used to establish $S\left(\varphi_{2}\right)$ as $S\left(\varphi_{1}\right)$, and $M(\psi)$ becomes the identity. Thus $M(\psi)$ is an isomorphism.

Consider now homomorphisms $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ and $\psi:(G,[\mu]) \rightarrow$ ($H,[\nu]$). The following theorem makes precise the intuitive content of the statement that the closure of the range of ψ-restricted-to-the-closure-of-the-range-of- φ is the closure of the range of $\psi \circ \varphi$, i.e., $\psi\left(\varphi(F)^{-}\right)^{-}=(\psi \circ \varphi(F))^{-}$.

Theorem 6.12. If ($F,[\lambda]$), ($G,[\mu]$) and ($H,[\nu]$) are measured groupoids and $\varphi: F \rightarrow G, \psi: G \rightarrow H$ are homomorphisms, then $S(\psi \circ \varphi)$ and $S(\psi \circ j)$ are isomorphic as H-spaces, where $j: S(\mathscr{P}) * G \rightarrow G$ is the inclusion homomorphism of the closure of the range of φ into G.

Proof. We have $\psi \circ \varphi=\psi \circ j \circ \varphi^{\prime}$, and φ^{\prime} has dense range, so $M\left(\varphi^{\prime}\right)$ is an isomorphism of $S(\psi \circ \varphi)$ with $S(\psi \circ j)$ (mod null sets).

Now we can show that similar groupoids have the same actions, as isomorphic groups have the same actions.

Theorem 6.13. Let ($F_{1},\left[\mu_{1}\right]$) and ($F_{2},\left[\mu_{2}\right]$) be similar measured groupoids. Then there is a natural one-one correspondence between ($F_{1},\left[\mu_{1}\right]$)-spaces and ($F_{2},\left[\mu_{2}\right]$)-spaces.

Proof. Let $\varphi_{1}: F_{1} \rightarrow F_{2}$ and $\varphi_{2}: F_{2} \rightarrow F_{1}$ be the similarity. If ($S_{1},\left[\lambda_{1}\right]$) is an ($F_{1},\left[\mu_{1}\right]$)-space, let $j_{1}: S_{1} * F_{1} \rightarrow F_{1}$ be the natural homomorphism. We define $\tau\left(S_{1}\right)=S_{2}$ to be $S\left(\varphi_{1} \circ j_{1}\right)$. We define τ_{2} the same way for ($F_{2},\left[\mu_{2}\right]$)-spaces. If $S_{2}=\tau_{1}\left(S_{1}\right)$, then Theorem 6.12 shows that $\tau_{2}\left(S_{2}\right)=S\left(\varphi_{2} \circ j_{2}\right) \cong S\left(\varphi_{2} \circ \varphi_{1} \circ j_{1}\right) \cong S\left(j_{1}\right) \cong S_{1}$, i.e., $\tau_{2} \circ \tau_{1}\left(S_{1}\right) \cong S_{1}$. Similarly $\tau_{1} \circ \tau_{2}\left(S_{2}\right)$ is always isomorphic to S_{2}.

Now if S_{1} and S_{1}^{\prime} are F_{1}-spaces, and $f: S_{1} \rightarrow S_{1}^{\prime}$ is equivariant, then $\varphi=f \times i$ is a homomorphism of $S_{1} * F_{1}$ to $S_{1}^{\prime} * F_{1}$ with $\varphi_{1} \circ j_{1}^{\prime} \circ \varphi=$ $\varphi_{1} \circ j_{1}$. Then φ induces an F_{2}-space map of $\tau_{1}\left(S_{1}\right)$ to $\tau_{1}\left(S_{1}^{\prime}\right)$.

The next lemma and Theorem 6.16 are additional ways of saying that containment is transitive for measured groupoids.

Lemma 6.14. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ be an extensive homo-
morphism of measured groupoids and let (S, ν) be an ($F,[\lambda]$)-space. If φ is an imbedding, so is $\varphi \circ j$, where j is the inclusion of $S * F$ into F.

Proof. We identify the units of $S * F$ with S. Then $T(\varphi \circ j)=$ $G * S=\{(\xi, s): d(\xi)=\varphi \circ j(s, p(s))=\varphi(p(s))\}$ and $S * F$ acts on $G * S$ as follows: $(\xi, s)(s, x)=(\xi \varphi(x), s x)$. We also have F acting on $G * S$ by $(\xi, s) x=(\xi \varphi(x), s x)$ when $p(s)=r(x)$, so the orbits in $G * S$ are the same for the action of $S * F$ as they are for the action of F. Also, the function f taking (ξ, s) to ($\xi, p(s)$) is algebraically strictly F equivariant from $T(\varphi \circ j)$ onto $T(\varphi)$. The measure on $T(\varphi \circ j)$ is $\int_{\tilde{\sim}} \mu_{\varphi(p(s))} \times \varepsilon_{s} d \nu(s)$ and on $T(\varphi)$ we have $\int_{\rho} \mu_{\varphi(u)} \times \varepsilon_{u} d \widetilde{\lambda}(u)$. Since $p_{*}(\nu) \sim$ $\widetilde{\lambda}, f$ is strictly F-equivariant and normalized.

Suppose now that F_{1} is an i.c. of F and T_{2} is a conull F_{1} invariant set in $T(\phi)$ such that F_{1} acts freely on T_{2} and T_{2} / F_{1} is analytic. Let $S_{1}=p^{-1}\left(F_{1}^{(0)}\right)$ and $T_{1}=f^{-1}\left(T_{2}\right)$. Then T_{1} is conull and $S_{1} * F_{1}$-invariant.

If $(\xi, s) \in T_{1},(s, x) \in S_{1} * F_{1}$ and $(\xi, s)(s, x)=(\xi, s)$, then $s x=s$ so $r(x)=p(s)=d(x)$, and $\xi \varphi(x)=\xi$ so $\varphi(x)$ is a unit. Because φ is an imbedding, x is a unit, namely $p(s)$. Hence $S_{1} * F_{1}$ acts freely on T_{1}.

Since T_{2} / F_{1} is analytic, there is a cross-section $\gamma: T_{2} / F_{1} \rightarrow T_{2}$ which will give rise to a Borel set $B \subseteq T_{2}$ whose saturation is conull and which meets each orbit at most once. Suppose (ξ, s) and $(\xi, s)(s, x)=(\xi, s) x$ are both in $f^{-1}(B)$. Then $f(\xi, s)$ and $f((\xi, s) x)=$ $f(\xi, s) x$ are both in B. Hence x is a unit, so $f^{-1}(B)$ meets each orbit only once. Now the saturation of $f^{-1}(B)$ is $f^{-1}([B])$, which is conull. Another contraction of F_{1}, to the image in $F_{1}^{(0)}$ of $[B]$ will complete the argument.

Lemma 6.15. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ and $\dot{\psi}:(G,[\mu]) \rightarrow(H,[\nu])$ be composable homomorphisms. Then $(\psi \circ \varphi)^{\prime}=\left(\psi^{\prime} \circ j_{\varphi}\right)^{\prime} \circ \varphi^{\prime}$.

Proof. We may assume that ψ and φ are strict homomorphisms. Let $q_{1}: T\left(\psi \circ j_{\varphi}\right) \rightarrow S\left(\psi \circ j_{\varphi}\right)$ be a suitable ergodic decomposition. As in Lemma 4.1 and Theorem 6.11, $(x, u) \mapsto\left(x, \varphi^{\prime}(u)\right)$ takes $T(\psi \circ \varphi)$ to $T\left(\psi \circ j_{\varphi}\right)$ and the function $q_{1}: T(\psi \circ \varphi) \rightarrow S\left(\psi \circ j_{\varphi}\right)$ defined by $q_{1}(x, u)=$ $q_{2}\left(x, \varphi^{\prime}(u)\right)$ is a G-equivariant ergodic decomposition. Using q_{1}, we may take $S\left(\psi \circ j_{\varphi}\right)$ as $S(\psi \circ \varphi)$. Then according to the way we define ()', Theorem 3.6, for $\xi \in F$ we have

$$
\begin{aligned}
(\dot{\psi} \circ \varphi)^{\prime}(\xi) & =\left(q_{2}(\psi \circ \varphi(r(\xi)), \boldsymbol{r}(\xi)), \psi \circ \varphi(\xi)\right) \\
& =\left(q_{1}\left(\psi^{\circ} \circ j_{\odot}\left(\varphi^{\prime}(r(\xi))\right), \varphi^{\prime}(r(\xi))\right), \psi \circ j_{\varphi} \circ \varphi^{\prime}(\xi)\right) \\
& =\left(\psi \circ j_{\varphi}\right)^{\prime}\left(\varphi^{\prime}(\xi)\right) .
\end{aligned}
$$

Theorem 6.16. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ and $\psi:(G,[\mu]) \rightarrow(H,[\nu])$ be composable homomorphisms. If both of them are imbeddings, so is $\psi \circ \rho$. If both of them have dense range, so does $\psi \circ \rho$.

Proof. $(\psi \circ \varphi)^{\prime}=\left(\psi^{\circ} \circ j_{\varphi}\right)^{\prime} \circ \varphi^{\prime}$, and in the first case each of φ^{\prime} and $\left(\psi \circ j_{\varphi}\right)^{\prime}$ is half a similarity, so $(\psi \circ \varphi)^{\prime}$ is half a similarity.

In the second case, j_{ϕ} is an isomorphism, so $S\left(\psi \circ j_{\varphi}\right) \cong S(\psi)$ as H-spaces, and $S(\psi) \cong H^{(0)}$ as an H-space because ψ has dense range. Also we have $S\left(\psi^{\circ} \circ \varphi\right) \cong S\left(\psi^{\circ} j_{\varphi}\right)$ by Theorem 6.12 , so $S\left(\psi^{\circ} \circ \varphi\right) \cong H^{(0)}$ as an H-space.
7. Order among subobjects and some category theory.

For virtual subgroups $S \times G$ and $T \times G$ of a group G, Mackey defined $S \times G$ to be smaller than $T \times G$ if there is a G-equivariant map of S onto T. This is a definition by extension: if $S=G / H$ and $T=G / K, H$ is conjugate to a subgroup of K iff such a map exists. This does not behave as well as ordinary containment for subgroups, but there are a number of facts which can be formulated in terms of this ordering in a congenial way.

In this section we want to develop some of these facts and to relate some of the properties of Section 5 to notions from category theory. Some of the results we state are due to Caroline Series [21]. She studied homomorphisms in terms of the size of kernel or range closure, and gave several of the definitions we use here [21, Chapter II, Section 3 and Section 4].

We begin with three definitions. The first and third are as formulated by Series and the second is equivalent to one of hers. Following the definitions we will discuss them and their relationships.

Definition 7.1. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism of measured groupoids.
a) φ is trivial if it is similar to a homomorphism φ^{\prime} such that $\varphi^{\prime}(F) \subseteq G^{(0)}$.
b) If (S, ν) is a ($G,[\mu]$)-space, we say φ takes values in $S * G$ provided there is a homomorphism $\dot{\psi}:(F,[\lambda]) \rightarrow(S * G,[\nu * \mu])$ such that $\varphi=j_{S} \circ \psi$.
c) The kernel of φ is $\left(T(\varphi) * F,\left[(\mu * \tilde{\lambda})^{*} \lambda\right]\right)$, denoted $\operatorname{Ker}(\varphi)$.

This property of triviality for φ depends only on the similarity class, and generalizes the one for group homomorphisms. However, at first it seems to have a difficulty, as follows. If $\varphi(F) \subseteq G^{(0)}$, then $\tilde{\rho}$ is constant on each equivalence class. If F were ergodic, $\widetilde{\rho}$ would be essentially constant, so G would be essentially transitive. We might want the kernel of φ to be ergodic, and then it appears
that in general φ could not be trivial on its kernel. Mackey pointed out in section 7 of [16] that for a homomorphism φ into a compact group $G, T(\mathscr{P}) * F$ decomposes into isomorphic ergodic groupoids, any one of which is a good candidate to be called the kernel of φ. If this worked in general we would face a choice between ergodic kernels and having φ trivial on its kernel. However an unpublished example of Series shows that what we have called $\operatorname{Ker} \varphi$ can have distinct integrands. Therefore it is easier to decide to allow $\operatorname{Ker} \varphi$ to remain as given here.

This definition of taking values in the subobject $S * G$ is motivated by the fact that for groups, φ takes ordinary function values in the subgroup H iff it factors through the inclusion homomorphism of H. Next we want to show that this definition agrees with that of Series, and that the property is invariant under similarity.

Lemma 7.2. φ takes values in $S * G$ iff there is a Borel function $\beta: F^{(0)} \rightarrow S$ such that
(i) for some i.c. F_{0} of $F, x \in F_{0}$ implies $\beta(d(x))=\beta(r(x)) \varphi(x)$ makes sense and is true.
(ii) $\beta^{-1}(E)$ is null if $E \cong S$ is negligible.

If φ takes values in $S * G$ and φ^{\prime} is similar to φ, then φ^{\prime} takes values in $S * G$.

Proof. If such a β exists, define $\psi(x)=(\beta(r(x)), \varphi(x))$ for $x \in F$. Let p be the mapping of S to $G^{(0)}$ such that $s x$ is defined iff $p(s)=$ $r(x)$. Then condition (i) on β implies that ir carries F_{0} into $S * G$. ${ }^{\prime} \mid F_{0}$ is a homomorphism because φ is and G acts on S, and because $E \subseteq S$ is negligible iff $\{(s, p(s)): s \in E\}$ is negligible in $(S * G)^{(0)}$, while $\beta^{-1}(E)=\tilde{\psi}^{-1}(\{(s, p(s)): s \in E\})$.

For the converse, suppose $\varphi=j_{S} \circ \gamma$. Then there is a function $\beta_{1}: F \rightarrow S$ such that $\psi^{\prime}(x)=\left(\beta_{1}(x), \varphi(x)\right)$ for $x \in F$. If $d(x)=r(y)$, then $\psi_{r}^{\prime}(x) \nmid(y)$ is defined, so $\beta_{1}(x) \varphi(x)=\beta_{1}(y)$. Thus $\beta_{1}(y)$ depends only on $r(y)$, and there is a $\beta: F^{(0)} \rightarrow S$ such that $\beta_{1}=\beta \circ r$. If r is strict on F_{0}, condition (i) follows easily, and so does (ii).

For the last statement, suppose β is given and that θ is a similarity of φ to φ^{\prime}. Define $\beta^{\prime}(u)=\beta(u) \theta(u)^{-1}$ for $u \in F^{(0)}$. It is not hard to show that this makes sense, and that β^{\prime} satisfies (i) and (ii) for φ^{\prime}.

Next we want to show that these notions are properly related. In Theorem 7.8, we give another result of the same kind. Part of the idea involved here is that $G * G$ "is" the trivial subobject of G (see Theorem 7.9). Also, one can show $G * G \approx G^{(0)}$.

Lemma 7.3. (a) $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ takes values in $G * G$ iff φ
is trivial.
(b) $\varphi \mid \operatorname{Ker} \varphi$, i.e., $\varphi \circ j_{T(\varphi)}$, is trivial.

Proof. (a) Notice that if (ψ_{1}, ψ_{2}) is a composable pair of homomorphisms and either is trivial, so is $\psi_{1} \circ \psi_{2}$. If $\varphi=j_{G} \circ \psi$, we can therefore prove φ is trivial by proving j_{G} is trivial. Define $\theta(s)=s$ for $s \in G$. Then $\theta(s) j_{G}(s, x) \theta(s x)^{-1}=r(s)$ for $(s, x) \in G * G$, which implies j_{G} is trivial.

If φ is trivial define $\beta=\widetilde{\varphi}$ to show that φ takes values in $G * G$.
(b) Given $\varphi: F \rightarrow G$, define $\theta: T(\varphi) \rightarrow G$ by $\theta(x, u)=x$. Then for $\xi \in F$ and $x \in G$ with

$$
(x, r(\xi)) \in T(\varphi), \theta(x, r(\xi)) \varphi \circ j_{T(\varphi)}((x, r(\xi)), \xi) \theta(x \varphi(\xi), d(\xi))^{-1}=r(x)
$$

Thus $\varphi \circ j_{T(\varphi)}$ is trivial.
We remark that φ is an imbedding iff $\operatorname{Ker} \varphi$ is trivial in a certain sense, according to Lemma 6.2. Thus $\operatorname{Ker} \varphi$ is sensitive to more than just whether φ is immersive. Our next results need definitions of order or "containment" among groupoids. One of these is due to Mackey [15] and the other to Series [21].

Definition 7.4. Let (S, λ) and (T, μ) be ($G,[\nu]$)-spaces.
a) $S * G<T * G$ iff there is a normalized ($G,[\nu]$)-equivariant map $f: S \rightarrow T$.
b) $S * G<T * G$ iff there is a ($G,[\nu]$)-equivariant map $f: S \rightarrow T$.
c) S is quasi-equivalent to T if $I \times S$ and $I \times T$ are isomorphic, where $I=[0,1]$ and G acts trivially on I.
d) $S * G \lesssim T * G$ iff $(I \times S) * G<(I \times T) * G$.

One difficulty with these order relations is that we can have $S * G<T * G<S * G$ without having S equivalent to T. In fact, let $A=\Pi_{n \in Z} \boldsymbol{Z} / 4 \boldsymbol{Z}$ and let \boldsymbol{Z} act on A by coordinate shifts, which are automorphisms, and form $G=A \in Z$. Let $H=\left\{x \in A: x_{n}=0\right.$ for $n<0\}$ and let $K=\left\{x \in A: x_{n}=0\right.$ for $n<0$ and $x_{0}=0$ or 2$\}$. Then H is conjugate to a subgroup of K and vice versa, but they are not conjugate. Series has given another example [21, page 33].

Leaving that aside, we want to exhibit some more affirmative results. We follow the notation used by Series for types of standard measure spaces. For $n=\infty, 1,2, \cdots, J_{n}$ is a space with n atoms. For $n=0, J_{n}=I$, the unit interval, with Lebesgue measure. For $n=-\infty,-1,-2, \cdots, J_{n}=I \cup J_{-n}$. We will say a space is of type J if we do not want to specify a particular J_{n}.

Lemma 7.5. [21, Proposition 13.6]. Let X be an analytic Borel space with atom-free probability measure μ. Let f be a Borel
function into an analytic Borel space Y. Let $\mu=\int \mu_{y} d f_{*}(\mu)(y)$ be a decomposition of μ relative to f and suppose that almost every μ_{y} is of the same type J. Let p be the coordinate projection of $J \times Y$ onto Y. Then X is isomorphic (mod null sets) to $J \times Y$ via a Borel function $g: X \rightarrow J \times Y$ such that $p \circ g=f$.

The proof is omitted (see [21]), but a comment or two may help the reader. The discrete parts of the μ_{y} can be dealt with using the von Neumann selection lemma and an exhaustion argument. For the continuous case one can take $X \subseteq I$ and regard all the measures as being on I. Then $h(x, y)=\mu_{y}([0, x])$ defines a Borel function and the necessary function g can be defined by $g(x)=$ $(h(x, f(x)), f(x))$.

A lemma we will use in conjunction with Lemma 7.5 is a structure theorem for quotient mappings, as follows. It also is proved using cross-sections and an exhaustion argument.

Lemma 7.6. Let X be an analytic Borel space with probability measure μ. Let f be Borel from X to an analytic space Y and let $\mu=\int \mu_{y} d f_{*}(\mu)(y)$ be a decomposition of μ relative to f. Then there are disjoint Borel sets $Y_{n} \subseteq Y$ for $n \in \boldsymbol{Z} \cup\{+\infty,-\infty\}$ whose union is conull and such that if $y \in Y_{n}$ then μ_{y} is of type J_{n} and is concentrated on $f^{-1}(y)$.

Lemma 7.7. Let X be an analytic Borel space with probability measure μ and let f be a Borel function from X into an analytic Borel space Y. Let m be Lebesgue measure on I, form $I \times Y$ and let $p: I \times Y \rightarrow Y$ be the projection. Then there is a Borel function $g: I \times Y \rightarrow X$ such that $f \circ g=p$ a.e. and $g_{*}\left(m \times f_{*}(\mu)\right) \sim \mu$.

Proof. This is easy if $X=J \times Y$, so we may apply Lemma 7.6 and Lemma 7.5.

Theorem 7.8. A homomorphism $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ is trivial iff $I \times F=\left(I \times F^{(0)}\right) * F<T(\varphi) * F=\operatorname{Ker}(\varphi)$.

Proof. If φ is trivial, then for $(x, r(\xi)) \in T(\varphi)$ and $\xi \in F$ we have $(x, r(\xi)) \xi=(x \varphi(\xi), d(\xi))=(x, d(\xi))$, so the action of F on $T(\varphi)=$ $G * F^{(0)}$ is essentially that of the action of F on $F^{(0)}$ with "multiplicity" added by the fibers. By Lemma 7.7 there is a Borel function $g: I \times F^{(0)} \rightarrow T(\mathscr{P})$ such that $p(g(\alpha, u))=u$ for almost all pairs $(\alpha, u) \in$ $I \times F^{(0)}$ and $g_{*}(m \times \tilde{\lambda}) \sim \mu_{1} * \tilde{\lambda}$, where m is Lebesgue measure (see the proof of Theorem A3.5 regarding $\mu_{1} * \tilde{\lambda}$). Then g is almost
equivariant, so we can choose it to be equivariant, and we do have $I \times F<\operatorname{Ker} \varphi$.

Let $j: \operatorname{Ker} \varphi \rightarrow F$ be the inclusion, $j_{T(\varphi)}$, and let $h: I \times F^{(0)} \rightarrow T(\varphi)$ be equivariant and take $m \times \tilde{\lambda}$ to $\mu_{1} * \tilde{\lambda}$. Then $\varphi \circ j \circ(h \times i)$ is trivial because $\varphi_{\circ} j$ is. Suppose $\theta: I \times F^{(0)} \rightarrow G$ is a Borel function for which $\varphi^{\prime}(\alpha, \xi)=\theta(\alpha, r(\xi)) \varphi(\xi) \theta(\alpha, d(\xi))^{-1}$ is almost always in $G^{(0)}$. Then there is an α such that $\varphi^{\prime}(\alpha, \xi) \in G^{(0)}$ for almost all ξ. If we define $\theta_{0}(u)=\theta(\alpha, u), \theta_{0}(r(\xi)) \varphi(\xi) \theta_{0}(d(\xi))^{-1}$ defines a homomorphism with values in $G^{(0)}$ a.e., so φ is trivial.

For a group G, the trivial subgroup corresponds to the action of G on itself by translation. Thus, if S is a transitive G-space we have $G \times G<S \times G$. For groupoids, one G-space is $I \times G$ and we might not have $G * G<(I \times G) * G$. Thus the following theorem is a reasonable analogue of the idea that the subgroupoid corresponding to $G * G$ is the smallest one.

Theorem 7.9. Let $(G,[\mu])$ be a measured groupoid and let (S, λ, p) be an analytic Borel ($G,[\mu]$)-space. Then $(I \times G) * G<S * G$.

Proof. Let $\lambda=\int \lambda_{u} d \tilde{\mu}(u)$ be a decomposition of λ relative to p over $\tilde{\mu}$, and apply Lemma 7.8 to S, λ, p and $G^{(0)}$, to get a Borel function $g: I \times G^{(0)} \rightarrow S$ such that $p \circ g(t, u)=u$ for (t, u) in a set $K \subseteq I \times G^{(0)}$ conull relative to $m \times \tilde{\mu}$, and $g_{*}(m \times \tilde{\mu}) \sim \lambda$. Then $g_{*}\left(m \times \varepsilon_{u}\right) \sim \lambda_{u}$ for almost all u, because $g_{*}(m \times \tilde{\mu})=\int g_{*}\left(m \times \varepsilon_{u}\right) d \tilde{\mu}(u)$ and $g_{*}\left(m \times \varepsilon_{u}\right)$ is almost always concentrated on $p^{-1}(u)$. Now extend g to $I \times G$ as follows: if $(t, r(x)) \in K$, let $g(t, x)=g(t, r(x)) x$; if $(t, r(x)) \notin K$, let $g(t, x)=g(t, r(x))$. If $(t, r(x)) \in K$, and $d(x)=r(y)$, then $g(t, x y)=g(t, r(x))(x y)=g(t, x) y$. Thus g is algebraically almost equivariant, so there is an equivariant $f: I \times G \rightarrow S$ which agrees with g a.e.

Now let us show that g is normalized, so f is. Let G_{1} be an i.c. such that $x \in G_{1}$ implies $\lambda_{r(x)} x \sim \lambda_{d(x)}$, such that $u \in G_{1}^{(0)}$ implies $g_{*}\left(m \times \varepsilon_{u}\right) \sim \lambda_{u}$, and such that for $u \in G_{1}^{(0)}$ the u-section K_{u} is m conull in I. Then $g_{*}\left(m \times \varepsilon_{x}\right) \sim \lambda_{r(x)} x \sim \lambda_{d(x)}$ for $x \in G_{1}$. Hence

$$
\begin{aligned}
g_{*}(m \times \mu) & =\iint g_{*}\left(m \times \varepsilon_{x}\right) d \mu_{u}(x) d \tilde{\mu}(u) \\
& \sim \iint \lambda_{u} d \mu_{u}(x) d \tilde{\mu}(u) \\
& =\int \lambda_{u} d \tilde{\mu}(u) \\
& \sim \lambda
\end{aligned}
$$

Definition 7.10. If (T, λ) is a ($G,[\mu]$)-space, we call it trivial iff for every ($G,[\mu]$)-space (S, ν) we have $T * G \lesssim S * G$.

The next theorem gives another way to construct trivial subgroupoids of G, because $(I \times T) * G \lesssim S * G$ implies $(T * G) \lesssim S * G$.

Theorem 7.11. Let $(G,[\mu])$ be a measured groupoid, let G_{1} be an i.c. on which μ has a right quasi-invariant decomposition, and let A be a Borel set in $G^{(0)}$ with $[A]=G^{(0)}$. Then there is a measure λ on $G^{(0)}$ concentrated on A such that $\lambda(B)=0$ iff $\tilde{\mu}(B)=0$ for saturated Borel sets B, and if we set $\nu=\int \mu^{u} d \lambda(u), \nu$ is quasi-invariant on $r^{-1}(A)$ and $\left(I \times r^{-1}(A)\right) * G<G * G$.

Proof. The existence of λ was proved in the proof of Theorem 6.17 of [18]. Then ν is quasi-invariant by Lemma 3.4, and $d_{*}(\nu)=$ $\int d_{*}\left(\mu^{u}\right) d \lambda(u) \sim \tilde{\mu}$.

By Lemma 7.8 there is a Borel function $f: I \times A \rightarrow d^{-1}(A)$ such that $f_{*}\left(m \times \varepsilon_{u}\right) \sim \mu_{u}$ a.e. and $f_{*}(m \times \lambda) \sim \int \mu_{u} d \lambda(u)$, and there is a conull set $X \subseteq I \times A$ such that $d \circ f(t, u)=u \in G_{1}^{(0)}$ for $(t, u) \in X$ and $r \circ f(t, u) \in G_{1}^{(0)}$ for $(t, u) \in X$.

Let $S=r^{-1}(A)$ and let $Y=\{(t, s) \in I \times S:(t, r(s)) \in X\}$. Then Y is conull in $I \times S$ relative to $m \times \nu$. Define $g: I \times S \rightarrow G$ by taking $g(t, s)=f(t, r(s)) s$ when $(t, s) \in Y$ and $g(t, s)=f(t, r(s))$ if $(t, s) \notin Y$. Then g is Borel and almost algebraically equivariant. By Lemma 1.4, we only need to prove $g_{*}(m \times \nu) \sim \mu$.

Now $g_{*}\left(m \times \varepsilon_{x}\right) \sim \mu_{r(x)} x \sim \mu_{d(x)}$ for $x \in G_{1}$, so $u \in G_{1}^{0}$ implies

$$
\begin{aligned}
g_{*}\left(m \times \mu^{u}\right) & \sim \int \mu_{d(x)} d \mu^{u}(x) \\
& =\int \mu_{v} d\left(d_{*}\left(\mu^{u}\right)\right)(v)
\end{aligned}
$$

Hence

$$
\begin{aligned}
g_{*}(m \times \nu) & \sim \iint \mu_{v} d\left(d_{*}\left(\mu^{u}\right)\right)(v) d \lambda(u) \\
& \sim \int \mu_{v} d \tilde{\mu}(v)
\end{aligned}
$$

The next lemma characterizes trivial subobjects of measured groupoids. It is closely related to Lemma 6.1. Notice that the proof of the "only if" part of the lemma does not require the mapping f to be normalized.

Theorem 7.12. Let ($F,[\lambda]$) be a measured groupoid and let (S, $\mu, p, a)$ be an ($F,[\lambda]$)-space. Then $(I \times S) * F<F * F$ iff there are
an i.c. F_{1} of F and a conull analytic F_{1}-invariant set $S_{1} \subseteq S$ such that $S_{1} * F_{1}$ is principal and the orbit space S_{1} / F_{1} is analytic.

Proof. First, suppose $f: I \times S \rightarrow F$ is equivariant, and let $U \subseteq$ $I \times S$ and $V \cong F^{(0)}$ be conull sets such that $p(U)=V, U$ is $F \mid V$ invariant, and $f \mid U$ is strictly $F \mid V$-equivariant. There will be a $t \in T$ such that the t-section U_{t} is conull in S. Then $p\left(U_{t}\right) \subseteq V$ and is conull, so there is a conull Borel set $V_{1} \subseteq p\left(U_{t}\right)$. Now U_{t} is $F \mid V$ invariant, so if we take $F_{1}=F \mid V_{1}$ and $S_{1}=p^{-1}\left(V_{1}\right) \cap U_{t}$, then S_{1} is conull and F_{1}-invariant. Define $g(s)=f(t, s)$ for $s \in S_{1}$. Then g is strictly F_{1}-equivariant.

Now suppose $(s, x) \in S_{1} * F_{1}$ and $s x=s$. Then $x=g(s)^{-1}(g(s) x)=$ $g(s)^{-1} g(s x)=g(s)^{-1} g(s)$, so x is a unit. Thus F_{1} acts freely on S_{1}, i.e., $S_{1} * F_{1}$ is principal.

To show that S_{1} / F_{1} is analytic, we will show that $g^{-1}\left(F_{1}^{(0)}\right)$ is a Borel set meeting erch orbit exactly once. In fact, if $s \in S_{1}$, then $g\left(s g(s)^{-1}\right)=g(s) g(s)^{-1} \in F_{1}^{(0)}$. Also, if $g\left(s_{1}\right)=g\left(s_{2}\right) \in F_{1}^{(0)}$ and there is an x with $s_{1} x=s_{2}$, then $g\left(s_{2}\right)=g\left(s_{1} x\right)=g\left(s_{1}\right) x=g\left(s_{2}\right) x$, so x is a unit and $s_{1}=s_{2}$.

For the converse, begin with S_{1}, F_{1}, and let $Y=S_{1} / F_{1}$ with $q: S_{1} \rightarrow Y$ the quotient map. Let $\gamma: Y \rightarrow S_{1}$ be a measurable crosssection and let Y_{0} be a conull Borel set on which γ is a Borel function. Let $S_{0}=q^{-1}\left(Y_{0}\right), F_{0}=F \mid p\left(S_{0}\right)$. Now S_{0} is a union of orbits so $p\left(S_{0}\right)$ is saturated in $F_{1}^{(0)}$, and S_{0} is conull, so $p\left(S_{0}\right)$ is conull in $F_{1}^{(0)}$. Since F_{1} acts freely on S_{1}, F_{0} acts freely on S_{0}. Thus $g:(y, x) \mapsto \gamma(y) x$ is one-one and Borel from $Y * F_{0}=\left\{(y, x) \in Y \times F_{0}: p \circ\right.$ $\gamma(y)=r(x)\}$ onto S_{0}. For $(y, x) \in Y * F_{0}$, let $p_{1}(y, x)=d(x)$, and let $(y, x) x_{1}=\left(y, x x_{1}\right)$ if $r\left(x_{1}\right)=d(x)$. Then $Y * F_{0}$ is an F_{0}-space and g is algebraically strictly equivariant. Going from S_{0} to $Y * F_{0}$ by g^{-1} and then projecting to F_{0} gives an algebraically strictly F_{0}-equivariant Borel function $f: f(s)=x$ iff $\gamma(q(s)) x=s$. Hence the proof will be complete if g preserves the measure class.

The measure on $S_{0} * F_{0}$ is $\int \varepsilon_{s} \times \lambda^{p(s)} d \mu(s)$, which "is" its decomposition relative to r (taking $\left(S_{0} * F_{0}\right)^{(0)}=S_{0}$). We may assume the decomposition of λ is left quasi-invariant, so the decomposition for $S_{0} * F_{0}$ is also. Then the measures $a_{*}\left(\varepsilon_{s} \times \lambda^{p(s)}\right)$ are in the same class as long as s varies only within one F_{0}-orbit. Thus, if $q(s)=y$, $a_{*}\left(\varepsilon_{s} \times \lambda^{p(s)}\right)=a(s, \cdot)_{*}\left(\lambda^{p(s)}\right) \sim a(\gamma(y), \cdot)_{*}\left(\lambda^{p(\gamma(y))}\right)$. Hence

$$
\begin{aligned}
\mu & \sim \int a(s, \cdot)_{*}\left(\lambda^{p(s)}\right) d \mu(s) \\
& \left.\sim \int a(\gamma \circ q(s), \cdot)_{*}\left(\lambda^{p(\gamma(q(s)))}\right)\right) d \mu(s)
\end{aligned}
$$

$$
\begin{aligned}
& \sim \int a(\gamma(y), \cdot)_{*}\left(\lambda^{p(\gamma(y))}\right) d\left(q_{*}(\mu)\right)(y) \\
& =\int g(y, \cdot)_{*}\left(\lambda^{q(\gamma(y))}\right) d\left(q_{*}(\mu)\right)(y) \\
& =g_{*}\left(\int \varepsilon_{y} \times \lambda^{p(\gamma(y))} d\left(q_{*}(\mu)\right)(y)\right) .
\end{aligned}
$$

Thus g carries $q_{*}(\mu) * \lambda$ to a measure equivalent to μ, which is what we wanted to know.

TheOrem 7.13. Let ($F,[\lambda]$) and ($G,[\mu]$) be measured groupoids and let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism. Then φ is trivial iff the range closure of φ is trivial, and this occurs iff φ takes values in a trivial subobject of G.

Proof. Let $j_{\varphi}: S(\varphi) * G \rightarrow G$ and $\varphi^{\prime}: F \rightarrow S(\varphi) * G$ be as in Theorem 3.5. Then $\varphi=j_{\varphi} \circ \varphi^{\prime}$, so φ takes values in a trivial subobject of G if the range closure of φ is trivial. If $j: S * G \rightarrow G$ is an inclusion and $\psi: F \rightarrow S * G$ is a homomorphism with $\varphi=j \circ \psi^{\prime}$, then $M(\psi): S(\varphi) \rightarrow$ $S(j)=S$ is equivariant, by Lemma 4.1. Hence $S(\varphi) * G<S * G$ (see also [21, Proposition 4.5 of Chapter II]). This establishes the last equivalence.

Now suppose $\varphi(F) \subseteq G^{(0)}$. Then the action of F on $T(\varphi)$ is trivial, so the function $g: T(\varphi) \rightarrow G$ taking (x, u) to x^{-1} is constant on F-orbits. Also, g is strictly G-equivariant, and g carries the measure used on $T(\varphi)$, namely $\int \mu_{\varphi(u)} \times \varepsilon_{u} d \widetilde{\lambda}(u)$, to a measure equivalent to $\int \mu^{v} d \varphi_{*}(\widetilde{\lambda})(v)$, which is quasi-invariant on $S=r^{-1}\left(\varphi\left(F^{(0)}\right)\right)$ and relative to which S is a G-space with $S * G \lesssim G * G$. If $q: T(\varphi) \rightarrow$ $S(\varphi)$ is a strictly G-equivariant ergodic decomposition of $T(\varphi) * F$, there is a G-equivariant $f: S(\varphi) \rightarrow S$ with $f \circ q=g$. Then f is normalized.

Now suppose $S * G$ is trivial, j is its inclusion and $\psi: F \rightarrow S * G$ is such that $\varphi=j \circ \psi$. To show that φ is trivial it will suffice to show that j is trivial. That $S * G$ is trivial means there is an equivariant normalized equivariant function $f: I \times S \rightarrow G$. Since f is strictly equivariant on a conull set, there is a t with $g=f(t, \cdot)$ equivariant from S to G. Define $\theta: S \rightarrow G$ by $\theta(s)=g(s)^{-1}$. Then $\theta(s x)^{-1}=g(s x)=g(s) x$ for almost all (s, x), so $j(s, x)=\theta(s) \theta(s x)^{-1}$ a.e., as we wanted to show.

Rephrasing a result of Series [21, Proposition 4.6 of Chapter II], we can characterize trivial homomorphisms in terms of kernels.

Theorem 7.14. Let $(F,[\lambda])$ and $(G,[\mu])$ be measured groupoids
and let $\varphi: F \rightarrow G$ be a homomorphism. Then φ is trivial iff $I \times F=$ $\left(I \times F^{(0)}\right) * F<\operatorname{Ker} \varphi$.

Proof. To say φ is trivial means that φ is trivial on $F^{(0)} * F$ (which is F). Then by Proposition 4.6 of Chapter II of [21], we have $\left(I \times F^{(0)}\right) * F<\operatorname{Ker} \varphi$.

Now if $\left(I \times F^{(0)}\right) * F<\operatorname{Ker} \varphi$, Proposition 4.6 of Chapter II of [21] says that there is a conull set $U \subseteq I \times F^{(0)}$ and a Borel $\theta: U \rightarrow G$ such that if $(t, r(x))$ and $(t, d(x)) \in U$, then $\varphi(x)=\theta(t, r(x)) \theta(t, d(x))^{-1}$. Choose t such that the section U_{t} is conull in $F^{(0)}$, and let $F_{1}=F \mid U_{t}, \theta_{1}=$ $\theta(t, \cdot)$. Then $x \in F_{1}$ implies $\varphi(x)=\theta_{1}(r(x)) \theta_{1}(d(x))^{-1}$, so φ is trivial.

Now for the other extreme, the kernel can be used to characterize imbeddings.

Theorem 7.15. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism of measured groupoids. Then φ is an imbedding iff $\operatorname{Ker} \varphi$ is a trivial subgroupoid of F.

Proof. If we take $S=T(\varphi)$ in Theorem 7.12, this result is immediate.

Theorem 7.16. Homomorphisms with dense range are epimorphisms in the sense of category theory.

Proof. Let $(F,[\lambda]),(G,[\mu])$ and $(H,[\nu])$ be measured groupoids and let $\psi: F \rightarrow G$ be a homomorphism with dense range. Let φ_{1}, φ_{2} : $G \rightarrow H$ be homomorphisms such that $\left[\varphi_{1}\right] \circ[\psi]=\left[\varphi_{2}\right] \circ[\psi] . \quad$ By taking an i.c. of G, replacing ψ by a similar homomorphism, and then replacing F by an i.c., we may arrange that $\varphi_{1}, \varphi_{2}, \psi$ are strict (then $\varphi_{1} \circ \psi$ and $\varphi_{2} \circ \psi$ exist) and that $\varphi_{1} \circ \psi$ and $\varphi_{2} \circ \psi$ are strictly similar. Let $\theta: F^{(0)} \rightarrow H$ be a Borel function such that for every $\xi \in F, \theta \circ r(\xi) \varphi_{1} \circ \psi(\xi) \theta \circ d(\xi)^{-1}=\varphi_{2} \circ \psi(\xi)$.

Now if $(x, u) \in T(\psi)$, i.e., $x \in G, u \in F^{(0)}$ and $d(x)=\psi(u)$, then $d \circ \varphi_{1}(x)=\varphi_{1} \circ d(x)=\varphi_{1} \circ \psi(u)=d \circ \theta(u)$, so $\theta(u) \varphi_{1}(x)^{-1}$ is defined. Also $r \circ \theta(u)=\varphi_{2} \circ \psi(u)=\varphi_{2} \circ d(x)=d \circ \varphi_{2}(x)$, so $\varphi_{2}(x) \theta(u)$ is defined. Thus we can define $g(x, u)=\varphi_{2}(x) \theta(u) \varphi_{1}(x)^{-1}$ for $(x, u) \in T(\psi)$. Then g is constant on F-orbits, because if $(x, r(\xi)) \in T(\psi)$, then

$$
\begin{aligned}
g(x \psi(\xi), d(\xi)) & =\varphi_{2}(x) \varphi_{2} \circ \psi(\xi) \theta \circ d(\xi) \varphi_{1} \circ \psi(\xi)^{-1} \varphi_{1}(x)^{-1} \\
& =\varphi_{2}(x) \theta \circ r(\xi) \varphi_{1}(x)^{-1} \\
& =g(x, r(\xi)) .
\end{aligned}
$$

The assumption that ψ has dense range just means that the function $f:(x, u) \mapsto r(x)$ is an ergodic decomposition of $T(\psi)$ relative
to the action of F. Hence there is a Borel function $h: G^{(0)} \rightarrow H$ such that $\mathrm{g}(x, u)=h(r(x))$ for almost all (x, u). We have G acting on $T(\psi)$ by $x(y, u)=(x y, u)$ if $d(x)=r(y)$, and on $G^{(0)}$ by $x * d(x)=r(x)$. Also G has a weak (left) action on a subset of H, given by

$$
x * \xi=\varphi_{2}(x) \xi \varphi_{1}(x)^{-1}
$$

when the product is defined. Then g and f are both equivariant, so we can take h to be equivariant on a conull set $U \subseteq G^{(0)}$. Thus for $x \in G \mid U, h(r(x))=\varphi_{2}(x) h(d(x)) \varphi_{1}(x)^{-1}$. Thus φ_{1} and φ_{2} are similar via h.

The method used to prove this theorem also works to prove a theorem about representation of groupoids. If L_{1} and L_{2} are representations of ($G,[\mu]$), i.e., Borel homomorphisms to the groups of unitary operators on Hilbert spaces $\mathscr{\mathscr { C }}_{1}$ and $\mathscr{\mathscr { C }}_{2}$, then the space of intertwining operators $R\left(L_{1}, L_{2}\right)$ is defined to be the set of bounded Borel functions $A: G^{(0)} \rightarrow \mathscr{L}\left(\mathscr{C}_{1}, \mathscr{L}_{2}\right)$ such that $A(r(x)) L_{1}(x)=$ $L_{2}(x) A(d(x))$ for x in some i.c. of G. We identify functions which agree a.e., and supply the essential sup norm. We say L_{1} and L_{2} are equivalent if there is a unitary valued A in $R\left(L_{1}, L_{2}\right)$; they are disjoint if $R\left(L_{1}, L_{2}\right)=\{0\} ; L_{1}$ is irreducible if $R\left(L_{1}, L_{1}\right)$ has dimension 1. Of course $A^{*}(u)=A(u)^{*}$ defines an element of $R\left(L_{2}, L_{1}\right)$ and pointwise composition maps $R\left(L_{2}, L_{3}\right) \times R\left(L_{1}, L_{2}\right)$ to $R\left(L_{1}, L_{3}\right)$. A special case of the following theorem was proved and used on page 47 of [20]. This strengthens a theorem of Peter Hahn [6, Theorem 5.19].

Theorem 7.17. Let $\dot{\psi}:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism with dense range, and let L_{1}, L_{2} be strict representations of ($G,[\mu]$). For $A \in R\left(L_{1}, L_{2}\right)$ define $\psi^{\prime}(A)=A \circ \tilde{\psi}$. Then ψ^{\prime} is an isomorphism of $R\left(L_{1}, L_{2}\right)$ onto $R\left(L_{1} \circ \psi, L_{2} \circ \psi\right)$. This operation preserves sums, products and adjoints. In particular, if L is irreducible so is $L \circ \psi$.

Proof. Most of this is easy, so we only discuss the fact that ψ^{\prime} is onto. If $B \in R\left(L_{1} \circ \psi, L_{2} \circ \psi\right)$, we can define g on $T\left(\psi^{\prime}\right)$ by $g(x, u)=L_{2}(x) B(u) L_{1}(x)^{-1}$. As in Theorem 7.16, there is a Borel A on $G^{(0)}$ such that $A(r(x))=L_{2}(x) B(u) L_{1}(x)^{-1}$ a.e. in $T(\psi)$, and A can be chosen to be equivariant. Thus $A \in R\left(L_{1}, L_{2}\right)$. Hence, $L_{2}(x) A$ 。 $\tilde{\psi}(u) L_{1}(x)^{-1}=A(r(x))=L_{2}(x) B(u) L_{1}(x)^{-1}$, so $A \circ \widetilde{\psi}=B$ a.e.

It was suggested by Peter Hahn that the method we have used in the last two proofs could be used to generalize a result of Robert Zimmer on amenability [Theorem 3.3, 23]. Zimmer defined
amenability of group actions in a way which can apply to groupoids [8], using an analog of the fixed-point property, and he proved that a group action which is the range closure of a homomorphism defined on an amenable group action is also amenable.

The definition goes as follows. Let E be a separable Banach space and let A be the group of isometric isomorphisms of E, with the strong operator topology and Borel structure. Let E^{*} be the dual of E, with the weak* topology, and let E_{1}^{*} be the unit ball in E^{*}. If G is a measured groupoid, let $\gamma: G \rightarrow A$ be a Borel homomorphism and define $\gamma^{*}(x)=\gamma\left(x^{-1}\right)^{*}$ for $x \in G$. A function assigning a compact convex set $K_{u} \subseteq E_{1}^{*}$ to each $u \in G^{(0)}$ is called an invariant Borel field of compact convex sets if $\left\{(u, f) \in G^{(0)} \times E_{1}^{*}: f \in K_{u}\right\}$ is Borel and $\gamma^{*}(x) K_{d(x)}=K_{r(x)}$ for almost every x. Then there is an i.c. of x 's for which $\gamma^{*}(x) K_{d(x)}=K_{r(x)}$. This is the appropriate analog of an action of a group on a compact convex set, and the analog of a fixed point is an invariant section, i.e., a Borel function $\sigma: G^{(0)} \rightarrow E_{1}^{*}$ such that $\sigma(u) \in K_{u}$ for almost all u, and $\gamma^{*}(x) \sigma(d(x))=$ $\sigma(r(x))$ for almost all x (again an i.c. of x 's will satisfy the condition).

We say G is amenable if every invariant Borel field of compact convex sets has an invariant section.

Given any homomorphism φ, the φ^{\prime} of Theorem 3.5 has dense range by Theorem 6.7, so to deal with range closures it is sufficient to prove a result about homomorphisms with dense range. Hence our next theorem does generalize Theorem 3.3 of Zimmer [23].

Theorem 7.18. Suppose $(F,[\lambda])$ is amenable and there is a homomorphism $\psi:(F,[\lambda]) \rightarrow(G,[\mu])$ which has dense range. Then $(G,[\mu])$ is amenable.

Proof. Take E, γ, K as in the definition just above. For $u \in$ $F^{(0)}$, let $C_{u}=K_{\psi(u)}$ and $\beta=\gamma \circ \psi$. Let G_{0} be an i.c. of G such that $x \in G_{0}$ implies $\gamma^{*}(x) K_{d(x)}=K_{r(x)}$ and $\gamma \mid G_{0}$ is strict. By passing to an equivalent ψ and an i.c. of F, we may assume ψ is a strict homomorphism and carries F into G_{0}. We may also suppose that $q:(x, u) \rightarrow r(x)$ is an ergodic decomposition projecting $T(\psi)=\{(x, u) \in$ $\left.G \times F^{(0)}: d(x)=\psi(u)\right\}$ onto a conull subset of $G_{0}^{(0)}$, since that is essentially what "dense range" means. Then it is clear that C is an invariant Borel field of compact convex sets for β, and since F is amenable there must be an invariant section ρ. By replacing F by an i.c., we may arrange that $\beta(\xi) \rho(d(\xi))=\rho(r(\xi))$ for all ξ in F.

Now define $g: T(\psi) \rightarrow E_{1}^{*}$ by $g(x, u)=\gamma^{*}(x) \rho(u)$. Then $g(x y, u)=$ $\gamma^{*}(x) \gamma^{*}(y) \rho(u)=\gamma^{*}(x) g(y, u)$ if $r(y)=d(x)$ and $\psi(u)=d(y)$. It follows, by using x^{-1}, that g is strictly equivariant from $T(\psi)$ to E_{1}^{*}. We
also have

$$
\begin{aligned}
g(x i r(\xi), d(\xi)) & =\gamma^{*}(x) \beta(\xi) \rho(d(\xi)) \\
& =\gamma^{*}(x) \rho(r(\xi)) \\
& =g(x, r(\xi))
\end{aligned}
$$

whenever $d(x)=\psi(r(x))$, so g is constant on F orbits in $T(\psi)$. Hence g factors through $\sigma: G^{(0)} \rightarrow E_{1}^{*}$, i.e., there is a Borel σ such that $\sigma(r(x))=g(x, u)$ for almost all $(x, u) \in T(\psi)$. By Lemma A1.2, there is an equivariant choice of σ, i.e., $\sigma(r(x))=\gamma^{*}(x) \sigma(d(x))$ for almost all x. Thus G is amenable. For $\widetilde{\lambda}$-almost every $u \in F^{(0)}$, we have $\sigma(r(x))=\gamma^{*}(x) \rho(u)$ for $\mu_{\psi(u)}$-almost every x. In particular, for almost every u there is such an x for which $\sigma(r(x))=\gamma^{*}(x) \sigma(d(x))=$ $\gamma^{*}(x) \sigma(\psi(u))$. Hence $\rho=\sigma \circ \tilde{\psi}$ a.e.

Here is another result on epimorphisms, whose proof is omitted.
THEOREM 7.19. Let $\psi^{\prime}:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism such that for $u \in F^{(0)}$, ψ takes $r^{-1}(u) \cap d^{-1}(u)$ onto $r^{-1}(\psi(u)) \cap d^{-1}(\psi(u))$. Then ir is an epimorphism.

Finally, we have one result on imbeddings which is in the direction of saying that imbeddings are monomorphisms. This may be the closest to that statement that is true. Even it fails for immersions, as we see from examples with groups.

THEOREM 7.20. Let $\varphi:(F,[\lambda]) \rightarrow(G,[\mu])$ be a homomorphism and let $\uparrow:(G,[\mu]) \rightarrow(H,[\nu])$ be an imbedding. If $[\psi] \circ[\varphi]$ is trivial, so is $[\rho]$.

Proof. $S(\psi \circ \varphi) \cong S\left(\psi \circ j_{\varphi}\right)$ as H-spaces and $S(\varphi) * G \sim S\left(\psi \circ j_{\varphi}\right) * H$ as groupoids. Then $S(\varphi) * G$ is principal and $S(\varphi) / G$ is analytic (up to a null set), so φ is trivial by Theorems 7.12 and 7.13.

Appendix. The four sections of the appendix give proofs of results in the first four sections of the body of the paper.

Lemma A1.1 (Lemma 1.4). Let $(G,[\mu])$ be a measured groupoid, let (S, λ, p) be an analytic Borel ($G,[\mu]$)-space and let T be a strict analytic Borel ($G,[\mu]$-space. If $f_{1}: S \rightarrow T$ is almost $(G,[\mu])$-equivariant, then there is a (G, $[\mu])$-equivariant function $f: S \rightarrow T$ which agrees with f_{1} a.e. Furthermore, $f_{1 *}(\lambda)=f_{*}(\lambda)$ and is quasi-invariant. The function f exists even if T is a weak G-space.

Proof. There is no loss in generality if we assume to begin
with that (S, λ, p) is a strict $(G,[\mu])$-space and that $\mu=\int \mu(r, u) d \tilde{\mu}(u)$ is a left quasi-invariant decomposition of μ into probability measures. To see this, use Lemma 6.2 of [19] and Definition 1.1 together with the remarks preceding Definition 1.2.

Let S_{1} be a conull Borel set in S such that if $s \in S_{1}$ then $f_{1}(s x)=$ $f_{1}(s) x$ for $\mu^{p(s)}$ almost almost all x. Decompose $\lambda=\int \lambda_{u} d \tilde{\mu}(u)$ relative to p and let U be a conull Borel set in $G^{(0)}$ such that $u \in U$ implies that λ_{u} is a nontrivial measure concentrated on $p^{-1}(u) \cap S_{1}$. In the groupoid $S * G$, the set of units is the graph of p and can be identified with S, and the decomposition of the measure relative to r has integrands $\varepsilon_{s} \times \mu(r, p(s))$. Then $d_{*}\left(\varepsilon_{s} \times \mu(r, p(s))\right)$ is identified with a measure concentrated on $\{s x: r(x)=p(s)\}$, which is the equivalence class of s in S. Since the decomposition of μ relative to r is quasiinvariant, $\int d \lambda(s) d_{*}\left(\varepsilon_{s} \times \mu(r, p(s))\right)$ is equivalent to λ (i.e., the image of λ in the graph of p), so we can also assume U is chosen so that S_{1} is $d_{*}\left(\varepsilon_{s} \times \mu(r, p(s))\right)$-conull for λ_{u}-almost every s when $u \in U$.

Now let $G_{0}=G \mid U$ and let $S_{0}=\left\{s \in S: p(s) \in U\right.$ and S_{1} is $d_{*}\left(\varepsilon_{s} \times\right.$ $\mu(r, p(s)))$-conull\}. Then S_{0} is an invariant conull Borel set by the proof of Lemma 6.3 of [19]. Now take $T \subseteq[0,1]$ and define $f(s)=$ $\int f_{1}(s x) x^{-1} d \mu(r, p(s))(x)$ for $s \in S_{0}$. Notice that if $s \in S_{1}$ then $f_{1}(s x)=f_{1}(s) x$ for $\mu(r, p(s))$-almost all x so that $f_{1}(s x) x^{-1}$ is defined and equal to $f_{1}(s)$ for almost all x in $r^{-1}(p(s))$. Thus $f=f_{1}$ on $S_{1} \cap S_{0}$. If $s \in S_{0}$, there is a y with $s y \in S_{1}$. Then $s x=(s y) y^{-1} x$ and $f_{1}(s x)\left(y^{-1} x\right)^{-1}$ is defined for almost all x, so $f_{1}(s x) x^{-1}$ is defined for almost all x. If we define $F_{1}(s, x)=f_{1}(s x) x^{-1}$ when this is valid and $F_{1}(s, x)=0$ otherwise, F_{1} is Borel and $f(s)=\int F_{1}(s, x) d \mu(r, p(s))(x)$, so f is well defined and Borel from S_{0} to $[0,1]$. To see that $f\left(S_{0}\right) \subseteq T$ and f is equivariant, let $s \in S_{0}$ and choose y with $s y \in S_{1}$. Since S_{0} is invariant, we have $s y \in S_{1} \cap S_{0}$. Now if $r(x)=p(s)$, then $r(x)=r(y)$, and by quasi-invariance we have $f_{1}\left((s y)\left(y^{-1} x z\right)\right)=f_{1}(s y)\left(y^{-1} x z\right)$ for $\mu(r, d(x))$ almost all z. Thus $f(s x)=\int f_{1}\left((s y)\left(y^{-1} x z\right)\right) z^{-1} d \mu(r, d(x))(z)=f_{1}(s y) y^{-1} x$. If we take $x=p(s)$ this gives $f(s)=f_{1}(s y) y^{-1} \in T$, and applying it again we get $f(s x)=f(s) x$ for $(s, x) \in S_{0} * G_{0}$. Observe that this proof is valid if T is even a weak G-space.

To see that $f_{*}(\lambda)$ is quasi-invariant, notice that $\lambda * \mu e$ is mapped to $f_{*}(\lambda) * \mu$ by $(s, x) \rightarrow(f(s), x)$ and $\left(s x, x^{-1}\right)$ goes to ($\left.f(s) x, x^{-1}\right)$ under this function. Thus quasi-invariance of λ implies the same for $f_{*}(\lambda)$.

The next lemma is useful in constructing equivariant functions.
Lemma A1.2. Let $(G,[\mu])$ be a measured groupoid and let $\left(S_{1}, p_{1}\right),\left(S_{2}, p_{2}\right)$ and $\left(S_{3}, p_{3}\right)$ be analytic strict $(G,[\mu])$-spaces. Suppose
λ is a finite quasi-invariant measure on S_{1}. Let $f: S_{1} \rightarrow S_{2}$ and $g: S_{1} \rightarrow S_{3}$ be equivariant, and suppose $h_{1}: S_{2} \rightarrow S_{3}$ is a Borel function with $h_{1} \circ f=g$ a.e. Then $\left(S_{2}, f_{*}(\lambda), p_{2}\right)$ is a strict ($G,[\mu]$)-space and there is an equivariant $h: S_{2} \rightarrow S_{3}$ which agrees with h_{1} a.e. relative to $f_{*}(\lambda)$.

Proof. By Lemma A1.1 we know that $f_{*}(\lambda)$ is quasi-invariant, and that it suffices to prove that h_{1} is almost equivariant.

Let $\lambda=\int \lambda_{s} d f_{*}(\lambda)(s)$ be a decomposition of λ relative to f and let $E_{1}=\left\{s \in S_{1}: h_{1} \circ f(s)=g(s)\right\}$. Then there is a conull Borel set $E_{2} \subseteq S_{2}$ such that for $s \in E_{2}$ the measure λ_{s} is a probability measure concentrated on $E_{1} \cap f^{-1}(s)$. By Theorem 2.13 of [19], we also know that $\left\{(s, x) \in S_{2} * G: \lambda_{s} x \sim \lambda_{s x}\right\}$ is conull. Hence $\left\{(s, x) \in S_{2} * G: s \in E_{2}\right.$, $s x \in E_{2}$ and $\left.\lambda_{s} x \sim \lambda_{s x}\right\}$ is conull. If (s, x) is in this set, then E_{1} is conull for λ_{s} and $\lambda_{s} x$, so there is an $s_{1} \in E_{1} \cap f^{-1}(s)$ with $s_{1} x \in E_{1}$. Then

$$
\begin{aligned}
h_{1}(s x) & =h_{1}\left(f\left(s_{1}\right) x\right) \\
& =h_{1}\left(f\left(s_{1} x\right)\right) \\
& =g\left(s_{1} x\right) \\
& =g\left(s_{1}\right) x \\
& =h_{1}(s) x,
\end{aligned}
$$

which completes the proof.
Now we want to inquire whether the requirement that an equivariant function be normalized is very stringent. For homomorphisms of groupoids it eliminates many [18, §4], but between G-spaces it is equivalent to an apppaently weaker condition. We begin with an easy lemma about invariant sets.

The next two lemmas show that all equivariant functions (Definition 1.3(a)) are normalized in the sense used by C. Series [21].

Lemma A1.3. Let $(G,[\mu])$ be a measured groupoid, let (S, λ, p) be a strict ($G,[\mu]$)-space, and let G_{1} be an i.c. of G. If $N \subseteq p^{-1}\left(G_{1}^{(0)}\right)$ is analytic, null and G_{1}-invariant, then its G-saturation, [N], is also null.

Proof. Let $s \in N, x \in G$ with $r(x)=p(s)$ and $s x \notin N$. Now $p(s x)=$ $d(x)$ and if $d(x) \in G_{1}^{(0)}$ we would have $x \in G_{1}$ so $s x \in N$. Thus $s x \notin$ $p^{-1}\left(G_{1}^{(0)}\right)$. Thus [N] $-N \cong S-p^{-1}\left(G_{1}^{(0)}\right)$, which is of measure 0 .

Lemma A1.4. Let $(G,[\mu])$ be a measured groupoid, let $\left(S_{1}, \lambda_{1}\right.$, p_{1}, a_{1}) and ($S_{2}, \lambda_{2}, p_{2}, a_{2}$) be strict analytic ($G,[\mu]$)-spaces, and let
$f: S_{1} \rightarrow S_{2}$ be strictly (G, $[\mu]$)-equivariant. Then $f\left(S_{1}\right)$ is G-invariant and $f_{*}\left(\lambda_{1}\right) \sim \lambda_{2}$.

Proof. It is easy to show that $f\left(S_{1}\right)$ is invariant. The rest of the proof is based on the uniqueness of the measure classes in the equivalence classes of units.

Let $\mu=\int \mu(r, u) d \tilde{\mu}(u)$ be a decomposition of μ relative to r. By Lemma 6.2 of [19], there is an i.c., G_{1}, of G such that $u \in G_{1}^{(0)}$ implies $\mu(r, u)$ is a probability measure concentrated on $G_{1} \cap r^{-1}(u)$, and this decomposition is quasi-invariant under G_{1}. Let $S_{3}=p_{1}^{-1}\left(G_{1}^{(0)}\right)$, $S_{4}=p_{2}^{-1}\left(G_{1}^{(0)}\right)$. Then $\lambda_{1} * \mu=\int \varepsilon_{s} \times \mu\left(r, p_{1}(s)\right) d \lambda_{1}(s)$ and $\lambda_{2} * \mu=\int \varepsilon_{s} \times$ $\mu\left(r, p_{2}(s)\right) d \lambda_{2}(s)$ are quasi-invariant on $S_{3} * G_{1}$ and $S_{4} * G_{1}$. For $s \in S_{3}$, the measure $\nu_{s}^{1}=a_{1} *\left(\varepsilon_{s} \times \mu\left(r, p_{1}(s)\right)\right)$ is concentrated on its orbit, and the class $\left[\nu_{s}^{1}\right]$ is the same for all s in a given orbit. Also, $f_{*}\left(\nu_{s}^{1}\right)=a_{2} *\left(\varepsilon_{f(s)} \times \mu\left(r, p_{2}(f(s))\right)\right)$, which we denote by ν_{s}^{2}.

For a Borel set $B \subseteq S_{2}, B$ is null iff $B \cap S_{4}$ is null and this happens iff the saturated Borel set $Q=\left\{s \in S_{4}: \nu_{s}^{2}(B)>0\right\}$ is null. If $A=f^{-1}(B)$, let $P=\left\{s \in S_{3}: \nu_{s}^{1}(A)>0\right\}$. Then $P=f^{-1}(Q)$, and P is also saturated and Borel. Our hypothesis about the measure implies that $\lambda_{1}(P)=0$ iff $\lambda_{2}(Q)=0$, so $\lambda_{1}(A)=0$ iff $\lambda_{2}(B)=0$, as desired.

Lemma A1.5. Suppose f, g are weakly equivariant and $\beta_{1}: S_{1} \rightarrow G$ is Borel, with $f(s) \beta_{1}(s)=g(s)$ for almost all s and $\beta_{1}(s x)=x^{-1} \beta_{1}(s) x$ for $\lambda_{1} * \mu$-almost every (s, x). Then there are a Borel function $\beta: S_{1} \rightarrow G$, an i.c. G_{1} and an analytic conull strict ($\left.G_{1},[\mu]\right)$-space $S_{3} \subseteq S_{1}$ such that $\beta=\beta_{1}$ a.e., $\beta(s x)=x^{-1} \beta(s) x$ for $(s, x) \in S_{3} * G_{1}$ and $f(s) \beta(s)=g(s)$ for $s \in S_{3}$.

Remark. If the action of G on S_{2} is free, one can prove that β_{1} satisfies what is required of β, but the proof fails otherwise.

Proof. Choose β via Lemma A1.1, and choose G_{1} and S_{3}^{*} so that β, f, g are strictly equivariant on S_{3}^{*}. Now $f(s) \beta(s)$ is still defined for almost all s, and it is not hard to see that the set of $s \in S_{3}^{*}$ for which the product is defined is invariant. On that set $f(s) \beta(s)=g(s)$ a.e., and since both functions are Borel and equivariant, the set S_{3} where they agree is invariant.

The next three results are useful in establishing the existence of strictly quasi-invariant decompositions of measures.

Lemma A1.6. If $(G,[\mu])$ is a measured groupoid and μ has a strictly left quasi-invariant decomposition $\mu=\int \mu^{u} d \tilde{\mu}(u)$, then there is also a strictly right quasi-invariant decomposition.

Proof. Set $\lambda=(\mu)^{-1}\left(\lambda(A)=\mu\left(\left\{x^{-1}: x \in A\right\}\right)\right)$. Then $d_{*}(\lambda)=r_{*}(\mu)=\tilde{\mu}$, and $\lambda=\int\left(\mu^{u}\right)^{-1} d \tilde{\mu}(u)$ is a strictly right quasi-invariant decomposition. Set $\mu^{+}=d_{*}(\mu)$. Then $\mu^{+} \sim \tilde{\mu}$ and $\lambda \sim \mu$, so we can choose strictly positive and finite Radon-Nikodym derivatives $f=d \tilde{\mu} / d \mu^{+}$ and $g=d \mu / d \lambda$. Then

$$
\mu=g \lambda=\int g\left(\mu^{u}\right)^{-1} d \tilde{\mu}(u)=\int(g)(f \circ d)\left(\mu^{u}\right)^{-1} d \mu^{+}(u)
$$

Take $\mu_{u}=(g)(f \circ d)\left(\mu^{u}\right)^{-1}$.
Corollary A1.7. Let H be a locally compact group with m a probability measure equivalent to Haar measure. If ν is a quasiinvariant measure on an H-space S, then $(S \times H,[\nu \times m])$ has strictly quasi-invariant decompositions on both sides.

Lemma A1.8. Let $(G,[\mu])$ be a measured groupoid with strictly quasi-invariant decompositions. If (S, λ, p) is a strict ($G,[\mu])$-space, then λ has a strictly quasi-invariant decomposition.

Proof. Let $\mu=\int \mu_{u} d \tilde{\mu}(u)$ be a strictly quasi-invariant decomposition, and let $\lambda=\int \lambda_{u} d \tilde{\mu}(u)$ be any decomposition of λ relative to p. We have assumed that the Borel set $G_{1}=\left\{x \in G:\left(\lambda_{r(x)}\right) x \sim \lambda_{d(x)}\right\}$ is conull, so the Borel set $U_{1}=\left\{u \in G^{(0)}: \mu_{u}\left(G_{1}\right)=1\right\}$ is conull in $G^{(0)}$. Set $U_{2}=\left[U_{1}\right], G_{2}=G \mid U_{2}$. We shall construct a $\lambda^{\prime} \sim \lambda$ with a strictly quasi-invariant decomposition. For $u \notin U_{2}$, let $\lambda_{u}^{\prime}=0$. For $u \in U_{2}$, let $\lambda_{u}^{\prime}=\int\left(\lambda_{r(x)}\right) x d \mu_{u}(x)$. For $u \in U_{1}, \lambda_{u}^{\prime} \sim \lambda_{u}$. Also, $u \mapsto \lambda_{u}^{\prime}$ is Borel, so we can form $\lambda^{\prime}=\int \lambda_{u}^{\prime} d \tilde{\mu}(u)$. Then $\lambda^{\prime} \sim \lambda$, so we can choose a Radon-Nikodym derivative $g=d \lambda / d \lambda^{\prime}$ which is positive and finite everywhere.

If $v \in U$, there is an x such that $d(x)=v$ and $u=r(x)$ is in U_{1}. Then $\left\{y:\left(\lambda_{r(y)}\right) y \sim \lambda_{u}^{\prime}\right\}$ is μ_{u}-conull. Since $\left(\mu_{u}\right) x \sim \mu_{v}$,

$$
\left(\lambda_{u}^{\prime}\right) x=\int\left(\lambda_{r(y)}^{\prime}\right) y x d \mu_{u}(y) \sim \int\left(\lambda_{r(z)}\right) z d \mu_{v}(z)=\lambda_{v}^{\prime}
$$

If we also have $w \in U_{2}$ and $z \in r^{-1}(v) \cap d^{-1}(w)$, then $\left(\lambda_{u}^{\prime}\right) x z \sim \lambda_{w}^{\prime}$ by the same argument. Hence $\left(\lambda_{v}^{\prime}\right) z \sim \lambda_{w}^{\prime}$. If $v=r(z)$ and $w=d(z)$ are not in $U_{2}, \lambda_{v}^{\prime}=0, \lambda_{w}^{\prime}=0$, so $\left(\lambda_{v}^{\prime}\right) z=\lambda_{\mu}^{\prime}$.

Now we can replace λ_{u} by $g \lambda_{u}^{\prime}$ for each $u \in G^{(0)}$ and get a strictly quasi-invariant decomposition of λ.

Remark. This generalizes Proposition 2.6 of C.C. Moore [1, Chapter 2]. The next two lemmas show that similar G-spaces are
isomorphic.
Lemma A1.9. Let (S, λ, p) be an analytic strict ($G,[\mu]$)-space and suppose $\beta: S \rightarrow G$ is Borel, $s \beta(s)$ is defined for $s \in S$, and $\beta(s x)=x^{-1} \beta(s) x$ holds for all $(s, x) \in S * G$. Define $\beta^{+}(s)=s \beta(s)$ for all $s \in S$. Then β^{+}is a G-automorphism of (S, p) preserving [$\left.\lambda\right]$.

Proof. To show that β^{+}preserves [λ], we show first that λ is quasi-invariant under another groupoid. Let $G^{\prime}=\{x \in G: r(x)=d(x)\}$. This is a G-space under the action $x * y=y^{-1} x y$ which is defined when $d(x)=r(y)$. Thus $d: G^{\prime} \rightarrow G^{(0)}$ is the projection we need. We have assumed that $\beta: S \rightarrow G^{\prime}$ is strictly equivariant. By Lemma 1.4, $\beta_{*}(\lambda)$ is quasi-invariant, so we can make $G^{\prime} * G$ a measured groupoid with the measure $\beta_{*}(\lambda) * \mu$. We can define $s(\beta(s), x)=s x$ if $s \in S$ and $(\beta(s), x) \in G^{\prime} * G$, because in that case $p(s)=d \circ \beta(s)=r(x)$. This makes (S, β) a strict $\beta(S) * G$-space, and $S *(\beta(S) * G)$ is a groupoid, naturally isomorphic with $S * G$. (This occurs whenever we have a strictly equivariant map of G-spaces.)

The measures also agree: $p_{*}(\lambda)=\tilde{\mu}$ and $\lambda * \mu=\int \varepsilon_{s} \times \mu^{p(s)} d \lambda(s)$, while $\beta_{*}(\lambda) * \mu=\int \varepsilon_{x} \times \mu^{d(x)} d \beta_{*}(\lambda)(x)$. The latter gives the decomposition of $\beta_{*}(\lambda) * \mu$ relative to r in $\beta(S) * G$. Hence

$$
\lambda *\left(\beta_{*}(\lambda) * \mu\right)=\int \varepsilon_{s} \times\left(\varepsilon_{\beta(s)} x \mu^{d \cdot \beta(s)}\right) d \lambda(s) .
$$

Since $d \circ \beta=p,(s, x) \mapsto(s,(\beta(s), x))$ takes $\lambda * \mu$ to $\lambda *\left(\beta_{*}(\lambda)^{*} \mu\right)$.
Since λ is quasi-invariant, $[\lambda * \mu]$ is symmetric. Hence $\left[\lambda *\left(\beta_{*}(\lambda) * \mu\right)\right]$ is symmetric, so λ is quasi-invariant for $\beta(S) * G$. Hence there is a strictly quasi-invariant decomposition $\lambda=\int \lambda(\beta, x) d \beta_{*}(\lambda)(x)$ relative to β.

We must see what this implies for the strictly quasi-invariant decomposition $\lambda=\int \lambda_{u} d \tilde{\mu}(u)$ relative to p. For each \dot{u},

$$
\int \lambda(\beta, x) d \beta_{*}\left(\lambda_{u}\right)(x)
$$

is concentrated on $p^{-1}(u)$, because $p=d \circ \beta$. Also,

$$
\iint \lambda(\beta, x) d \beta_{*}\left(\lambda_{u}\right)(x) d \tilde{\mu}(u)=\int \lambda(\beta, x) d \beta_{*}(\lambda)(x)=\lambda
$$

$\left(\beta_{*}(\lambda)=\int \beta_{*}\left(\lambda_{u}\right) d \tilde{\mu}(u)\right.$, by Lemma 1.2 of [19], since $p=d \circ \beta$.) Thus for almost all $u, \lambda_{u}=\int \lambda(\beta, x) d \beta_{*}\left(\lambda_{u}\right)(x)$. Also, if $d(x)=r(y),(\lambda(\beta, x) y \sim$ $\lambda\left(\beta, y^{-1} x y\right)$, since this is a strictly quasi-invariant decomposition, so
for each x we have $\beta_{*}^{+}(\lambda(\beta, x))=(\lambda(\beta, x)) x \sim \lambda(\beta, x)$. Now $p \circ \beta^{+}=p$, so Lemma 1.2 of [19] gives

$$
\begin{gathered}
\beta_{*}^{+}\left(\int \lambda(\beta, x) d \beta_{*}\left(\lambda_{u}\right)(x)\right)=\int \beta_{*}^{+}(\lambda(\beta, x)) d \beta_{*}\left(\lambda_{u}\right)(x) \\
\sim \int \lambda(\beta, x) d \beta_{*}\left(\lambda_{u}\right)(x)
\end{gathered}
$$

for each u. Hence $\beta_{*}^{+}\left(\lambda_{u}\right) \sim \lambda_{u}$ for almost all u, so $\beta_{*}^{+}(\lambda) \sim \lambda$, again by the same Lemma 1.2.

The next lemma is the same as Lemma 1.6.
Lemma A1.10. Let $(G,[\mu])$ be a measurable groupoid and let $\left(S_{1},\left[\lambda_{1}\right]\right)$ and $\left(S_{2},\left[\lambda_{2}\right]\right)$ be analytic $(G,[\mu])$-spaces. Suppose $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{1}$ are equivariant maps with $f \circ g$ similar to the identity on S_{2} and $g \circ f$ similar to the identity on S_{1}. Then $\left(S_{1},\left[\lambda_{1}\right]\right)$ and ($S_{2},\left[\lambda_{2}\right]$) are isomorphic.

Proof. Let G_{0} be an i.c. and let S_{3} be analytic, G_{0}-invariant and conull in S_{1} and suppose f is equivariant on S_{3} and $g \circ f$ is strictly similar to the identity on S_{3}. By looking at $g^{-1}\left(S_{3}\right)$, $f^{-1}\left(g^{-1}\left(S_{3}\right)\right) \cap S_{3}, \cdots$ we see that S_{3} may be chosen so that $f\left(S_{3}\right) \subseteq$ $g^{-1}\left(S_{3}\right)$. In the same way, there is an analytic, invariant conull $S_{4} \subseteq S_{2}$ such that $f \circ g$ is strictly similar to the identity on S_{4} and $g\left(S_{4}\right) \subseteq f^{-1}\left(S_{4}\right)$. Set $S_{5}=S_{3} \cap f^{-1}\left(S_{4}\right) \quad$ and $\quad S_{6}=g^{-1}\left(S_{3}\right) \cap S_{4}$. Then $f\left(S_{5}\right) \subseteq S_{6}$ and $g\left(S_{6}\right) \subseteq S_{5}$, and $\left(f \mid S_{5}\right) \circ\left(g \mid S_{6}\right)$ is strictly similar to i on S_{6} while $\left(g \mid S_{6}\right) \circ\left(f \mid S_{5}\right)$ is strictly similar to i on S_{5}. Thus we may assume the original similarities were strict. Then by Lemma A1.7 there are G-automorphisms γ_{1} of ($S_{1},\left[\lambda_{1}\right]$) and γ_{2} of ($S_{2},\left[\lambda_{2}\right]$) such that $f \circ g=\gamma_{2}$ and $g \circ f=\gamma_{1}$. Then $f \circ g \circ \gamma_{2}^{-1}$ is the identity on S_{2} and $\gamma_{1}^{-1} \circ g \circ f$ is the identity on S_{1}. Thus f is an isomorphism and $f^{-1}=g \circ \gamma_{2}^{-1}=\gamma_{1}^{-1} \circ g$.

We take \mathscr{F} and $G^{(0)} * \mathscr{F}$ as in $\S 1$. The next lemma is the same as Lemma 1.7 and gives the existence of a "universal G-space".

Lemma A1.11. $G^{(0)} * \mathscr{F}$ is an analytic G-space, provided the given decomposition of μ relative to r is quasi-invariant.

Proof. Everything is simple except possibly the fact that the action is Borel. To prove that, we make use of another way of seeing what the Borel structure is. If f is a bounded Borel function, defined at least on $r^{-1}(u)$, then let M_{f} denote the bounded operator on $\mathscr{H}(u)=L^{2}\left(\mu^{2}(r, u)\right)$ given by multiplication by f. Then [$f]_{u} \rightarrow M_{f}$ is one-one from $\mathscr{F}(u)$ onto the operators of multiplication by a [0, 1]-valued function on $\mathscr{H}(u)$. Let $G^{(0)} * \mathscr{L}(\mathscr{H})=U\{\{u\} \times$
$\left.\mathscr{L}(\mathscr{H}(u)): u \in G^{(0)}\right\}$ have the smallest Borel structure for which the projection onto $G^{(0)}$ is Borel, along with all the functions $\psi_{g, h}(g, h$ bounded Borel) where $\psi_{g, h}(u, A)=\left(A[g]_{u}:[h]_{u}\right)$, the inner product being computed in $\mathscr{H}(u)$. By reducing to the case of constant \mathscr{H} $[20, \S 1]$, we can see that $G^{(0)} * \mathscr{L}(\mathscr{H})$ has an analytic or standard Borel structure if $G^{(0)} * \mathscr{H}$ does, i.e., if $G^{(0)}$ does. Now $G^{(0)} * \mathscr{F}$ is isomorphic to a Borel subset of $G^{(0)} * \mathscr{L}(\mathscr{H})$ because $\psi_{g, h}\left(u, M_{f}\right)=$ $\dot{\psi}_{g}\left(u,[f]_{u \bar{\hbar}}\right)$. Thus if the action of G on $G^{(0)} * \mathscr{L}(\mathscr{L})$ is Borel and the map $\left(u,[f]_{u}\right) \rightarrow\left(u, M_{f}\right)$ is equivariant we will be through with the proof. The action of G on $G^{(0)} * \mathscr{H}$ is as follows: For each x there is a positive function $\rho(x, \cdot)$ on $r^{-1}(d(x))$ such that $\left(U_{x} g\right)(y)=$ $\rho(x, y) g(x y)$ defines a unitary operator from $\mathscr{H}(d(x))$ onto $\mathscr{C}(r(x))$. This gives a right action on $G^{(0)} * \mathscr{H}$. Now $(r(x), A) x=\left(d(x), U_{x} A U_{x}^{=1}\right)$ defines an action of G on $G^{0} * \mathscr{L}(\mathscr{H})$, and if we reduce to the case where $\operatorname{dim} \mathscr{H}(u)$ is constant and pass to a bundle of the form $G^{(0)} \times \mathscr{K}[20, \S 1]$, then it is clear that the action of G on $G^{(0)} \times$ $\mathscr{C}(\mathscr{K})$ is Borel since $x \rightarrow U_{x}$ is Borel [20, Proposition 3.4].

A2. Ergodic decompositions of measurable groupoids. The numbers in this section agree with these of $\S 2$. Another approach to this material is found in Theorem 6.1 of [7].

Lemma 2.1. The measurable groupoid (G,C) is ergodic iff $\mathscr{H}_{r} \cap \mathscr{H}_{d}$ is one-dimensional.

Proof. If (G, C) is not ergodic, let A be a saturated Borel set in $G^{(0)}$ for which A and $B=G^{(0)} \backslash A$ both have positive measure [19, Corollary 6.4]. Then $\varphi_{A} \circ r=\varphi_{A} \circ d$ and $\varphi_{B} \circ r=\varphi_{B} \circ d$, and these are orthogonal elements of $\mathscr{H}_{r} \cap \mathscr{H}_{d}$ but neither is zero.

Now if $\mathscr{H}_{r} \cap \mathscr{H}_{d}$ has dimension greater than 1, there is a nonzero element $g \in \mathscr{H}_{r} \cap \mathscr{H}_{d}$ which is orthogonal to the constant functions. Then there are Borel functions f_{1}, f_{2} in $L^{2}(\widetilde{\lambda})$ such that $f_{1} \circ r=f_{2} \circ d=g$ a.e. Thus for almost every $u \in G^{(0)}, f_{1} \circ r(x)=f_{2} \circ d(x)$ for λ_{u}-almost all x, i.e., $f_{1} \circ r(x)=f_{2}(u)$ for λ_{u}-almost all x. Hence, for $\tilde{\lambda}$-almost every v this holds for $r_{*}\left(\lambda_{v}\right)$-almost every u. Thus f_{1} is almost always constant a.e. relative to $\left[r_{*}\left(\lambda_{v}\right)\right]$ (which is the same as $\left[r_{*}\left(\lambda_{u}\right)\right]$ if $\left.u \in[\nu]\right)$ and for $r_{*}\left(\lambda_{v}\right)$-almost every u that constant is $f_{2}(u)$. This proves that $f_{1}=f_{2}$ a.e., so $f_{1} \circ d=f_{2} \circ d$ a.e. and hence $f_{1} \circ r=f_{1} \circ d$ a.e. But f_{1} is not constant a.e. since $f_{1} \circ r$ is not, so (G, C) is not ergodic.

Definition A2.2. Let $(G,[\lambda])$ be a measurable groupoid. A strict ergodic decomposition of ($G,[\lambda]$) is a mapping q of $G^{(0)}$ into
an analytic Borel space T such that if $\nu=q_{*}(\widetilde{\lambda})$ and $\widetilde{\lambda}=\int \widetilde{\lambda}(q, t) d \nu(t)$ is a decomposition of $\tilde{\lambda}$ relative to q, then for v-almost all $t, q^{-1}(t)$ is saturated and $\left(G \mid q^{-1}(t),\left[\lambda^{t}\right]\right)$ is an ergodic groupoid, where $\lambda^{t}=$ $\int \lambda_{u} d(\tilde{\lambda}(q, t))(u)$. An ergodic decomposition of $(G,[\lambda])$ is a Borel mapping q of $G^{(0)}$ into an analytic space T such that for some conull Borel set $U \subseteq G^{(0)}, q \mid U$ is a strict ergodic decomposition of $(G \mid U$, $[\lambda]$).

Lemma A2.3. Let $(G,[\mu])$ be a measured groupoid, and let a Borel function q from $G^{(0)}$ to an analytic space T be an ergodic decomposition. If a Borel function g from $G^{(0)}$ to an analytic space Z is constant on equivalence classes, then there is a Borel $h: T \rightarrow Z$ such that $h \circ q=g$ a.e. Such an h is determined a.e. relative to $\mu=q_{*}(\widetilde{\lambda})$.

Proof. Suppose q is an ergodic decomposition and let $\tilde{\lambda}=$ $\int \widetilde{\lambda}_{t} d \mu(t)$ be a decomposition of $\tilde{\lambda}$ relative to q. Take $Z \subseteq[0,1]$. Because q is an ergodic decomposition, for almost all t we have g constant a.e. relative to $\tilde{\lambda}_{t}$. Therefore we can define $h_{1}: T \rightarrow[0,1]$ by $h_{1}(t)=\int g d \widetilde{\lambda}_{t}$ and get a Borel function with $h_{1} \circ q=g$ a.e. Then h_{1} takes values in Z a.e., so the desired h exists. The uniqueness is easy.

Theorem A2.4. (Uniqueness of ergodic decompositions). Let $q_{1}: G^{(0)} \rightarrow T_{1}$ and $q_{2}: G^{(0)} \rightarrow T_{2}$ be ergodic decompositions of the measured groupoid ($G,[\lambda]$). Then there are a conull Borel set $U \cong G^{(0)}$ and a Borel isomorphism $f: q_{1}(U) \rightarrow q_{2}(U)$ such that $q_{2}=f \circ q_{1}$ on U. Also, q_{1} and q_{2} have the same level sets in U. If q_{1} and q_{2} are strict decompositions, U may be taken to be saturated.

Proof. Let $\mu_{1}=q_{1 *}(\widetilde{\lambda})$ and $\mu_{2}=q_{2 *}(\widetilde{\lambda})$. By Lemma A2.2 there exist Borel functions $f_{1}: T_{1} \rightarrow T_{2}$ and $f_{2}: T_{2} \rightarrow T_{1}$ such that $q_{2}=f_{1} \circ q_{1}$ a.e. and $q_{1}=f_{2} \circ q_{2}$ a.e. By the uniqueness part of Lemma A2.3, the Borel set $T_{3}=\left\{t \in T_{1}: f_{2} \circ f_{1}(t)=t\right\}$ is μ_{1}-conull. Now f_{1} is one-one from T_{3} onto an analytic set $T_{4} \subseteq T_{2}$ and $f_{2} \mid T_{4}$ is the inverse of $f_{1} \mid T_{3}$. We have $f_{1 *}\left(\mu_{1}\right)=\mu_{2}$, so T_{4} is μ_{2}-conull.

Let V be a conull Borel set such that $q_{1} \mid V$ and $q_{2} \mid V$ are strict ergodic decompositions and $q_{2}=f_{1} \circ q_{1}$ on V. Let $T_{5} \subseteq T_{3}$ be a conull set for which the conditions in Definition 2.2 are satisfied for q_{1}. Define $U=V \cap q_{1}^{-1}\left(T_{5}\right)$. It is easy to verify that $f=f_{1} \mid q_{1}(U)$ does what is needed.

If q_{1} and q_{2} are strict decompositions, we can take V to be
saturated because $\left\{u: q_{2}(u)=f \circ q_{1}(u)\right\}$ contains a conull saturated set. Also, the set $q_{1}^{-1}\left(T_{5}\right)$ is saturated, so U is then saturated.

Theorem A2.5. If ($G,[\lambda]$) is a measured groupoid, then ($G,[\lambda]$) has an ergodic decomposition. If λ has a (right or left) quasi-invariant decomposition, then ($G,[\lambda]$) has a strict ergodic decomposition.

Proof. Since ($G,[\lambda]$) has an i.c. on which λ has a quasi-invariant decomposition, it suffices to prove the second part of the theorem. To begin, let $M=M(\widetilde{\lambda})$ be the measure algebra of Borel sets in $G^{(0)}$ modulo $\tilde{\lambda}$-null sets and let M_{0} be the sub σ-algebra in M of equivalence classes of saturated Borel sets. Let q : Bor $\left(G^{(0)}\right) \rightarrow M$ be the quotient homomorphism and let \mathscr{A}_{0} be a countable algebra of saturated Borel sets for which $\left\{q(A): A \in \mathscr{A}_{0}\right\}$ is dense in M_{0}. Then \mathscr{A}_{0} determines an analytic quotient space T of $G^{(0)}$: if p is the quotient map, $p(u)=p(v)$ iff $\left\{A \in \mathscr{A}_{0}: u \in A\right\}=\left\{A \in \mathscr{A}_{0}: v \in A\right\}$. Let $\nu=p_{*}(\widetilde{\lambda})$ and decompose $\tilde{\lambda}=\int \tilde{\lambda}_{t} d \nu(t)$, then define $\lambda^{t}=\int \lambda_{u} d \lambda_{t}(u)$ for $t \in T$ and set $G_{t}=d^{-1}\left(p^{-1}(t)\right)=r^{-1}\left(p^{-1}(t)\right)=r^{-1}\left(p^{-1}(t)\right)=G \mid p^{-1}(t)$. It seems plausible that this should give an ergodic decomposition of (G, C) [1, pages 112-117]. By construction, each $p^{-1}(t)$ is saturated, so it suffices to show that for ν-almost every t in $T,\left(G_{t},\left[\lambda^{t}\right]\right)$ is a virtual group.

Each G_{t} is a Borel subset of G and hence is an analytic Borel groupoid. For almost every t the measure $\widetilde{\lambda}_{t}$ is concentrated on $p^{-1}(t)$. For almost every u in $G^{(0)}$ the measure λ_{u} is a probability measure concentrated on $d^{-1}(u)$. Combining these two facts, we see that for almost every $t \in T$ the measure λ^{t} is concentrated on G_{t} and $d_{*}\left(\lambda^{t}\right)=\tilde{\lambda}_{t}$. Thus we may regard λ^{t} as a measure on G_{t} with a right quasi-invariant decomposition, so that $\left[\lambda^{t}\right]$ is right invariant. Since λ is symmetric, it follows that λ^{t} is symmetric for almost every t. Thus almost every ($G_{t},\left[\lambda^{t}\right]$) is a measurable groupoid.

Now we must show that almost every ($G_{t},\left[\lambda^{t}\right]$) is ergodic. Since T is analytic, there is a conull Borel set T_{0} which is standard in the relative Borel structure, and T_{0} can be chosen such that $t \in T_{0}$ implies that $\left(G_{t},\left[\lambda^{t}\right]\right)$ is a measurable groupoid, and all $\lambda^{t}, \tilde{\lambda}_{t}$ are probability measures, with $\tilde{\lambda}_{t}$ concentrated on $p^{-1}(t)$. If ($G_{t},\left[\lambda^{t}\right]$) is ergodic for almost every $t \in T_{0}$ then it is for almost every $t \in T$, so there is no loss of generality in replacing G by $G \mid p^{-1}\left(T_{0}\right)$ and T by T_{0}, i.e., we may suppose T is standard and $\left(G_{t},\left[\lambda^{t}\right]\right)$ is a measurable groupoid for every $t \in T$. We seek to apply Lemma A2.1.

Now define Hilbert bundles over T as follows: $\mathscr{H}(t)=L^{2}\left(\lambda^{t}\right)$, $\mathscr{\mathscr { C }}_{r}(t)=\left\{f \circ r: f \in L^{2}\left(\lambda_{t}\right)\right\}, \mathscr{H}_{d}(t)=\left\{f \circ d: f \in L^{2}\left(\widetilde{\lambda}_{t}\right)\right\}, \mathscr{H}^{\prime}(t)=L^{2}\left(\widetilde{\lambda}_{t}\right)$. For a bounded Borel function g on G, let $g_{d}(u)=\int g d \lambda_{u}$ and $g_{r}(u)=\int g d \lambda^{u}$
where $\lambda^{u}(E)=\lambda_{u}\left(\left\{x^{-1}: x \in E\right\}\right)$ for $u \in G^{(0)}$. Then g_{r} and g_{d} are bounded and Borel in $G^{(0)}$. The Borel structure on $T * \mathscr{H}$ is the smallest for which the projection onto T is Borel along with all functions ψ_{g} for bounded Borel g, where $\psi_{g}(t, f)=\int f(x) g(x) d \lambda^{t}(x)$. The same procedure is used for $T * \mathscr{\mathscr { C }}^{\prime}$. Now if f is in $L^{2}\left(\tilde{\lambda}_{t}\right)$ and g is bounded and Borel on $G, \int f \circ r(x) g(x) d \lambda^{t}(x)=\int f(u) g_{r}(u) d \widetilde{\lambda}_{t}(u)$. Hence $(t, f) \rightarrow$ ($t, f \circ r$) is Borel from $T * \mathscr{H}^{\prime}$ to $T * \mathscr{H}$. It is one-one since it is an isometry on each $\mathscr{H}^{\prime}(t)$, so the image is a Borel set. This image is $T * \mathscr{H}_{r}$. Similarly, $T * \mathscr{H}_{d}$ is a Borel subset of $T * \mathscr{H}$. Hence $T * \mathscr{H}_{r} \cap T * \mathscr{H}_{d}=T *\left(\mathscr{H}_{r} \cap \mathscr{H}_{d}\right)$ is a Borel set in $T * \mathscr{H}$.

Now let C be the set of points (t, f) in $T *\left(\mathscr{H}_{r} \cap \mathscr{H}_{d}\right)$ such that $f \neq 0$ and the vector f in $\mathscr{C}_{r}(t) \cap \mathscr{H}_{d}(t)$ is orthogonal to the vector represented by the constant function which is everywhere 1. This is $\left\{(t, f): f \neq 0\right.$ and $\left.\psi_{1}(t, f)=0\right\}$, so it is a Borel set. Let D be the projection of C into T. By the von Neumann selection lemma there is a Borel cross-section f of $T *\left(\mathscr{H}_{r} \cap \mathscr{H}_{d}\right)$ such that $f(t)=0$ for almost all $t \notin D$ and $f(t) \in C$ for almost all $t \in D$. Taking real and imaginary parts is a Borel operation, and the real and imaginary parts of each $f(t)$ are orthogonal to 1 , so we may suppose each $f(t)$ is real and orthogonal to 1 , and $f(t) \neq 0$ for almost all $t \in D$.

Now $L^{2}(\lambda)$ is isometric to the direct integral of the $\mathscr{H}(t)$'s, so there is a Borel function g on G in $L^{2}(\lambda)$ such that $f(t)$ is the class of g in $L^{2}\left(\lambda^{t}\right)$ for almost all t. There are Borel functions f_{1} and f_{2} on $G^{(0)}$ such that $g=f_{1} \circ r=f_{2} \circ d$ a.e., because $f(t) \in \mathscr{H}_{r}(t) \cap \mathscr{H}_{d}(t)$ always, i.e., f is a cross-section of both images of $T * \mathscr{H}^{\prime}$ and hence is an image of two cross-sections.

As in Lemma A2.1, $f_{1} \circ r=f_{1} \circ d$ a.e.; by passing to an equivalent function, we may suppose the sets $A_{1}=\left\{u \in G^{(0)}: f_{1}(u)>0\right\}$ and $A_{2}=$ $\left\{u \in G^{(0)}: f_{1}(u)<0\right\}$ are saturated. Now f_{1} is orthogonal to 1 relative to $\widetilde{\lambda}_{t}$ for ν-almost all t so $\left\{t: \tilde{\lambda}_{t}\left(A_{1}\right)>0\right\}$ and $\left\{t: \tilde{\lambda}_{t}\left(A_{2}\right)>0\right\}$ differ by a null set. Also, these sets differ from D by a null set, since f_{1} is nontrivial relative to $\tilde{\lambda}_{t}$ essentially for t in D. Since A_{1} is saturated, $\tilde{\lambda}_{t}\left(A_{1}\right)$ is 0 or 1 a.e.; $\tilde{\lambda}_{t}\left(A_{2}\right)=0$ or 1 a.e. also, and $\left\{t: \tilde{\lambda}_{t}\left(A_{1}\right)=1\right\}$ differs from $\left\{t: \tilde{\lambda}_{t}\left(A_{2}\right)=1\right\}$ by a null set. Thus both sets are null, so f_{1} is null, and therefore D is null. This proves the theorem.

Definition A2.6. Let ($G,[\mu]$) be a measurable groupoid and let (S, λ) be an analytic Borel G-space with q.i. measure. The measure λ is ergodic iff $(S * G,[\lambda * \mu])$ is an ergodic groupoid. An ergodic decomposition of (S, λ) relative to G is a Borel mapping q of S into an analytic Borel space T such that if $\lambda=\int \lambda_{t} d q_{*}(\lambda)(t)$ is a decomposition of λ relative to q then for $q_{*}(\lambda)$-almost all t in T the set
$q^{-1}(t)$ is invariant and the measure λ_{t} is concentrated on $q^{-1}(t)$ and is q.i. and ergodic.

Corollary A2.7. If (S, λ) is an analytic G-space with a quasiinvariant measure for a measurable groupoid (G, C) and C has an element with a left quasi-invariant decomposition then S has a decomposition into ergodic parts, which is essentially unique.

Lemma A2.8. The converse of Lemma A2.3 is true.
Proof. Take g to be some ergodic decomposition. Then modulo null sets, $\left\{g^{-1}(B): B\right.$ is Borel in $\left.Z\right\}=\left\{q^{-1}\left(h^{-1}(B)\right): B\right.$ is Borel in $\left.Z\right\} \subseteq$ $\left\{q^{-1}(B): B\right.$ is Borel in $\left.T\right\}$. Thus the latter set is dense in the saturated Borel sets, and by the proof of Theorem A2.5 we see that q is an ergodic decomposition.

A3. Commuting groupoid actions and closing of ranges of homomorphisms. The numbers in this section agree with those of § 3.

Definition A3.1. If S is an F-space and a G-space, we say the actions commute iff for $s \in S, \xi \in F$ and $x \in G$, if $s x$ and $s \xi$ are defined then so are $(s x) \xi$ and $(s \xi) x$ and they are equal.

Theorem A3.2. Let $(F,[\mu])$ and (G, $[\nu]$) be measured groupoids and let (S, λ, p) and (S, λ, q) be strict ($F,[\mu]$)- and ($G,[\nu]$)-spaces respectively. Suppose these actions commute. Then there is a strictly G-equivariant function $f: S \rightarrow G^{(0)} * \mathscr{F}$ which is an ergodic decomposition of $S * F$. If S^{\prime} is an analytic ($G,[\nu]$)-space and $f^{\prime}: S \rightarrow S^{\prime}$ is a (G, [$\left.\nu\right]$)-equivariant ergodic decomposition of $S * F$, then $\left(G^{(0)} * \mathscr{F}, f_{*}(\lambda)\right)$ and ($\left.S^{\prime}, f_{*}^{\prime}(\lambda)\right)$ are isomorphic ($\left.G,[\nu]\right)$-spaces.

Proof. First we describe a general method for constructing strictly G-equivariant functions from S to $G^{(0)} * \mathscr{F}$ and then show how to choose the ingredients to achieve the desired goal. Let $I=[0,1]$ and let $g: S \rightarrow I$ be any Borel function. For $s \in S, x \in G$ define $h(s)(x)=g(s x)$ if $p(s)=r(x)$ and 0 otherwise, and let $f(s)$ be the element of $\mathscr{F}(p(s))$ which is the equivalence class of $h(s)$. From the fact that $(s x) y=s(x y)$ when either side exists, it follows that $g((s x) y)=g(s(x y))$ if $(s x) y$ exists, and hence that $f(s x)=f(s) x$ if $(s, x) \in S * G$. If k is a bounded Borel function on G, the function taking ($s, x) \in S \times G$ to $h(s)(x) k(x)$ is Borel, so the function taking $s \in S$ to $\int h(s)(x) k(x) d \nu(r, p(s))(x)$ is Borel. Thus f is Borel.

Now we want to find a g such that the resulting f will be an ergodic decomposition. Let F_{v} be an i.c. of F on which μ has a q.i. decomposition and let $S_{0}=p^{-1}\left(F_{0}^{(0)}\right)$. Then S_{0} is conull and is a strict F_{0}-space. If $s \in S, x \in G$ and $q(s)=r(x)$, while $\xi \in F$ and $p(s)=$ $r(\xi)$, then $p(s x)=r(\xi)=p(s)$, because the actions commute. Hence S_{0} is G invariant and is a strict $G \mid q\left(S_{0}\right)$-space. Let $G_{0}=G \mid q\left(S_{0}\right)$.

Sets of the form $q^{-1}(A)$ for $A \in G^{(0)}$ are also F-invariant so in constructing a countable algebra Ω of F_{0}-invariant Borel sets in S_{0} to produce a strict ergodic decomposition of $S_{0} * F_{0}$ as in the proof of Theorem A2.4, we may assume $\mathscr{A} \supseteq\left\{p^{-1}(A): A \in \mathscr{A}\right\}$, where . \mathscr{R}_{0} is an countable generating algebra of Borel sets in $G_{0}^{(0)}$. Suppose $\pi: S_{0} \rightarrow T$ is a strict ergodic decomposition of $S_{0} * F_{0}$ so obtained. Then $\pi\left(s_{1}\right)=\pi\left(s_{2}\right)$ implies $p\left(s_{1}\right)=p\left(s_{2}\right)$, so there is a Borel function $q: T \rightarrow G_{0}^{(0)}$ such that $q \circ \pi=p$. Then q is automatically onto, and if we let $\lambda^{\prime}=\pi_{*}(\lambda), q_{*}\left(\lambda^{\prime}\right) \sim r_{*}(\nu)=\tilde{\nu}$.

Now let T^{\prime} be λ^{\prime}-conull and Borel in T with the property that $\left(\left(S_{0} * F_{0}\right) \mid \pi^{-1}(t),\left[(\lambda * \mu)^{t}\right]\right)$ is an ergodic groupoid for $t \in T^{\prime}$ (see the proof of Theorem A2.4). Notice that $\left(S_{0} * F_{0}\right) \mid \pi^{-1}(t)$ and $\left(S_{0} * G_{0}\right) * F_{0} \mid\left(\pi^{-1}(t) \times\{x\}\right)$ are isomorphic if $q(t)=r(x)$, and $\pi \times i$ takes $S_{0} * G$ onto $T * G=\{(t, x) \in$ $T \times G: q(t)=r(x)\}$. Let $\lambda=\int \lambda_{t} d \lambda^{\prime}(t)$ be a decomposition of λ relative to π. If λ_{t} is concentrated on $\pi^{-1}(t)$ then $\nu^{p(s)}=\nu^{q(t)}$ for λ_{t}-almost all s so $\int \varepsilon_{s} \times \nu^{p(s)} d \lambda_{t}(s)=\lambda_{t} \times \nu^{q(t)}$. For each such $t, \pi_{*}\left(\lambda_{t}\right)=\varepsilon_{t}$ and thus $(\pi \times i)_{\#}\left(\lambda_{t} \times \nu^{q(t)}\right)=\varepsilon_{t} \times \nu^{q(t)}$. By Lemma 1.2 of [13], $(\pi \times i)_{*}(\lambda * \nu)=$ $\lambda^{\prime} * \nu$. Then we see that

$$
\begin{aligned}
\int\left(\lambda_{t} \times \varepsilon_{x}\right) d\left(\lambda^{\prime} * \nu\right)(t, x) & =\iint\left(\lambda_{t} \times \varepsilon_{x}\right) d\left(\varepsilon_{t} \times \nu^{q(t)}\right)\left(t^{\prime}, x\right) d \lambda^{\prime}(t) \\
& =\int \lambda_{t} \times \nu^{q(t)} d \lambda^{\prime}(t)=\lambda * \nu
\end{aligned}
$$

Since $\lambda_{t} \times \varepsilon_{x}$ is concentrated on $\pi^{-1}(t) \times\{x\}$ if λ_{t} is concentrated on $\pi^{-1}(t)$, we see that $\pi \times i$ is an ergodic decomposition of $(S * G) * F$.

Now $\tau(s, x)=\left(s x, x^{-1}\right)$ defines a measure class preserving Borel automorphism of $S * G$ which commutes with the action of F, so if A is F-invariant so is $\tau(A)$. If \mathscr{B} is a countable generating algebra of Borel sets in $T * G$, then $\mathscr{A}^{+}=\left\{(\pi \times i)^{-1}(B): B \in \mathscr{B}\right\}$ is a countable algebra of Borel sets in $S * G$. Since $\pi \times i$ gives an ergodic decomposition, \mathscr{A}^{+}must be dense in the F-invariant sets in $S * G$. Let \mathscr{A}^{τ} be the smallest algebra containing \mathscr{A}^{+}and invariant under τ. Then \mathscr{Q}^{τ} is countable and dense in the F invariant sets so it gives rise to an ergodic decomposition π^{\prime} of $(S * G) * F$. Now π^{\prime} and $\pi \times i$ have the same level sets on some conull Borel set $Z \subseteq S * G$, and π^{\prime} and $\pi^{\prime} \circ \tau$ have the same level sets by the τ-invariance of \mathscr{A}^{τ}. Thus $\pi \times i$ and $(\pi \times i) \circ \tau$ have the
same level sets on Z. Let S_{1} be a conull Borel set in S_{0} such that Z is $\varepsilon_{s} \times \nu^{p(s)}$-conull for $s \in S_{1}$. Define $g: S \rightarrow I$ by letting $j: T \rightarrow I$ be an imbedding and taking g to be some extension of $j \circ \pi$.

We have $f\left(s_{1}\right)=f\left(s_{2}\right)$ iff $p\left(s_{1}\right)=p\left(s_{2}\right)$ and $g\left(s_{1} x\right)=g\left(s_{2} x\right)$ for $\nu^{p\left(s_{1}\right)}-$ almost all x. For $s_{1}, s_{2} \in S_{1}$, if $p\left(s_{1}\right)=p\left(s_{2}\right)=u$, then the set $X=$ $\left\{x \in r^{-1}(u):\left(s_{1}, x\right)\right.$ and $\left.\left(s_{2}, x\right) \in Z\right\}$ is ν^{u}-conull. Thus for $s_{1}, s_{2} \in S_{1}$, $f\left(s_{1}\right)=f\left(s_{2}\right)$ implies $\left\{x \in X: g\left(s_{1} x\right)=g\left(s_{2} x\right)\right\}$ is ν^{u}-conull. Since $x \in X$ implies $\left(s_{1}, x\right)$ and $\left(s_{2}, x\right) \in Z$, for $x \in X$ we have $\left(g\left(s_{1} x\right), x^{-1}\right)=\left(g\left(s_{2} x\right)\right.$, x^{-1}) iff $\left(g\left(s_{1}\right), x\right)=\left(g\left(s_{2}\right), x\right)$, so $f\left(s_{1}\right)=f\left(s_{2}\right)$ and $s_{1}, s_{2} \in S_{1}$ together imply $g\left(s_{1}\right)=g\left(s_{2}\right)$. Conversely, let $s_{1}, s_{2} \in S_{1}$ with $g\left(s_{1}\right)=g\left(s_{2}\right)$. Then $p\left(s_{1}\right)=$ $p\left(s_{2}\right)$, which we call u, and take X as before. Then $g\left(s_{1} x\right)=g\left(s_{2} x\right)$ for $x \in X$. Thus $f\left(s_{1}\right)=f\left(s_{2}\right)$. Hence f and g have the same level sets on S_{1}.

There is a conull set S_{2} such that if $s \in S_{2}, \xi \in F$ and $s \xi$ is defined and in S_{2}, then $g(s)=g(s \xi)$. We may assume that S_{1} is chosen so that $s \in S_{1}$ implies $a_{*}\left(\varepsilon_{s} \times \nu^{p(s)}\right)$ is concentrated on S_{2}. Then suppose $s \in S_{1}, \xi \in F$ and $s \xi \in S_{1}$. In that case, $\left\{x \in r^{-1}(p(s))\right.$: $s x$ and $(s \xi) x=(s x) \xi$ are in $\left.S_{1}\right\}$ is $\nu^{p(s)}$ conull, so $h(s)=h(s \xi)$ a.e., i.e., $f(s)=$ $f(s \xi)$. Hence f is an ergodic decomposition of $S * F$.

If f^{\prime} is taken as in the statement of the theorem, then by Lemma A2.2 there are Borel functions $h: G^{(0)} * \mathscr{F} \rightarrow S^{\prime}$ and $h^{\prime}: S^{\prime} \rightarrow$ $G^{(0)} * \mathscr{F}$ with $h \circ f=f^{\prime}$ a.e. and $h^{\prime} \circ f^{\prime}=f$ a.e. By Lemma $1.5, h$ and h^{\prime} may be taken to be equivariant. By the uniqueness in Lemma 2.3, $h \circ h^{\prime}$ and $h^{\prime} \circ h$ are the identities on conull sets.

In the process of constructing the closure of the range of a homomorphism, it will be necessary to construct some quasi-invariant measures. The next lemma gives one of the basic ingredients. First some preparation is needed.

Let ($G,[\nu]$) be a measured groupoid and let E be the equivalence relation on $G^{(0)}$ induced by G, i.e., $E=(r, d)(G) \subseteq G^{(0)} \times G^{(0)}$. Let $\nu^{\prime}=(r, d)_{*}(\nu)$.

Definition A3.3. We shall say that ν is (r, d)-quasi-invariant if it has decompositions $\nu=\int \nu_{u} d \tilde{\nu}(u)$ and $\nu=\int \nu_{v, u} d \nu^{\prime}(v, u)$ such that
(a) for $(v, u) \in E, \nu_{v, u}$ is concentrated on $r^{-1}(v) \cap d^{-1}(u)$,
(b) for $(v, u) \in E,\left(\nu_{v, u}\right)^{-1} \sim \nu$,
(c) if $r(x) \sim u$, then $\nu_{u, r(x)} \cdot x \sim \nu_{u, d(x)}$ and $x \cdot \nu_{d(x), u} \sim \nu_{r(x), u}$, and
(d) for $u \in G^{(0)}, \nu_{u}=\int \nu_{v, u} d\left(r_{*}\left(\nu_{u}\right)\right)(v)$.

As we explained just after Definition 3.3, G always has an i.c. on which the restricted measure is (r, d)-quasi-invariant.

Lemma A3.4. Let (G, [ע]) be a measured groupoid and suppose ν is (r, d)-quasi-invariant. Let λ be a finite measure on $G^{(0)}$ such
that $\lambda(A)=0$ iff $\tilde{\nu}(A)=0$ for Borel analytic sets $A \subseteq G^{(0)}$. Let $\nu_{1}=\int \nu_{u} d \lambda(u)$, and let $y \in G$ act on $x \in G$ by $x * y=y^{-1} x$ provided $r(x)=r(y)$. Then ν_{1} is quasi-invariant.

Proof. If $A \subseteq G^{(0)}$ is Borel, then $U=\left\{u \in G^{(0)}: r_{*}\left(\nu_{u}\right)(A)=0\right\}$ is a saturated Borel set. Now $r_{*}\left(\nu_{1}\right)(A)=\int r_{*}\left(\nu_{u}\right)(A) d \lambda(u)$ which is 0 iff U is λ-conull iff U is $\tilde{\nu}$-conull iff $\tilde{\nu}(A)=\int r_{*}\left(\nu_{u}\right)(A) d \tilde{\nu}(u)$ is 0 . Hence $r_{*}\left(\nu_{1}\right) \sim \tilde{\nu}$ and we can decompose $\nu_{1}=\int \nu_{1}^{u} d \widetilde{\nu}(u)$ over $\tilde{\nu}$ relative to r. The proof will be complete if $\nu_{1}^{r(y)} * y=y^{-1} \nu_{1}^{r(y)} \sim \nu_{1}^{d(y)}$ whenever $y \in G$.

To this end, we seek another more convenient way to write the decomposition. First of all, define $\lambda_{v}=\int d_{*}\left(\nu_{1}^{u}\right) d\left(r_{*}\left(\nu_{v}\right)\right)(u)$ for $v \in G^{(0)}$. Then $v \sim w$ implies $\lambda_{v} \sim \lambda_{w}$ because $r_{*}\left(\nu_{v}\right) \sim r_{*}\left(\nu_{w}\right)$. Also

$$
\begin{aligned}
\int \lambda_{v} d \tilde{\nu}(v) & =\iint d_{*}\left(\nu_{1}^{u}\right) d\left(r_{*}\left(\nu_{v}\right)\right)(u) d \tilde{\nu}(v) \\
& =\int d_{*}\left(\nu_{1}^{u}\right) d \tilde{\nu}(u) \\
& \left.=d_{*}\left(\int \nu_{1}^{u} d \tilde{\nu}(u)\right)\right) \\
& =\lambda
\end{aligned}
$$

Now define $\nu_{2}^{v}=\int \nu_{v, u} d \lambda_{v}(u)$. Then for any $w \in G^{(0)}$,

$$
\begin{aligned}
\int \nu_{2}^{v} d\left(r_{*}\left(\nu_{w}\right)\right)(v) & \sim \iint \nu_{v, u} d \lambda_{w}(u) d\left(r_{*}\left(\nu_{w}\right)\right)(v) \\
& =\iint \nu_{v, u} d\left(r_{*}\left(\nu_{w}\right)\right)(v) d \lambda_{w}(u) \\
& \sim \iint \nu_{v, u} d\left(r_{*}\left(\nu_{u}\right)\right)(v) d \lambda_{w}(u) \\
& =\int \nu_{u} d \lambda_{w}(u) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int \nu_{2}^{\nu} d \tilde{\nu}(v) & \sim \iint \nu_{u} d \lambda_{w}(u) d \tilde{\nu}(w) \\
& =\int \nu_{u} d \lambda(u) \\
& =\nu_{1} .
\end{aligned}
$$

Now ν_{2}^{v} is concentrated on $r^{-1}(v)$, so this is a decomposition of a measure equivalent to ν_{1} and by essential uniqueness we have $\nu_{2}^{\nu} \sim \nu_{1}^{v}$ a.e. relative to $\tilde{\nu}$, so we may as well assume $\nu_{1}^{v} \sim \nu_{2}^{v}$ always. Then for $y \in G$ we have

$$
\begin{aligned}
y \cdot \nu_{1}^{d(y)} & \sim y \cdot \int \nu_{d(y), u} d \lambda_{d(y)}(u) \\
& =\int y \cdot \nu_{d(y), u} d \lambda_{d(y)}(u) \\
& \sim \int \nu_{r(y), u} d \lambda_{r(y)}(u) \\
& \sim \nu_{1}^{\tau(y)}
\end{aligned}
$$

Theorem A3.5. Let $(F,[\mu])$ be a measured groupoid, let (G, [$\nu]$) be a measured groupoid for which ν is (r, d)-quasi-invariant and let $\varphi: F \rightarrow G$ be a homomorphism. Then there are i.c.'s F_{0} and G_{0} of F and $G, a \operatorname{strict}\left(G_{0},[\nu]\right)$-space $\left(S_{\varphi}, \lambda\right)$ and a strict homomorphism $\varphi^{\prime}: F_{0} \rightarrow S_{\varphi} * G_{0}$ such that $\varphi \mid F_{0}=j \circ \varphi^{\prime}$, where $j: S_{\varphi} * G_{0} \rightarrow G_{0}$ is the inclusion (coordinate projection).

Definition A3.6. We call ($\left.S_{\varphi} * G,[\lambda * \nu]\right)$ the closure of the range of φ, and will denote j by j_{φ} when necessary to identify its connection with φ.

Proof of theorem. First replace F by an i.c. so that φ is strict and let $T=G * F^{(0)}=\{(x, u): d(x)=\widetilde{\varphi}(u)\}$. By passing to an i.c. if necessary, we may have $G^{(0)}=\left[\varphi\left(F^{(0)}\right)\right]$. Then let G, F act on T by $(x, u) y=\left(y^{-1} x, u\right)$ if $r(x)=r(y)$ and $(x, u) \xi=(x \varphi(\xi), d(\xi))$ if $u=r(\xi)$. It is easy to see that these actions commute and that $p(x, u)=r(x)$ defines the projection of T into $G^{(0)}$ involved in making T a G-space, while $p^{\prime}(x, u)=u$ defines the one for F.

Next we must construct a suitable measure on T. First form $\nu_{1}=\int \nu_{u} d\left(\varphi_{*}(\tilde{\mu})\right)(u)$. Then ν_{1} is carried on $X=d^{-1}\left(\varphi\left(F^{(0)}\right)\right)$ and X is the projection of T into G. By Lemma A3.4, ν_{1} is quasi-invariant under the action of G on X given by letting $y \in G$ act on $x \in X$ if $r(x)=r(y)$ and then $x * y=y^{-1} x$. Also, the coordinate projection of T onto X partitions the action of G on T over X. The measure we need is $\nu_{1} * \tilde{\mu}=\int\left(\varepsilon_{x} \times \tilde{\mu}_{d(x)}\right) d \nu_{1}(x)=\int\left(\nu_{\tilde{\varphi}(u)} \times \varepsilon_{u}\right) d \tilde{\mu}(u)$.

To see that $\nu_{1} * \widetilde{\mu}$ is G-quasi-invariant, use the first formula for it. Clearly the decomposition of $\nu_{1} * \tilde{\mu}$ given above is the relevant one for the partition of T over X and $\left(\varepsilon_{x} \times \tilde{\mu}_{d(x)}\right) y=\varepsilon_{y^{-1} x} \times \tilde{\mu}_{d\left(y^{-1} x\right)}$ so $\nu_{1} * \tilde{\mu}$ is quasi-invariant by Theorem 2.9 of [19].

To see that $\nu_{1} * \tilde{\mu}$ is F-quasi-invariant, use the second formula. The coordinate projection of $G * F^{(0)}$ onto $F^{(0)}$ partitions the action. If $r(\xi)=u$ and $d(\xi)=v$, for $\xi \in F$, then $(x, u) \mapsto(x \varphi(\xi), v)=(x, u) \xi$ maps $d^{-1}(\varphi(u)) \times\{u\}$ one-one onto $d^{-1}(\varphi(v)) \times\{v\}$ and carries $\nu_{\varphi(u)} \times \varepsilon_{u}$ to $\left(\nu_{\varphi(u)} \varphi(\xi)\right) \times \varepsilon_{v}$ which is equivalent to $\nu_{\varphi(v)} \times \varepsilon_{v}$ because $d(\varphi(\xi))=$ $\varphi(v)$ and $\nu_{r(x)} x \sim \nu_{d(x)}$ always. Again by Theorem 2.9 of [19], $\nu_{1} * \tilde{\mu}$
is F-quasi-invariant.
By Theorem A3.2 there are an i.c. G_{1} of G, a $\nu_{1} * \tilde{\mu}$-conull $G_{1}-$ invariant set $T_{1} \subseteq T$ and a Borel function $f: T \rightarrow G^{(0)} * \mathscr{F}$ such that f is strictly G-equivariant and an ergodic decomposition of ($T * F$) and $f(t \xi)=f(t)$ whenever $t \in T_{1}, \xi \in F$ and $t \xi$ is defined. Then for $x, y \in G_{1}$ and $u \in F^{(0)}$ with $r(x)=r(y)$ and $(x, u) \in T_{1}$ we have $\left(y^{-1} x, u\right) \in$ T_{1}. If $d(z)=d(x)$ and $z \in G_{1}$, we can take $y=x z^{-1}$ to show that $(z, u) \in T_{1}$. Let V_{1} be the projection of T_{1} onto $F^{(0)}$. We have proved that $T_{1}=d^{-1}\left(\varphi\left(V_{1}\right)\right) * V_{1}$. Now T_{1} is conull so V_{1} is $\tilde{\mu}$-conull and hence $\varphi\left(V_{1}\right)$ is $\varphi_{*}(\tilde{\mu})$-conull. Let U_{0} be a $\varphi_{*}(\tilde{\mu})$-conull Borel set contained in $\varphi\left(V_{1}\right)$. Then let $V_{0}=\widetilde{\varphi}^{-1}\left(U_{0}\right), F_{0}=F\left|V_{0}, G_{0}=G\right|\left[U_{0}\right]$, and $T_{0}=d^{-1}\left(U_{0}\right) * V_{0}$. Then T_{0} is G_{0}-invariant and conull and $f: T_{0} \rightarrow$ $G_{0}^{(0)} * \mathscr{F} " \subseteq " G^{(0)} * \mathscr{F}$ is equivariant. Also $(T * F) \mid T_{0}=T_{0} * F_{0}$. If we set $S_{\varphi}=G_{0}^{(0)} * \mathscr{F}$ and $\lambda=\left(f \mid T_{0}\right)_{*}\left(\nu_{1} * \tilde{\mu}\right)$, then λ is quasi-invariant since $\lambda * \nu$ is the image of $\left(\nu_{1} * \widetilde{\mu}\right) * \nu$.

The next consideration is the strict homomorphism $\varphi^{\prime}:\left(F_{0},[\mu]\right) \rightarrow$ $\left(S_{\varphi} * G_{0},[\lambda * \nu]\right)$. We want to define $\varphi^{\prime}(\xi)=(f(\varphi(r(\xi)), r(\xi)), \varphi(\xi))$ as in Theorem 7.8 of [18]. This gives $j \circ \varphi^{\prime}=\varphi$ on F_{0}, and we must verify several facts. First let $q: S_{\varphi} \rightarrow G_{0}^{(0)}$ be defined by $q \circ f=p$; of course q is also the natural projection of $G_{0}^{(0)} * \mathscr{F}$ onto $G_{0}^{(0)}$. Then for $\xi \in F_{0}$, $q(f(\varphi(r(\xi)), r(\xi)))=p(\varphi(r(\xi))), r(\xi))=\varphi(r(\xi))=r(\varphi(\xi))$ so $(f(\varphi(r(\xi)), r(\xi))$, $\varphi(\xi)) \in S_{\varphi} * G$, i.e., $\varphi^{\prime}\left(F_{0}\right) \subseteq S_{\varphi} * G$. Next, $f(\varphi(r(\xi)), r(\xi)) \varphi(\xi)=f((\varphi(r(\xi))$, $r(\xi)) \varphi(\xi))=f\left(\varphi(\xi)^{-1}, r(\xi)\right)=f\left((\varphi(d(\xi)), d(\xi)) \xi^{-1}\right)=f(\varphi(d(\xi)), d(\xi))$. From this it follows easily that φ^{\prime} is algebraically a homomorphism. Clearly φ^{\prime} is Borel. To prove φ^{\prime} has the proper measure theoretic behavior, let E be saturated in S_{φ}. Then $f^{-1}(E)$ is a Borel set and is invariant under both F and G, so its projection, V, into $F_{0}^{(0)}$ is analytic and $f^{-1}(E)=d^{-1}(\varphi(V)) * V$. Since almost every ν_{u} is a probability measure, $\nu_{1} * \tilde{\mu}\left(f^{-1}(E)\right)=\tilde{\mu}(V)$. Thus E is null iff V is. Since $V=\left(\widetilde{\rho}^{\prime}\right)^{-1}(E)$, we have the desired result.

We have constructed the closure of the range of a homomorphism of virtual groups if it takes values in a groupoid with an (r, d)-quasi-invariant measure. For the general case, we observe that ($G,[\nu]$) always has an i.c. G_{0} on which ν is ($\left.r, d\right)$ quasi-invariant, and φ is similar to a homomorphism φ_{0} taking values in G_{0}. We need to see that $S_{\varphi_{0}}$ does not really depend on the choice of φ_{0}, as the following lemma shows.

Lemma A3.7. Let ($G,[\nu]$) be a measured groupoid in which ν is ($r, d)$-quasi-invariant and let φ_{1}, φ_{2} be similar homomorphisms of a measurable groupoid ($F,[\mu]$) into ($G,[\nu]$). Let $T_{1}=T\left(\varphi_{1}\right)=$ $\left\{(x, u) \in G \times F^{(0)}: d(x)=\varphi_{1}(u)\right\}$ and take the measure $\nu_{1}=\int \nu_{u} d\left(\varphi_{1 *}(\tilde{\mu})\right)(u)$ on $d^{-1}\left(\varphi_{1}\left(F^{0}\right)\right)$ and $\nu_{1} * \tilde{\mu}$ on T_{1}. Similarly form $T_{2}=T\left(\varphi_{2}\right), \nu_{2}$ and
$\nu_{2} * \tilde{\mu}$. Then there are i.c.'s F_{0} and G_{0} of F and G and F_{0} and $G_{0^{-}}$ invariant conull analytic sets $T_{1}^{*} \subseteq T_{1}$ and $T_{2}^{*} \subseteq T_{2}$ which are strictly isomorphic as F_{0} and G_{0}-spaces under a measureclass-preserving function f. Hence $\left(S_{\varphi_{1}}, \lambda_{1}\right)$ and ($S_{\varphi_{2}}, \lambda_{2}$) have strictly isomorphic analytic conull G_{0}-invariant subspaces.

Proof. Suppose $\theta: F^{(0)} \rightarrow G$ is Borel and $\theta \circ r(\xi) \varphi_{2}(\xi)=\varphi_{1}(\xi) \theta \circ d(\xi)$ for almost every $\xi \in F$. Then there is an i.c. F_{1} of such that φ_{1}, φ_{2} and the similarity are all strict on F_{1}. Set $G_{0}=G \mid\left(\left[\varphi_{1}\left(F_{1}^{(0)}\right)\right] \cap\right.$ $\left[\varphi_{2}\left(F_{1}^{(0)}\right)\right]$) and set $F_{0}=F \mid\left(\widetilde{\varphi}_{1}^{-1}\left(G_{0}^{(0)}\right) \cap \widetilde{\varphi}_{2}^{-1}\left(G_{0}^{(0)}\right)\right)$. Then $\left[\varphi_{1}\left(F_{0}^{(0)}\right)\right]=$ $\left[\varphi_{2}\left(F_{0}^{(0)}\right)\right]=G_{0}^{(0)}$, and $T_{1}^{*}=d^{-1}\left(\varphi_{1}\left(F_{0}^{(0)}\right)\right) * F_{0}^{(0)}$ is conull in T_{1} while $T_{2}^{*}=$ $d^{-1}\left(\varphi_{2}\left(F_{0}^{(0)}\right)\right) * F_{0}$ is conull in T_{2}.

Now define $f(x, u)=(x \theta(u), u)$ for $(x, u) \in T_{1}^{*}$ and $g(x, u)=$ $\left(x \theta(u)^{-1}, u\right)$ for $(x, u) \in T_{2}^{*}$, as we can since $r \circ \theta=\widetilde{\varphi}_{1}$ and $d \circ \theta=\widetilde{\varphi}_{2}$. These are mutual inverses, so each is one-one and onto; each is clearly Borel. The similarity equation forces f to be F_{0}-equivariant and f is clearly G-equivariant. Now $f_{*}\left(\nu_{\varphi_{1}(u)} \times \varepsilon_{u}\right)=\left(\nu_{\varphi_{1}(u)} \theta(u)\right) \times \varepsilon_{u} \sim$ $\nu_{\varphi_{2}(u)} \times \varepsilon_{u}$ for each $u \in F_{0}^{(0)}$, so $f_{*}\left(\nu_{1} * \tilde{\mu}\right) \sim \nu_{2} * \tilde{\mu}$, as desired. Since T_{1}^{*} and T_{2}^{*} are isomorphic, we can carry the quotient mapping of T_{1}^{*} onto $S_{\varphi_{1}}$ over to T_{2}^{*} via f and get a quotient mapping of T_{2}^{*} onto $S_{\varphi_{1}}$ which is an ergodic decomposition of $T_{2}^{*} * F_{0}$. Thus $S_{\varphi_{1}}$ may be used for $S_{\varphi_{2}}$, ending the proof.

A4. Functorial properties of the range closure construction. The numbers in this section agree with those in $\S 4$.

Lemma A4.1. Suppose $\mathscr{F}_{1}=\left(\left(F_{1},\left[\lambda_{1}\right]\right), \varphi_{1}\right)$ and $\mathscr{F}_{2}=\left(\left(F_{2},\left[\lambda_{2}\right]\right), \varphi_{2}\right)$ are in $\mathscr{M}(G), \varphi_{2}$ is strict, ψ is a homomorphism of \mathscr{F}_{1} to \mathscr{F}_{2} and $\theta: F_{1}^{(0)} \rightarrow G$ is a Borel function for which $\theta \circ r(\xi) \varphi_{2} \circ \psi(\xi)=\varphi_{1}(\xi) \theta \circ d(\xi)$ for almost all ξ. Then there is a G-equivariant normalized $h=$ $M(\psi, \theta): S_{\varphi_{1}} \rightarrow S_{\varphi_{2}}$ obtained as the essential quotient of the function f^{θ} from $T_{1}=G * F_{1}^{(0)}$ to $T_{2}=G * F_{2}^{(0)}$ defined by $f^{\theta}(x, u)=(x \theta(u), \psi(u))$.

Proof, There is no loss of generality in supposing ψ and the similarity θ of $\varphi_{2} \circ \psi$ with φ_{1} are strict. Then $r \circ \theta=\widetilde{\varphi}_{1}$ implies that $x \theta(u)$ is defined when $(x, u) \in T_{1}$, and $d \circ \theta=\left(\mathscr{C}_{2} \circ \psi\right)^{\sim}$ implies that $f^{\theta}(x, u) \in T_{2}$. Furthermore, if $r(\xi)=u$ then $f^{\theta}((x, u) \xi)=f^{\theta}\left(x \varphi_{1}(\xi)\right.$, $d(\xi))=\left(x \varphi_{1}(\xi) \theta \circ d(\xi), \psi \circ d(\xi)\right)=\left(x \theta \circ r(\xi) \varphi_{2} \circ \psi(\xi), \psi \circ d(\xi)\right)=f^{\theta}(x, u) \psi(\xi)$, while $r(y)=r(x)$ implies $f^{\theta}((x, u) y)=f^{\theta}(x, u) y$. Now suppose G_{0} is an i.c. of G and $g_{1}: T_{1} \rightarrow G^{(0)} * \mathscr{F}$ and $g_{2}: T_{2} \rightarrow G^{(0)} * \mathscr{F}$ are ergodic decompositions of the actions of F_{1} and F_{2} which are strictly $G_{0^{-}}$ equivariant on conull analytic G_{0}-invariant sets $X_{1} \subseteq T_{1}$ and $X_{2} \subseteq T_{2}$ and have F_{1} or F_{2} invariant level sets on X_{1} and X_{2}. Then $g_{2} \circ f^{\theta}$ is constant on all F_{1}-orbits in X_{1} so by Lemma A2.3 there is a Borel
function h from $G^{(0)} * \mathscr{F}$ to $G^{(0)} \circ \mathscr{F}$ such that $h \circ g_{1}=g_{2} \circ f^{\theta}$ a.e. Since g_{1}, g_{2}, f^{θ} are equivariant, by Lemma A1.2 we may suppose h is algebraically strictly equivariant on a conull analytic G_{1}-invariant set for some i.c. $G_{1} \subseteq G_{0}$. We may as well suppose $G_{1}=G_{0}$.

Now to show that h^{-1} has the proper behavior on saturated sets, let A be analytic and G_{0}-invariant in $S_{\varphi_{2}}$. Then $g_{2}^{-1}(A)$ is analytic in T_{2} and $B=g_{1}^{-1}(A) \cap X_{2}$ is G_{0}-invariant and also F_{2}-invariant relative to X_{2}. Now X_{2} is invariant under some i.c. of F_{2}, so by passing to another i.c. we may suppose X_{2} is invariant. Then B is F_{2}-invariant. Now use the fact that μ has an (r, d)-quasiinvariant decomposition on G_{0}, and $\mu=\int \mu_{u} d \tilde{\mu}(u)$. In that case, for $v=r(\xi)$ with $\xi \in F_{2},\left(\mu_{\varphi_{2}(v)} \times \varepsilon_{v}\right) \xi \sim \mu_{\varphi_{2}(d(\xi))} \times \varepsilon_{d(\xi)}$. Hence the set $V=$ $\left\{v \in F_{2}^{(0)}:\left(\mu_{\varphi_{2}(v)} \times \varepsilon_{v}\right)(B)>0\right\}$ is invariant. If A is a null set, $g_{2}^{-1}(A)$ is null, so B is null, and hence V is null. Because ψ is a homomorphism, $\widetilde{\psi}^{-1}(V)$ is null. For $u \in F_{1}^{(0)}$, the u-section of $\left(f^{\theta}\right)^{-1}(B)$ is $B_{\psi(u)} \theta(u)^{-1}$ (a translate of the $\psi(u)$-section of B) which is null unless $u \in \tilde{\psi}^{-1}(V)$ because the decomposition is quasi-invariant. Thus $\left(f^{\theta}\right)^{-1}(B)$ is null. Now $g_{1}^{-1}\left(h^{-1}(A)\right)$ differs from $\left(f^{\theta}\right)^{-1}\left(g_{2}^{-1}(A)\right)$ by a null set and $\left(f^{\theta}\right)^{-1}\left(T_{2}-X_{2}\right)$ is null, by the argument just used, so $h^{-1}(A)$ is null.,

On the other hand, if A has positive measure, so does B, so V has positive measure. It follows that the set $\widetilde{\psi}^{-1}(V)$ has positive measure. The u-section of $\left(f^{\theta}\right)^{-1}(B)$ will have positive measure for $u \in \tilde{\psi}^{-1}(V)$, so $\left(f^{0}\right)^{-1}(B)$ has positive measure, and $h^{-1}(A)$ has positive measure.

Lemma A4.2. Under the hypotheses of Lemma A4.1, if δ is another similarity of $\varphi_{2} \circ \psi$ with φ_{1} and φ_{2} is strict, then $M(\psi, \delta)$ is similar to $M(\psi, \theta)$.

Proof. Let F_{3} be an i.c. of F_{1} on which both similarities are strict. Then $T_{3}=d^{-1}\left(\varphi_{1}\left(F_{3}^{(0)}\right)\right) * F_{3}^{(0)}$ is F_{3} invariant in $T_{1}=T\left(\varphi_{1}\right)$ and is also $G_{1}=G \mid\left[\varphi\left(F_{3}^{(0)}\right)\right]$ invariant. Hence the quotient of T_{3} in $S_{\varphi_{1}}$ is G_{1}-invariant and conull, so we may suppose the similarities were strict on F_{1}. Then define $\alpha(x, u)=x \theta(u) \delta(u)^{-1} x^{-1}$. It is easily seen that the product does exist and that α is Borel from T_{1} to G. Also $f^{\theta}(x, u) \alpha(x, u)$ is always defined and equal to $f^{\delta}(x, u)$, while $\alpha((x, u) \xi)=$ $\alpha(x, u)$ for $\xi \in F_{1}$ if $(x, u) \xi$ is defined, and $\alpha((x, u) y)=y^{-1} \alpha(x, u) y$ if $r(y)=r(x)$. Using Lemma A2.3 we see that there is a Borel $\beta: S_{\varphi_{1}} \rightarrow G$ such that $\beta \circ g_{1}=\alpha$ a.e. Lemma A1.2 says that there is a choice of β for which $\beta(s y)=y^{-1} \beta(s y) y$ as long as s is in a certain conull analytic saturated set, i.e., G_{0}-invariant for some i.c. G_{0}. It is not hard to see that $M(\psi, \theta)(s) \beta(s)=M(\psi, \delta)(s)$ for almost
all $s \in S_{\varphi_{1}}$, so $[M(\psi, \theta)]=[M(\psi, \delta)]$.
Definition A4.3. Call this class of maps [$M(\psi)$].
Lemma A4.4. If μ is (r, d)-quasi-invariant on G and $\psi_{1}: \mathscr{F}_{1} \rightarrow$ \mathscr{F}_{2} is a homomorphism, where $\mathscr{F}_{2}=\left(\left(F_{2},\left[\lambda_{2}\right], \varphi_{2}\right)\right.$ with φ_{2} strict, and $\psi_{2}:\left(F_{1},\left[\lambda_{1}\right]\right) \rightarrow\left(F_{2},\left[\lambda_{2}\right]\right)$ is a homomorphism with $\left[\psi_{2}\right]=\left[\psi_{1}\right]$ then $\psi_{2}: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ is a homomorphism and $\left[M\left(\psi_{1}\right)\right]=\left[M\left(\psi_{2}\right)\right]$.

Proof. The first assertion follows immediately from the definition of homomorphism. We may suppose, as before, that θ_{1} is a strict similarity of $\varphi_{2} \circ \psi_{1}$ with ψ_{1} and that θ is a strict similarity of ψ_{2} with ψ_{1}. If $\theta_{2}(u)=\theta_{1}(u) \varphi_{2} \circ \theta(u)$, then for $\xi \in F_{1}$ we have $\theta_{2} \circ \boldsymbol{r}(\xi) \varphi_{2} \circ \psi_{2}(\xi)=\varphi_{1}(\xi) \theta_{2} \circ d(\xi)$. Let $f_{1}^{\theta_{1}}(x, u)=\left(x \theta_{1}(u), \psi_{1}(u)\right), f_{2}^{\theta_{2}}(x, u)=$ $\left(x \theta_{2}(u), \psi_{2}(u)\right)$ for $(x, u) \in T_{1}$. Then $f_{1}^{\theta_{1}}(x, u) \theta(u)=\left(x \theta_{1}(u) \varphi_{2} \circ \theta(u), d \circ \theta(u)\right)=$ $f_{2}^{\theta_{2}}(x, u)$ because $r \circ \theta=\tilde{\psi}_{1}$ and $d \circ \theta=\tilde{\psi}_{2}$. Hence $g_{2} \circ \rho_{1}^{\theta_{1}}=g_{2} \circ f_{2}^{\theta_{2}}$ which implies that $M\left(\psi_{1}, \theta_{1}\right) \circ g_{1}=M\left(\psi_{2}, \theta_{2}\right) \circ g_{1}$ a.e. and hence that $\left[M\left(\psi_{1}\right)\right]=$ $\left[M\left(\psi_{1}, \theta_{1}\right)\right]=\left[M\left(\psi_{2}, \theta_{2}\right)\right]=\left[M\left(\psi_{2}\right)\right]$.

For a definition of $M[\psi]$, see $\S 4$.
Lemma A4.5. If $\dot{\psi}_{1}: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ and $\dot{\psi}_{2}: \mathscr{F}_{2} \rightarrow \mathscr{F}_{3}$ are homomorphism, for $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}$ in $\mathscr{M}(G)$, then $M\left(\left[\psi_{2}\right] \circ\left[\psi_{1}\right]\right)=M\left[\psi_{2}\right] \circ M\left[\psi_{3}\right]$.

Proof. We may assume that μ is (r, d)-quasi-invariant. By taking i.c.'s in the proper order we may suppose (φ_{3}, ψ_{2}), (φ_{2}, ψ_{1}) and (ψ_{2}, ψ_{1}) are composable and that we have strict similarities θ_{1} of $\rho_{2} \circ \psi_{1}$ with φ_{1} and θ_{2} of $\varphi_{3} \circ \psi_{2}$ with φ_{2}. Then $\theta(u)=\theta_{1}(u) \theta_{2} \circ \widetilde{\psi}_{1}(u)$ defines a strict similarity of $\varphi_{3} \circ \psi$ with φ_{1}, where $\psi=\dot{\psi}_{2} \circ \psi_{1}$. Then $f^{\theta}=f_{2}^{\theta_{2}} \circ f_{1}^{\theta_{1}}$. Now $X=\left\{t \in G * F_{2}^{(0)}: M\left(\psi_{2}, \theta_{2}\right) \circ g_{2}(t)=g_{3} \circ f_{2}^{\theta_{2}}(t)\right\}$ contains a conull invariant Borel set since both functions are equivariant and Borel and they agree a.e. Hence $\left(f_{1}^{\theta_{1}}\right)^{-1}(X)$ has the same property, so we see that $M\left(\psi_{2}, \theta_{2}\right) \circ M\left(\psi_{1}, \theta_{1}\right) \circ g_{1}=M\left(\psi_{2}, \theta_{2}\right) \circ g_{2} \circ f_{1}^{\theta_{1}}=g_{3} \circ f^{\theta}$ a.e. Hence $M\left(\psi_{2}, \theta_{2}\right) \circ M\left(\psi_{1}, \theta_{1}\right)=M(\psi, \theta)$ a.e. which gives the desired result.

References

1. L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc., No. 62 (1966).
2. Dang-Ngoc Nghiem, Decomposition et classification des systèmes dynamiques, Bull. Soc. Math. France, 103 (1975), 149-175.
3. J. Dixmier, les C*-Algèbres et Leur Représentations, Gauthier-Villars, Paris, 1964.
4. E. Effros, Global structure in von Neumann algebras, Trans. Amer. Math. Soc., 121 (1966), 434-454.
5. C. Ehresmann, Gattungen von lokalen Strukturen, Über. Deutsch. Math. Verein,

60 (1957), 49-77.
6. P. Hahn, Haar measure and Convolution Algebras on Ergodic Groupoids, Thesis, Harvard University, Cambridge, Mass., 1975.
7. -, The regular representation of measure groupoids, Trans. Amer. Math. Soc., 242 (1978), 5-72.
8. , The σ-representations of amenable groupoids, preprint.
9. A. Kleppner, Ergodic decompositions of quasi-invariant positive forms, preprint.
10. K. Lange, A reciprocity theorem for ergodic actions, Trans. Amer. Math. Soc., 167 (1972), 59-78.
11. G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), 265-311.
12. Unitary representations of group extensions, I., Acta. Math., 99 (1958), 265-311.
13. - Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.
14. -, Infinite dimensional group representations, Bull. Amer. Math. Soc., 69 (1963), 628-686.
15. - Ergodic theory, group theory, and differential geometry, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1184-1191.
16. - Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.
17. J von Neumann, Zur operatorenmethode in der klassischen mechanik, Ann. Math., 33 (1932), 587-642.
18. A. Ramsay, Virtual groups and group actions, Adv. Math., 6 (1971), 253-322.
19. -, Boolean duals of virtual groups, J. Functional Annal., 15 (1974), 56-101.
20. -, Nontransitive quasiorbits in Mackey's analysis of group extensions. Acta Math.. 137 (1976), 17-48.
21. C. Series, Ergodic Actions of Product Groups, Harvard Ph. D. Thesis, 1976.
22. J. J. Westman, Virtual group homomorphisms with dense range, Illinois J. Math., 20 (1976), 41-47.
23. R. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Anal., 27 (1978), 350-372.

Received October 13, 1978 and in revised form January 8, 1979. This work was supported in part by the NSF.

University of Colorado
Boulder, CO 80309

