MOD p DECOMPOSITIONS OF H-SPACES; ANOTHER APPROACH

John McCleary

Abstract

Let M and M^{\prime} be unstable modules over the mod p Steenrod algebra such that there are spaces Y and Y^{\prime} with $H^{*}\left(Y ; Z_{p}\right)=U(M)$ and $H^{*}\left(Y^{\prime} ; Z_{p}\right)=U\left(M^{\prime}\right)$. Here $U()$ is the free-associative-graded-commutative-unstable algebra functor introduced by Steenrod. Suppose $g: M^{\prime} \rightarrow M$ is a morphism of unstable modules. We develop an obstruction theory which decides when g can be realized by a map G : $Y_{(p)} \rightarrow Y_{(p)}^{\prime}$, that is, $g=\left.H^{*}\left(G, Z_{p}\right)\right|_{M^{\prime}}$. We then apply this obstruction theory to obtain p-equivalences of certain H-spaces with products of spheres and sphere bundles over spheres which are determined by the cohomology structure of the H-space.

The decomposition of H-spaces into products of simpler spaces has been extensively studied by various authors $[5,7,8,9,12,15$, 16, 17]. The problem is to obtain conditions on an arbitrary H space and a prime p for which $H^{*}\left(Y ; Z_{p}\right)$ completely determines the $\bmod p$ homotopy type of Y. In [7] Hopf showed that a finitedimensional H-space is rationally equivalent to a product of odddimensional spheres. For a simply-connected Lie group, Serre [15], Kumpel [8] and later Mimura and Toda [14] have provided conditions for which a group is p-equivalent to a product of odd-dimensional spheres and spaces, $B_{n}(p)$, which are sphere bundles over spheres.

The main thrust of this paper is to describe an obstruction theory, based on techniques of Massey and Peterson [10], which is used to prove

Theorem A. ([9]). Let Y be a mod $p H$-space where
(1) $H^{*}\left(Y ; Z_{p}\right)$ is primitively generated,
(2) $H^{*}\left(Y ; Z_{p}\right)=\Lambda\left(x_{2 n_{1}+1}, \cdots, x_{2 n_{l}+1}\right)$ where $n_{1} \leqq n_{2} \leqq \cdots \leqq n_{l}$, and
(3) $p \geqq n_{l}-n_{1}+2$,

Theorem B. Let Y be a mod $p H$-space where
(1) $H^{*}\left(Y ; Z_{p}\right)$ is primitively generated,
(2) $H^{*}\left(Y ; Z_{p}\right)=\Lambda\left(x_{2 n_{1}+1}, \cdots, x_{2 n_{\mathrm{L}}+1}\right)$ where $n_{1} \leqq n_{2} \leqq \cdots \leqq n_{1}$, and
(3) $2 p>n_{1}-n_{1}+2$ and $p \geqq 5$,
then $Y_{(p)}$ is homotopy equivalent to the product $\Pi_{s} B_{m_{s}}(p)_{(p)} \times$ $\Pi_{t} S_{(p)}^{2 m,+1}$ with the numbers m_{s} and m_{t} determined by the action of \mathscr{P}^{1} on $\left.\left.H\right) * Y ; Z_{p}\right)$.

Theorem B includes most cases of theorems proved by Harper [5] and Wilkerson and Zabrodsky [16]. The condition $p \geqq 5$ is technical and can be eliminated by other means. We will concentrate on the obstruction theory which arises as follows.

Definition. Let M be a module over the mod p Steenrod algebra $\mathscr{A}(p)$. We say that M is an unstable module if for $p=2, \mathscr{S}_{q^{i}} x=0$ when $\operatorname{dim} x<i$ and for p odd, $\mathscr{P}^{i} x=0$ when $\operatorname{dim} x<2 i$ and $\beta \cdot \mathscr{P}^{i} x=0$ when $\operatorname{dim} x \leqq 2 i$. An algebra over $\mathscr{A}(p)$ is unstable if it is an unstable module and for $p=2, \mathscr{S} q^{i} x=x^{2}$ when $\operatorname{dim} x=i$ and for p odd, $\mathscr{P}^{i} x=x^{p}$ when $\operatorname{dim} x=2 i$.

Let $\mathscr{K} \mathscr{M}$ and $\mathscr{K} \cdot \mathscr{A}$ denote the categories of unstable modules and unstable algebras with degree-preserving maps. The definitions have been chosen so that $H^{*}\left(; Z_{p}\right)$ is a contravariant functor: $\mathscr{T} \mathscr{O} \rightarrow$ $\mathscr{O} . \mathscr{A}$.

The forgetful functor $\mathscr{F}: \mathscr{K} . \mathscr{A} \rightarrow \mathscr{K} \mathscr{M}$ has an adjoint $U: \mathscr{U} \mathscr{M} \rightarrow$ $\mathscr{U} \cdot \mathscr{A}$ defined by $U(M)=T(M) / D$ where $T(M)$ is the tensor algebra generated by M and D is the ideal generated by elements of the form $x \otimes y-(-1)^{\operatorname{dim} x \operatorname{dim} y} y \otimes x$ and for $p=2, \mathscr{S} q^{i} x-x \otimes x$ when $\operatorname{dim} x=i$, for p odd $\mathscr{P}^{i} x-x \otimes x \otimes \cdots \otimes x$ (p times) when $\operatorname{dim} x=$ 2i. We will call a space very nice (following [2]) if $H^{*}\left(Y ; Z_{p}\right)=$ $U\left(M_{Y}\right)$ for some unstable module M_{Y}. Examples of such spaces include $K(\pi, n)$'s for π finitely generated, odd-dimensional spheres, most H-spaces and a few projective spaces.

Suppose Y and Y^{\prime} are very nice spaces and $g: M_{Y^{\prime}} \rightarrow M_{Y}$ is a morphism of unstable modules. We ask whether there is a continuous function $G: W \rightarrow W^{\prime}$ such that $H^{*}\left(W ; Z_{p}\right)=H^{*}\left(Y ; Z_{p}\right), H^{*}\left(W^{\prime} ;\right.$ $\left.Z_{p}\right)=H^{*}\left(Y^{\prime} ; Z_{p}\right)$ and $\left.G^{*}\right|_{M_{Y^{\prime}}}=g$? If such a function G exists we say that g is realizable by G. The obstruction theory provides a series of obstruction sets, $\mathcal{O}_{n}(g)$, inductively defined and lying in computable groups such that

THEOREM. There exists a function $G: Y_{(p)} \rightarrow Y_{(p)}^{\prime}$ realizing g if and only if $0 \in \mathbb{C}_{n}(g)$ for all n.

This result has been obtained independently by John Harper using the unstable Adams spectral sequence where the obstructions are not as explicitly identified.

In the first section we will provide a thumbnail sketch of the Massey-Peterson theory providing details where they will be of later use. The second section is a presentation of the obstruction theory and in the third section we give the proofs of Theorems A and B.

The results in this paper include part of my Temple University
doctoral dissertation written under the direction of Dr. James Stasheff. I am grateful to him for his encouragement and guidance.

1. The Massey-Peterson theory. Let $M \in \mathscr{K} \mathscr{M}$. We define an endomorphism $\lambda: M \rightarrow M$ by $\left.\lambda\right|_{M^{n}}=\mathscr{S}_{q^{n}}$ when $p=2$ and $\left.\lambda\right|_{M^{2 n}}=\mathscr{P}^{n}$ and $\left.\lambda\right|_{\mathbb{H}^{2 n+1}}=\beta \mathscr{P}^{n}$ when p is odd. Since λ is an endomorphism this induces an action of $Z_{p}[\lambda]$ on M. We say that M is a free λ-module if M has a homogeneous basis over $Z_{p}[\lambda]$ or equivalently if for all $x \in M, \lambda x=0$ if and only if $x=0$. The fact that M is a module over the polynomial algebra $Z_{p}[\lambda]$ implies that submodules of free λ-modules are also free λ-modules.

The important examples of free λ-modules are $M K(Z, n)$ and $M K\left(Z_{r}, n\right)$ where $r=p^{k}$ for $k \geqq 1$ and $H^{*}\left(K(\pi, n) ; Z_{p}\right)=U(M K(\pi, n))$ for $n>1$.

Using the map λ, we introduce a functor $\Omega: \mathscr{K} \mathscr{M} \rightarrow \mathscr{U} \mathscr{M}$ defined by the rule $(\Omega M)_{k}=(M / \lambda M)_{k+1}$. For $f: M \rightarrow N$, a morphism in $\mathscr{K} \mathscr{A}, f$ commutes with the action of $\mathscr{A}(p)$ and so $f(\lambda M) \subset \lambda N$. Thus $\Omega f: \Omega M \rightarrow \Omega N$ is well-defined. When π is finitely generated, by considering the Cartan basis one can show that $\Omega M K(\pi, n)=$ $M K(\pi, n-1)$. In the topological category, $\Omega K(\pi, n) \cong K(\pi, n-1)$; this motivates the choice of notation.

Proposition 1.1. If $P \xrightarrow{f} Q \xrightarrow{g} R \rightarrow 0$ is exact in $\mathscr{C} \mathscr{M}$, then $\Omega P \xrightarrow{\Omega f} \Omega Q \xrightarrow{\Omega g} \Omega R \rightarrow 0$ is also exact. In addition, if f is a monomorphism and R is a free λ-module then Ωf is also a monomorphism.

The theorem recorded below is due to Massey and Peterson [10] for the case $p=2$ and to Barcus [1] for p odd.

Let $\xi_{0}=\left(E_{0}, p_{0}, B_{0}, F\right)$ be a fibration satisfying
(a) The system of local coefficients of the fibration is trivial,
(b) $H^{*}\left(F ; Z_{p}\right)=U(A)$ where $A \subset H^{*}\left(F ; Z_{p}\right)$ consists of transgressive elements.
(c) E_{0} is acyclic and the ideal generated by the extended image of A in $H^{*}\left(B_{0} ; Z_{p}\right)$ under transgression contains all elements of positive dimension.

By the extended image of A we mean the set $\left\{y_{2}\right\} \cup\left\{\nu y_{i}\right\}$ in $H^{*}\left(B_{0} ; Z_{p}\right)$ where $\nu: A \rightarrow A$ is defined $\left.\nu\right|_{A^{2 n}}=0$ and $\left.\nu\right|_{A^{2 n}}=\beta \mathscr{P}^{n}$ and $\left\{y_{i}\right\}$ projects to a basis for the image of the trangression τ in $H^{*}\left(B_{0} ; Z_{p}\right) / Q ; Q$ denotes the indeterminacy of τ.

Let $f: B \rightarrow B_{0}$ be a map and $\xi=(E, p, B, F)$ the induced fibration. Suppose
(d) $H^{*}\left(B_{0} ; Z_{p}\right)=U(R)$ and R is a free λ-module,
(e) $H^{*}\left(B ; Z_{p}\right)=U(Z)$ and $Z=Z_{0} \oplus Z_{1}$ in $\mathscr{C} \mathscr{M}$ and Z_{0} is a
free λ-module, and
(f) $f^{*}: H^{*}\left(B_{0} ; Z_{p}\right) \rightarrow H^{*}\left(B ; Z_{p}\right)$ is such that $f^{*}(R) \subset Z_{0}$.

Theorem 1.2. (Massey-Peterson-Barcus). Given ξ, ξ_{0} and $f: B \rightarrow B_{0}$ satisfying (a) through (f), let $Z^{\prime}=\operatorname{coker} f_{R}^{*}: R \rightarrow Z$ and $R^{\prime}=\mathrm{ker}$ $\left.f^{*}\right|_{R}$, then as algebras over $Z_{p}, H^{*}\left(E ; Z_{p}\right)=U\left(Z^{\prime}\right) \otimes U\left(\Omega R^{\prime}\right)$ and as algebras over $\mathscr{A}(p), H^{*}\left(E ; Z_{p}\right)$ is determined by the short exact sequence in $\mathscr{\not} \mathscr{M}$,

$$
0 \longrightarrow U\left(Z^{\prime}\right) \underset{p^{*}}{\longrightarrow} N \underset{i^{*}}{\longrightarrow} \Omega R^{\prime} \longrightarrow 0
$$

called the fundamental sequence for ξ, where $i: F \rightarrow E$ is the inclusion and N is an $\mathscr{A}(p)$-submodule that generates $H^{*}\left(E ; Z_{p}\right)$.

For a proof we refer the reader to [10] and [1]. The theorem gives a clear picture of the $\bmod p$ cohomology of certain fiber spaces. This result will allow us to make certain topological constructions that carry useful algebraic information.

It is an easy consequence of a theorem of Cartan [3] that the module $M K\left(Z_{p}, n\right)$ is the free unstable module on one generator of dimension n. We also have that $M K\left(Z_{p}, n\right)$ is projective in $\mathscr{K} \mathscr{M}$ and so we can talk of resolutions of a module in $\mathscr{U} \mathscr{M}$. Suppose Y is a very nice space with $H^{*}\left(Y ; Z_{p}\right)=U\left(M_{Y}\right)$ and $\mathscr{X}\left(M_{Y}\right): 0 \leftarrow$ $M_{Y} \leftarrow X_{0} \overleftarrow{d_{0}} X_{1} \overleftarrow{d_{1}} \cdots$ is a (not necessarily projective) resolution of M_{Y} by modules which are direct sums of $M K(\pi, n)$'s for $\pi=Z$, or Z_{p}. Using Theorem 1.2 we construct a tower of fibrations that carries the algebraic information contained in $\mathscr{X}\left(M_{Y}\right)$.

By a realization, $\mathscr{E}\left(\mathscr{X}\left(M_{Y}\right)\right.$), of $\mathscr{X}\left(M_{Y}\right)$ we will mean a system of principal fibrations:

$$
\begin{aligned}
& \begin{array}{ccrr}
\uparrow j_{s} & \uparrow j_{s-1} & \uparrow j_{2} & \uparrow j_{1} \\
\Omega F_{s-1} & \Omega F_{s-2} & \Omega F_{2} & \Omega F_{1}
\end{array}
\end{aligned}
$$

that satisfies:
(1) E_{0} and F_{i} are products of $K(\pi, n)$'s that is, generalized Eilenberg-MacLane spaces ($g E M s$)
(2) $H^{*}\left(E_{0} ; Z_{p}\right)=U\left(X_{0}\right), H^{*}\left(F_{1} ; Z_{p}\right)=U\left(X_{1}\right) \quad$ and $\quad H^{*}\left(F_{s} ; Z_{p}\right)=$ $U\left(\Omega^{s-1} X_{s}\right)$.
(3) $f_{1}^{*}=d_{0}, j_{s}^{*} \circ f_{s+1}^{*}: \Omega^{s} X_{s+1} \rightarrow \Omega^{s} X_{s}$ is $\Omega^{s} d_{s}$.
(4) The fibration p_{s}^{s-1} is induced by the path-loop fibration
over f_{s}.
(5) $p_{i}: Y \rightarrow E_{i}$ is the composition $p_{i+1}^{i} \circ p_{i+2}^{i+1} \circ \cdots \circ p_{s}^{s-1} \circ p_{s}$.
(6) $\left.p_{0}^{*}\right|_{X_{0}}: X_{0} \rightarrow M_{Y}$ is ε.

By using Theorem 1.2 in the construction below we also obtain
(7) $H^{*}\left(E_{s} ; Z_{p}\right) \cong U\left(M_{Y}\right) \otimes U\left(\Omega^{s} \operatorname{ker} d_{s-1}\right)$ as algebras over $\mathscr{A}(p)$.

Theorem 1.3. Given Y, M_{Y} and $\mathscr{X}\left(M_{Y}\right)$ as above, there exists a realization of $\mathscr{X}\left(M_{Y}\right)$.

Proof. We construct $\mathscr{E}\left(\mathscr{X}\left(M_{Y}\right)\right)=\left\{E_{i}, p_{i}^{i-1}, F_{j}, j_{k}, p_{\mathrm{t}} ; Y\right\}$ by induction. $Y \overrightarrow{p_{0}} E_{0} \vec{f}_{1} F_{1}$ comes for free because E_{0} and F_{1} are the appropriate $g E M s$ and maps between spaces and products of $K\left(Z_{p}, m\right)$'s and $K(Z, n)$'s are determined by morphisms in $\mathscr{\mathscr { C }} \mathscr{M}$. Construct $\Omega F_{1} \overrightarrow{j_{1}} E_{0} \overrightarrow{p_{1}^{0}} F_{1}$ by pulling back the path-loop fibration $\Omega F_{1} \rightarrow P F_{1} \rightarrow F_{1}$. Clearly p_{1}^{0} satisfies (a) through (f) of Theorem 1.2 and so we can conclude that $H^{*}\left(E_{1} ; Z_{p}\right)=U\left(\right.$ coker $\left.\left.f_{1}^{*}\right|_{x_{1}}\right) \otimes U\left(\left.\Omega \operatorname{ker} f_{1}^{*}\right|_{x_{1}}\right)$. However $f_{1}^{*}=d_{0}$ on X_{1} and coker $d_{0}=M_{r}$. Hence $H^{*}\left(E_{1} ; Z_{p}\right)=U\left(M_{r}\right) \otimes U(\Omega$ ker d_{0}) as an algebra over Z_{p}. Construct $p_{1}: Y \rightarrow E_{1}$ as a lifting of p_{0} to the fibration; p_{1} exists since $\left(f_{1} \circ p_{0}\right)^{*}=\varepsilon \circ d_{0}=0$. To obtain the $\mathscr{A}(p)$-algebra structure of $H^{*}\left(E_{1} ; Z_{p}\right)$ we observe that the fundamental sequence for p_{1}^{o} splits by the map p_{1}^{*}.

$$
\begin{gathered}
0 \longrightarrow U\left(M_{Y}\right) \xrightarrow{\left(p_{p}^{0}\right)^{*}} N_{1} \xrightarrow{j_{1}^{*}} \Omega \mathrm{per} d_{0} \longrightarrow 0 \\
U\left(M_{\mathrm{Y}}^{*}\right)
\end{gathered}
$$

Thus $H^{*}\left(E_{1} ; Z_{p}\right)=U\left(M_{Y}\right) \otimes U\left(\Omega\right.$ ker $\left.d_{0}\right)$ as an algebra over $\mathscr{A}(p)$.
Now $0 \rightarrow$ ker $d_{1} \rightarrow X_{2} \rightarrow \operatorname{ker} d_{0} \rightarrow 0$ is exact from the resolution. Since everything in sight is a free λ-module, by Proposition 1.1, $0 \rightarrow \Omega$ ker $d_{1} \rightarrow \Omega X_{2} \rightarrow \Omega$ ker $d_{0} \rightarrow 0$ is also exact. Using the splitting of the fundamental sequence and the fact that F_{2} is a $g E M s$, we can choose $f_{2}: E_{1} \rightarrow F_{2}$ such that $\left(f_{2} \circ j_{1}\right)^{*}=\Omega d_{1}$.

The inductive step simply repeats this procedure for f_{n} to obtain E_{n+1} and f_{n+1}.

The role of the space Y in this construction is vital since the splitting of the fundamental sequence depends on the map $p_{s}: Y \rightarrow E_{s}$. This splitting will play a crucial role in the obstruction theory.

Recall that a graded module is n-connected if $M_{k}=0$ for $k \leqq n$. Let M be in $\mathscr{C} \mathscr{M}$ and $\mathscr{X}(M): 0 \leftarrow M \leftarrow X_{0} \overleftarrow{d_{0}} X_{0} \overleftarrow{d_{1}} X_{2} \leftarrow \cdots$ a resolution of M in $\mathscr{U} \mathscr{M}$. We will call $\mathscr{X}(M)$ convergent if $\Omega^{s} X_{s}$ is $f(s)$-connected for all s and $f(s) \rightarrow \infty$ as $s \rightarrow \infty$. Using minimal resolutions and allowing modules $M K(Z, n)$ in the construction of re-
solutions we can guarantee the existence of convergent resolutions for most $M \in \mathscr{C} \mathscr{M}$.

Now suppose Y and M_{Y} are as above and $\mathscr{X}\left(M_{Y}\right)$ is a convergent resolution of M_{Y}. Note $\lim \Omega^{s} \mathrm{ker} d_{s-1} \subset \lim \Omega^{s} X_{s}=0$. Hence $\lim _{\rightarrow} H^{*}\left(E_{s} ; Z_{p}\right)=\underset{\rightarrow}{\lim }\left[U\left(M_{Y}\right) \otimes U\left(\Omega^{s} \operatorname{ker} d_{s-1}\right)\right]=U\left({ }^{\vec{s}}\left(M_{Y}\right)\right.$. If we let $p_{\infty}=$ $\lim _{s}^{s} p_{s}: Y \rightarrow \lim _{\leftarrow} E_{s}{ }^{s}$ be the inverse limit of the realization of $\mathscr{X}\left(M_{Y}\right)$, then $p_{\infty}^{*}: H^{*}\left(\underset{s}{\lim } E_{s} ; Z_{p}\right) \rightarrow H^{*}\left(Y ; Z_{p}\right)$ is an isomorphism. Thus p_{∞} induces a homotopy equivalence $\left(\lim _{s} E_{s}\right)_{(p)} \cong Y_{(p)}$ where $W_{(p)}$ is the $\bmod p$ localization of the space W. In this way we can think of a realization of a convergent resolution as a successive approximation to the space Y at the prime p.
2. The obstruction theory. In this section we will assume that Y and Y^{\prime} are two very nice spaces with modules M_{Y} and M_{Y}, in $\mathscr{C} \mathscr{M}$ such that $H^{*}\left(Y ; Z_{p}\right)=U\left(M_{Y}\right)$ and $H^{*}\left(Y^{\prime} ; Z_{p}\right)=U\left(M_{Y^{\prime}}\right)$. Let $\mathscr{X}\left(M_{Y}\right): 0 \leftarrow M_{Y} \leftarrow X_{0} \overleftarrow{d_{0}} X_{1} \overleftarrow{d_{1}} \cdots$ and $\mathscr{X}\left(M_{Y^{\prime}}\right): 0 \leftarrow M_{Y^{\prime}} \leftarrow X_{\varepsilon}^{\prime} \overleftarrow{d_{0}^{\prime}}$ $X_{1}^{\prime} \overleftarrow{d_{1}^{\prime}} \cdots$ denote resolutions of M_{Y} and $M_{Y^{\prime}}$ in $\mathscr{C} \mathscr{M}$. Because we have been liberal in our choices of modules to use in the construction of resolutions we need a definition that provides the analogue of the defining property of projective resolutions. Suppose we have a morphism $g: M_{Y^{\prime}} \rightarrow M_{Y}$ in $\mathscr{Z} \mathscr{L}$. We will say that g lifts through the resolutions $\mathscr{X}^{\prime}\left(M_{Y^{\prime}}\right)$ and $\mathscr{X}\left(M_{Y}\right)$ if there exist maps $g_{i}: X_{i}^{\prime} \rightarrow X_{i}$ in $\mathscr{C} \mathscr{M}$ such that the following ladder commutes:

If $\mathscr{P}\left(M_{Y}\right)$ is already a projective resolution, then any map can be lifted.

The focus of this section will be on the realizability of morphisms in $\mathscr{U} \mathscr{M}$. The following theorem indicates the effect of a realizable map on the realizations $\mathscr{E}\left(\mathscr{X}\left(M_{Y}\right)\right)$ and $\mathscr{E}\left(\mathscr{X}\left(M_{Y^{\prime}}\right)\right)$.

Theorem 2.1. ([10]). Let $k: Y \rightarrow Y^{\prime}$ be a map such that $k^{*}\left(M_{Y^{\prime}}\right) \subset$ M_{Y} and k^{*} lifts through the resolutions. Let $\left\{k_{j}\right\}: \mathscr{X}\left(M_{Y}\right) \rightarrow \mathscr{X}\left(M_{Y}\right)$ be such a lift. Then there exists a map $\Phi: \mathscr{E}\left(\mathscr{X}\left(M_{Y}\right)\right) \rightarrow \mathscr{E}\left(\mathscr{X}\left(M_{Y^{\prime}}\right)\right)$ realizing the lift of k^{*}, that is, Φ is a collection $\left\{\dot{\phi}_{i}: E_{i} \rightarrow E_{i}^{\prime}, \psi_{j}\right.$: $\left.F_{j} \rightarrow F_{j}^{\prime}\right\}$ satisfying the following:
(2.1A) $\psi_{j}^{*}=U\left(\Omega^{j-1} k_{j}\right): U\left(\Omega^{j-1} X_{\jmath}^{\prime}\right) \rightarrow U\left(\Omega^{j-1} X_{j}\right)$. And the following diagrams commute up to homotopy:

$\Omega F_{i} \xrightarrow{\Omega \dot{\psi}_{i}} \Omega F_{i}^{\prime}$

This theorem illustrates the naturality (up to homotopy) of the constructions we have introduced thus far. We record two corollaries to this theorem.

The maps $\phi_{n}: E_{n} \rightarrow E_{n}^{\prime}$ induce morphisms $\phi_{n}^{*}: N_{n}^{\prime} \rightarrow N_{n}$ of the extensions in the fundamental sequences for the fibrations ' p_{n}^{n-1} and p_{n}^{n-1}. In the proof of Theorem 1.3 we observed that N_{n}^{\prime} and N_{n} are split extensions. We ask then whether the morphisms ϕ_{n}^{*} respect this splitting. Combining 2.1D) and 2.1E) we get that $\left[f_{n+1}^{\prime} \circ \phi_{n} \circ p_{n}\right]=$ $\left[\psi_{n+1} \circ f_{n+1} \circ p_{n}\right]=0$ in $\left[Y, F_{n+1}^{\prime}\right]$. Thus $p_{n}^{*} \circ \phi_{n}^{*} \circ\left(f_{n+1}^{\prime}\right)^{*}=0$ which implies that $\phi_{n}^{*}\left(\operatorname{Im}\left(f_{n+1}^{\prime}\right)^{*}\right) \subset \operatorname{ker} p_{n}^{*}$. By construction $\operatorname{Im}\left(f_{n+1}^{\prime}\right)^{*}=\Omega^{n} \operatorname{ker} d_{n-1}^{\prime}$ and $\operatorname{ker} p_{n}^{*}=\Omega^{n} \operatorname{ker} d_{n-1}$. Thus $\phi_{n}^{*}: \Omega^{n} \operatorname{ker} d_{n-1}^{\prime} \rightarrow \Omega^{n} \operatorname{ker} d_{n-1}$. From 2.1B) we obtain the following commutative diagram which implies $\phi_{n}^{*}: U\left(M_{Y^{\prime}}\right) \rightarrow U\left(M_{Y}\right)$.

Corollary 2.2. The mappings $\phi_{n}: E_{n} \rightarrow E_{n}^{\prime}$ induce morphisms of split extension $\dot{\phi}_{n}^{*}: N_{n}^{\prime} \rightarrow N_{n}$.

Now suppose that Y is a primitively generated $\bmod p H$-space. The multiplication $m: Y \times Y \rightarrow Y$ induces $m^{*}: U\left(M_{Y}\right) \rightarrow U\left(M_{Y} \oplus M_{Y}\right)$ such that $m^{*}\left(M_{Y}\right) \subset M_{Y} \oplus M_{Y}$. From Theorem 2.1 and the primitivity we have

Corollary 2.3. For Y a primitively generated $\bmod p H$-space, the spaces E_{n} are $\bmod p H$-spaces and the maps $f_{n}: E_{n-1} \rightarrow F_{n}$ are H-maps.

The next theorem obtains a partial converse to Theorem 2.1 and provides the basis for the obstruction theory.

Theorem 2.4. Let $g: M_{Y} \rightarrow M_{Y}$ be given such that g lifts through the resolutions $\mathscr{X}\left(M_{Y^{\prime}}\right)$ and $\mathscr{X}\left(M_{Y}\right)$ and let $\left\{g_{i}: X_{i}^{\prime} \rightarrow X_{i}\right\}$ be such a lift. Suppose $\mathscr{X}\left(M_{Y^{\prime}}\right)$ and $\mathscr{X}\left(M_{Y}\right)$ are convergent resolutions and $\Phi=\left\{\dot{\phi}_{i}: E_{i} \rightarrow E_{i}^{\prime}, \psi_{j}: F_{j} \rightarrow F_{j}^{\prime}\right\}: \mathscr{E}\left(\mathscr{X}\left(M_{Y}\right)\right) \rightarrow \mathscr{E}\left(\mathscr{X}\left(M_{Y^{\prime}}\right)\right)$ is a map of realizations satisfying $2.1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D . Then there exists a map $G: Y_{(p)} \rightarrow Y_{(p)}^{\prime}$ such that $\left.G^{*}\right|_{M_{Y^{\prime}}}=g$.

Proof. Let $E_{\infty}=\lim _{\leftarrow}\left\{E_{i}, p_{i}^{i-1}\right\}, E_{\infty}^{\prime}=\lim _{\leftarrow}\left\{E_{i}^{\prime},{ }^{\prime} p_{i}^{i-1}\right\}$. Applying a theorem of J. Cohen [4] to the inverse systems of homotopy commutative squares

we may choose maps $p_{\infty}: Y \rightarrow E_{\infty}, p_{\infty}^{\prime}: Y^{\prime} \rightarrow E_{\infty}^{\prime}$ and $\phi_{\infty}: E_{\infty} \rightarrow E_{\infty}^{\prime}$ such that the following diagram commutes up to homotopy

If we localize everything in sight at the prime p we get

where the maps are understood to be localized. By the assumption that $\mathscr{X}\left(M_{Y^{\prime}}\right)$ and $\mathscr{X}\left(M_{Y}\right)$ are convergent, $p_{\infty}: Y_{(p)} \cong E_{\infty(p)}$ and p_{∞}^{\prime} : $Y_{(p)}^{\prime} \cong E_{\infty(p)}$. Let q_{∞}^{\prime} denote a homotopy inverse of p_{∞}^{\prime} and define $G=q_{\infty}^{\prime} \circ \phi_{\infty} \circ p_{\infty}$. This gives the diagram

Now apply $H^{*}\left(; Z_{p}\right)$. From the properties of the $\bmod p$ localization we get the following commutative diagram in $\mathscr{C} \mathscr{M}$ after restriction.

Since ε and ε^{\prime} are epimorphisms, by cancellation we have $\left.G^{*}\right|_{M_{Y^{\prime}}}=g$.
Now fix a morphism $g: M_{Y^{\prime}} \rightarrow M_{Y}$ in $\mathscr{C} \mathscr{M}$. We will assume that g can be lifted thorugh $\mathscr{X}\left(M_{Y^{\prime}}\right)$ and $\mathscr{X}\left(M_{Y}\right)$ and that the resolutions are convergent. Because we have taken the F_{i} and F_{i}^{\prime} to be $g E M s$ the lifting $\left\{g_{i}: X_{i}^{\prime} \rightarrow X_{i}\right\}$ gives rise to a collection of maps $\left\{\psi_{i}: F_{i} \rightarrow F_{i}^{\prime}\right\}$ such that $\psi_{i}^{*}=U\left(\Omega^{i-1} g_{i}\right)$. Theorem 2.1 motivates the following

Definition 2.5. Let $\gamma: E_{n} \rightarrow E_{n}^{\prime}$. We will say that γ is an n realizer for g if
$2.5 \mathrm{a}_{n}$ for $0 \leqq i<n$ there exists $\dot{\phi}_{i}: E_{i} \rightarrow E_{i}^{\prime}$ such that ϕ_{i} is an i-realizer and (2.1B) holds. Also the following diagrams homotopy commute:

$$
\begin{aligned}
& 2.5 \mathrm{~d}_{n} \\
& \begin{aligned}
E_{n} & \xrightarrow{\gamma} E_{n}^{\prime} \\
f_{n+1} \downarrow & \downarrow f_{n+1}^{\prime}
\end{aligned} \\
& F_{n+1} \xrightarrow[\psi_{n+1}]{ } F_{n+1}^{\prime}
\end{aligned}
$$

From the definition of a realization of a resolution, everything at the 0 -level is a $g E M s$ and so the existence of a 0 -realizer comes for free. Suppose we have an $(n-1)$-realizer ϕ_{n-1}. We now construct a particular candidate for γ an n-realizer. By $2.5 \mathrm{~d}_{n}$ there is a homotopy $H: E_{n-1} \times I \rightarrow F_{n}^{\prime}$ such that $H(x, 0)=f_{n}^{\prime} \circ \phi_{n-1}(x)$ and $H(x, 1)=\psi_{n} \circ f_{n}(x)$. Recall that $E_{n}=\left\{(\lambda, x) \mid \lambda \in P F_{n}, x \in E_{n-1}\right.$ and $\left.\lambda(1)=f_{n}(x)\right\}$ and E_{n}^{\prime} is the analogous subset of $P F_{n}^{\prime} \times E_{n-1}^{\prime}$. Define $\gamma: E_{n} \rightarrow E_{n}^{\prime}$ by $\gamma(\lambda, x)=\left(\lambda_{H}, \dot{\phi}_{n-1}(x)\right)$ where λ_{H} is the path

$$
\lambda_{H}(t)=\left\{\begin{array}{l}
\psi_{n} \circ \lambda(2 t), 0 \leqq t \leqq 1 / 2 \\
H(x, 2-2 t), 1 / 2 \leqq t \leqq 1
\end{array}\right.
$$

Since $\lambda_{H}(1)=H(x, 0)=f_{n}^{\prime}\left(\phi_{n-1}(x)\right),\left(\lambda_{H}, \phi_{n-1}(x)\right)$ is in E_{n}^{\prime} and so γ_{1} is well-defined. It is easy to show that γ is continuous and satisfies $2.5 \mathrm{a}_{n}, \mathrm{~b}_{n}$ and c_{n}. The fundamental sequences of p_{n}^{n-1} and ' $p_{n}^{n-\tau}$ give us the key to condition $2.5 \mathrm{~d}_{n}$.

Theorem 2.6. The obstruction to γ being an n-realizer is the class $\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]$ in $\left[Y, F_{n+1}^{\prime}\right]$.

Proof. Consider the diagram of spaces

From the construction of a realization $f_{n+1} \circ p_{n} \cong *$; if $\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right] \neq$ $0,2.5 \mathrm{~d}_{n}$ has no chance of being satisfied. Suppose $\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]=0$. Then $p_{n}^{*} \circ \gamma^{*} \circ\left(f_{n+1}^{\prime}\right)^{*}=0$ which implies $\gamma^{*}\left(\left(f_{n+1}^{\prime}\right)^{*}\left(\Omega^{n} X_{n+1}^{\prime}\right)\right)$ is contained $\left.\operatorname{ker} p_{n}^{*}\right|_{N_{n}}=\Omega^{n} \operatorname{ker} d_{n-1}$. Since $\left(f_{n+1}^{\prime}\right) *\left(\Omega^{n} X_{n+1}^{\prime}\right)=\Omega^{n} \operatorname{ker} d_{n-1}^{\prime}$, it follows that $\gamma^{*}\left(\Omega^{n} \operatorname{ker} d_{n-1}^{\prime}\right) \subset \Omega^{n} \operatorname{ker} d_{n-1}$. By $2.5 \mathrm{c}_{n}$ and the naturality of the fundamental sequence we get the following commutative diagram:

Since F_{n+1} and F_{n+1}^{\prime} are $g E M s$ the commutativity of this square implies $2.5 \mathrm{~d}_{n}$ and hence γ is an n-realizer.

Observe that $\left[Y, F_{n+1}^{\prime}\right]=H^{*}\left(Y ; \pi_{*}\left(F_{n+1}^{\prime}\right)\right)$; this with Theorem 2.1 gives

Theorem 2.7. γ is an n-realizer if and only if $\left|f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right|=0$ in $H^{*}\left(Y ; \pi_{*}\left(F_{n+1}^{\prime}\right)\right)$.

The map γ as constructed above was a single candidate for an n-realizer. Since ' $p_{n}^{n-1}: E_{n}^{\prime} \rightarrow E_{n-1}^{\prime}$ is a principal fibration we can vary γ by the principal action $\mu: \Omega F_{n}^{\prime} \times E_{n}^{\prime} \rightarrow E_{n}^{\prime}$. That is, if $\zeta \in\left[E_{n}, E_{n}^{\prime}\right]$ and $\left[{ }^{\prime} p_{n}^{n-1} \circ \zeta\right]=\left[{ }^{\prime} p_{n}^{n-1} \circ \gamma\right]=\left[\dot{\phi}_{n-1} \circ p_{n}^{n-1}\right]$ then there exists a $w \in\left[E_{n}, \Omega F_{n}^{\prime}\right]$ such that $[\mu \circ(w \times \gamma) \circ \Delta]=[\zeta]$ in $\left[E_{n}, E_{n}^{\prime}\right]$. If ζ is a map obtained in this manner from γ and the principal action, then ζ satisfies $2.5 \mathrm{a}_{n}$, b_{n} and c_{n} and hence Theorems 2.6 and 2.7 hold when γ is replaced by ζ.

Suppose we are given an $(n-1)$-realizer. Define $\Gamma_{n}:\left[E_{n}, \Omega F_{n}^{\prime}\right] \rightarrow$
$\left[Y, F_{n+1}^{\prime}\right]$ to be the composite $\left[E_{n}, \Omega F_{n}^{\prime}\right] \xrightarrow[\mu(-, r)]{ }\left[E_{n}, E_{n}^{\prime}\right] \underset{\left(\boldsymbol{f}_{n+1}^{\prime}\right) \#}{ }\left[E_{n}, F_{n+1}^{\prime}\right] \overrightarrow{p_{n}}$ [Y, $\left.F_{n+1}^{\prime}\right]$ where $F_{\sharp}[q]=[q \circ F]$ and $F^{*}[q]=[F \circ q]$. By the previous paragraph the obstructions determined by all possible candidates for an n-realizer for g lie in the image of Γ_{n} in $\left[Y, F_{n+1}^{\prime}\right]$. Let $O_{n}(g)$ denote the image of Γ_{n}.

Theorem 2.8. Given an ($n-1$)-realizer for g, it extends to an n-realizer for g if and only if $0 \in \mathcal{O}_{n}(g) \subset H^{*}\left(Y, \pi_{*}\left(F_{n+1}^{\prime}\right)\right)$.

If an n-realizer exists for all n, then by Theorem 2.4 we have that g is realizable. From this and Theorem 2.1 we conclude

Theorem 2.9. g is realizable if and only if, for all $n, 0 \in \mathcal{O}_{n}(g)$.

In [6] Harper proves that the principal action, $\mu: \Omega F_{n}^{\prime} \times E_{n}^{\prime} \rightarrow E_{n}^{\prime}$ is primitive in the following sense: If $H^{*}\left(E_{n}^{\prime} ; Z_{p}\right)=U\left(N_{n}^{\prime}\right)$ and $y \in N_{n}^{\prime}$ then $\mu^{*}(y)=1 \otimes y+\left(j_{n}^{\prime}\right)^{*}(y) \otimes 1$ in $H^{*}\left(\Omega F_{n}^{\prime} ; Z_{p}\right) \otimes H^{*}\left(E_{n}^{\prime} ; Z_{p}\right)$. From the definition of a realization of a resolution, the map $f_{n+1}^{\prime} \circ j_{n}^{\prime}: \Omega F_{n}^{\prime} \rightarrow$ F_{n+1}^{\prime} is determined by $\Omega^{n} d_{n}: \Omega^{n} X_{n+1} \rightarrow \Omega^{n} X_{n}$. Since ΩF_{n}^{\prime} and F_{n+1}^{\prime} are $g E M s$, the $\operatorname{map} f_{n+1}^{\prime} \circ j_{n}^{\prime}$ determines a primary operation $\Xi_{n}: H^{*}\left(; \pi_{*}\right.$ $\left.\left(\Omega F_{n}^{\prime}\right)\right) \rightarrow H^{*}\left(; \pi_{*}\left(F_{n+1}^{\prime}\right)\right)$. Utilizing Harper's result we obtain

THEOREM 2.10. $\mathcal{O}_{n}(g)$ is the coset $\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]+\Xi_{n} H^{*}\left(Y ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$ in $H^{*}\left(Y ; \pi_{*}\left(F_{n+1}^{\prime}\right)\right)$.

Proof. Without loss of generality we will assume $F_{n+1}^{\prime}=$ $K\left(Z_{p}, m\right)$ and so take $\left[f_{n+1}^{\prime}\right]=v$, a homogeneous class in N_{n}^{\prime}. An arbitrary class ξ in $\mathscr{O}_{n}(g)$ may be written as the composite

$$
Y \underset{p_{n}}{\longrightarrow} E_{n} \xrightarrow[\Delta]{\longrightarrow} E_{n} \times E_{n} \xrightarrow[w \times r]{ } \Omega F_{n}^{\prime} \times E_{n}^{\prime} \xrightarrow[\mu]{\longrightarrow} E_{n}^{\prime} \xrightarrow[f_{n+1}^{\prime}]{ } E_{n+1}^{\prime}
$$

where w is in $\left[E_{n}, F_{n}^{\prime}\right]$. Thus $\xi=\left[f_{n+1}^{\prime} \circ \mu(w, \gamma) \circ \Delta \circ p_{n}\right]=p_{n}^{*} \circ \Delta^{*} \circ\left(w^{*} \otimes\right.$ $\left.\gamma^{*}\right) \circ \mu^{*}(v)$. By Harper's result we have

$$
\begin{aligned}
\xi & =p_{n}^{*} \circ \Delta^{*} \circ\left(w^{*} \otimes \gamma^{*}\right)\left(1 \otimes v+\left(j_{n}^{\prime}\right)^{*}(v) \otimes 1\right) \\
& =p_{n}^{*} \circ \Delta^{*}\left(1 \otimes \gamma^{*}(v)+w^{*} \circ\left(j_{n}^{\prime}\right)^{*}(v) \otimes 1\right) \\
& =p_{n}^{*}\left(\gamma^{*}(v)+w^{*} \circ\left(j_{n}^{\prime}\right)^{*}(v)\right) \\
& =p_{n}^{*} \circ \gamma^{*}(v)+p_{n}^{*} \circ w^{*} \circ\left(j_{n}^{\prime}\right)^{*}(v) \\
& =\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]+\left[f_{n+1}^{\prime} \circ j_{n}^{\prime} \circ w \circ p_{n}\right] \\
& =\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]+\Xi_{n}\left[w \circ p_{n}\right] .
\end{aligned}
$$

If we let w vary over $\left[E_{n}, \Omega F_{n}^{\prime}\right]=H^{*}\left(E_{n} ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$ we obtain all of the set $O_{n}(g)$. Hence we can write $O_{n}(g)=\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}\right]+$ $p_{n}^{*} \Xi_{n} H^{*}\left(E_{n} ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$. Now observe that $p_{n}^{*} \circ \Xi_{n}=\Xi_{n} \circ p_{n}^{*}$ because
primary cohomology operations are natural. Furthermore p_{n}^{*} takes $H^{*}\left(E_{n} ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$ onto $H^{*}\left(Y ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$. Thus we can write $\mathscr{O}_{n}(g)=$ $\left[f_{n+1}^{\prime} \circ \gamma^{\circ} p_{n}^{*}\right]+\Xi_{n} H^{*}\left(Y ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$.

Observe that if Ξ_{n} is trivial on $H^{*}\left(Y ; \pi_{*}\left(\Omega F_{n}^{\prime}\right)\right)$, then the only obstruction to the existence of an n-realizer for g is the class $\left[f_{n+1}^{\prime} \circ \gamma \circ p_{n}^{*}\right]$.
3. Applications. It is a consequence of Borel's structure theorem for Hopf algebras that if Y is an H-space without p-torsion in its integral cohomology then $H^{*}\left(Y ; Z_{p}\right)=\Lambda\left(x_{2 n_{1}+1}, \cdots, x_{2 n_{1}+1}\right)$ where dim $x_{r}=r$. For those primes for which \mathscr{P}^{1} acts trivially on $H^{*}\left(Y ; Z_{p}\right)$, Y shares the same cohomology as the space $S_{p}(Y)=S^{2 n_{1+1}} \times \cdots \times$ $S^{2 n d+1}$. If there is a map $S_{p}(Y) \rightarrow Y$ inducing an isomorphism in mod p cohomology then, from the theory of localization, $S_{p}(Y)_{(p)}$ and $Y_{(p)}$ are homotopy-equivalent and the $\bmod p$ homotopy information about Y is determined by the product space $S_{p}(Y)_{(p)}$. If such a map exists, we call the prime p regular for Y.

Now consider those primes for which \mathscr{P}^{1} is the only element of $\mathscr{A}(p)$ to act nontrivially on $H^{*}\left(Y ; Z_{p}\right)$. Mimura and Toda [14] have introduced complexes, $B_{m}(p)$, which are sphere bundles over spheres with cohomology $H^{*}\left(B_{m}(p) ; Z_{p}\right)=\Lambda\left(x_{2 m+1}, \mathscr{P}^{p^{1}} x_{2 m+1}\right)$. If \mathscr{P}^{1} acts nontrivially we can ask whether or not Y "looks like" a product of spheres and $B_{m}(p)$'s at the prime p. More precisely, if $H^{*}\left(Y ; Z_{p}\right)=$ $\Lambda\left(x_{2 m_{1}+1}, \mathscr{P}^{\not 1} x_{2 m_{1}+1}, \cdots, x_{2 m_{k}+1}, \mathscr{P}^{1} x_{2 m_{k}+1}, x_{2 m_{k+1}+1}, \cdots, x_{2 m_{s}+1}\right)$, then we wish a map $K_{p}(Y) \rightarrow Y$ which induces an isomorphism in $\bmod p$ cohomology where $K_{p}(Y)=\prod_{i=1}^{k} B_{m_{i}}(p) \times \prod_{j=k+1}^{s} S^{2 m_{j}+1}$. If such a map exists, $K_{p}(Y)_{(p)} \cong Y_{(p)}$ and we say that p is quasi-regular for Y.

We can translate these questions of regularity and quasi-regularity into questions about the realizability of morphisms in $\mathscr{C} \mathscr{A}$ by observing that $H^{*}\left(Y ; Z_{p}\right)=\Lambda\left(x_{2 n_{1}+1}, \cdots, x_{2 n_{1}+1}\right)=U\left(M_{Y}\right) \quad$ where M_{Y} is a direct sum of modules $\operatorname{Tr}\left(2 m_{j}+1\right)=\left\{x_{2 m_{j+1}}\right\}$ and $M B_{m_{i}}(p)=$ $\left\{x_{2 m_{i}+1}, \mathscr{P}^{\not{ }^{1}} x_{2 m_{i}+1}\right\}$. As unstable algebras, $H^{*}\left(Y, Z_{p}\right) \cong H^{*}\left(K_{p}(Y) ; Z_{p}\right) \cong$ $U\left(M_{Y}\right)$ so we can ask if there is a map $R_{p}: K_{p}(Y)_{(p)} \rightarrow Y_{(p)}$ which realizes the map of modules id: $M_{Y} \rightarrow M_{Y}$. The existence of such a map implies that $K_{p}(Y)_{(p)} \cong Y_{(p)}$ as desired.

The strategy of the proofs of Theorems A and B will be to employ the obstruction theory to realize each projection from the direct sum, $M_{Y} \rightarrow \operatorname{Tr}\left(2 m_{j}+1\right)$ or $M_{Y} \rightarrow M B_{m_{i}}(p)$ by a map $r_{j}: S_{(p)^{j+1}}^{2 m_{j}} \rightarrow$ $Y_{(p)}$ or $r_{i}: B_{m_{i}}(p)_{(p)} \rightarrow Y_{(p)}$. We then consider the composite map

$$
\begin{aligned}
& R_{p}: B_{m_{1}}(p)_{(p)} \times \cdots \times B_{m_{k}}(p)_{(p)} \times S_{(p)}^{2 m_{k+1}+1} \times \cdots \times S_{(p)}^{2 m_{s}+1} \\
& \xrightarrow[r_{1} \times \cdots \times r_{k} \times r_{k+1} \times \cdots \times r_{s}]{ } \\
& Y_{(p)} \times Y_{(p)} \times \cdots \times Y_{(p)} \xrightarrow[\xi_{s}]{ } Y_{(p)}
\end{aligned}
$$

where $\xi_{s}\left(y_{1}, y_{2}, y_{3}, \cdots, y_{s}\right)=\left(\cdots\left(\left(y_{1} \cdot y_{2}\right) \cdot y_{3}\right) \cdot \cdot\right) \cdot y_{s}$ is induced by the
multiplication on $Y_{(p)}$. To see that R_{p}^{*} is an isomorphism it suffices to check R_{p}^{*} : $H^{*}\left(Y_{(p)} ; Z_{p}\right) \rightarrow H^{*}\left(K_{p}(Y) ; Z_{p}\right)$ on the indecomposables ($=$ the primitives in this case) to determine that R_{p}^{*} gives the obvious isomorphism. Let u be an indecomposable in $H^{*}\left(Y_{(p)} ; Z_{p}\right)$.

$$
\begin{aligned}
R_{p}^{*}(u) & =r_{1}^{*} \otimes r_{2}^{*} \otimes \cdots \otimes r_{s}^{*}\left(\xi_{s}^{*}(u)\right) \\
& =r_{1}^{*} \otimes r_{2}^{*} \otimes \cdots \otimes r_{s}^{*}\left(\sum_{i=1}^{s} 1 \otimes 1 \otimes \cdots \otimes u \otimes \cdots \otimes 1\right) \\
& =\sum_{i=1}^{s}\left(1 \otimes 1 \otimes \cdots \otimes r_{i}^{*}(u) \otimes \cdots \otimes 1\right) .
\end{aligned}
$$

Now observe that u is an indecomposable implies $u \in M_{Y}$ and without loss of generality we may assume u is in the j th direct summand of M_{Y}. Since

$$
\begin{aligned}
& r_{j}^{*}=\operatorname{proj}_{j}: M_{Y} \longrightarrow \operatorname{Tr}\left(2 m_{j}+1\right) \text { or } M B_{m_{j}}(p) \text { then } r_{i}^{*}(u) \\
&= \begin{cases}u, & \text { if } i=j \\
0, & \text { if } i \neq j\end{cases}
\end{aligned}
$$

Thus $R_{p}^{*}(u)=u$, the corresponding class in $H^{*}\left(K_{p}(Y)_{(p)} ; Z_{p}\right)$ and we will obtain the desired homotopy equivalence if we can realize each projection $M_{Y} \rightarrow \operatorname{Tr}\left(2 m_{j}+1\right)$ or $M B_{m_{i}}(p)$.

Now suppose we want a map, $W_{r(p)} \rightarrow Y_{(p)}$, to realize each projection $M_{Y} \rightarrow N_{r}$ where $W_{r}=S^{2 m_{r}+1}$ or $B_{m_{r}}(p)$ and $N_{r}=\operatorname{Tr}\left(2 m_{r}+1\right)$ or $M B_{m_{r}}(p)$. Consider those dimensions in which W_{r} has nonzero cohomology and those dimensions in which possible obstructions can occur; these dimensions are calculable from knowledge of the direct sum decomposition of M_{Y} and determination of certain modules in convergent resolutions of the summands $\operatorname{Tr}\left(2 m_{j}+1\right)$ and $M B_{m_{i}}(p)$. If these two sets of numbers can be shown to be disjoint then the obstruction theory implies that a map exists realzing each projection. With this in mind we provide the following table which lists the dimensions in which an obstruction might occur when M_{Y} has the appropriate summand. To obtain the table one would compute the first few modules (X_{0}, X_{1}, X_{2}, and X_{3}) in a convergent resolution of each possible summand. The calculations only involve a routine application of the Adem relations and the unstable axioms and so are left to the reader.

Table 1

$\operatorname{Tr}(3)$-summand	$\operatorname{Tr}(2 m+1)$-summand	$M B_{1}(p)$-summand	$M B_{m}(p)$-summand
O_{1}	$4 p-1,4 p-2$	$2 m+4 p-3$	$4 p-1$
O_{2}	$6 p-4$	$2 m+6 p-5$	$6 p-3$

Proof of Theorem A. Recall that the dimension of $\mathscr{P}^{1} x_{r}$ is $r+2(p-1)$. If

$$
\begin{aligned}
r=2 n_{i}+1 \text { then } r+2(p-1)=2 n_{i}+1+2(p-1) & \geqq 2 n_{i}+1+2\left(n_{\mathfrak{i}}-n_{1}+1\right) \\
& =2 n_{\mathfrak{1}}+3+2 n_{i}-2 n_{1} \\
& >2 n_{\mathfrak{1}}+1
\end{aligned}
$$

since $n_{1} \leqq n_{i}$ for all i. The image of a primitive under the action of $\mathscr{A}(p)$ is also primitive and since all of the primitives lie in dimensions less than or equal to $2 n_{1}+1$, then we can see that \mathscr{P}^{1} acts trivially on $H^{*}\left(Y ; Z_{p}\right)$. Thus $H^{*}\left(Y ; Z_{p}\right)=U\left(M_{Y}\right)$ where $M_{Y}=$ $\operatorname{Tr}\left(2 n_{1}+1\right) \oplus \cdots \oplus \operatorname{Tr}\left(2 n_{\mathfrak{t}}+1\right)$.

Suppose we wish to realize a projection $M_{Y} \rightarrow \operatorname{Tr}\left(2 n_{i}+1\right)$ by a $\operatorname{map} S_{(p)}^{2 n_{i}+1} \rightarrow Y_{(p)}$. From table 1 we see that the lowest dimension in which an obstruction may occur is $2 n_{1}+4 p-3$. The inequality $p \geqq n_{1}-n_{1}+2$ implies $2 n_{1}+4 p-3>2 n_{1}+1$ and so any obstruction must vanish since the ' $\left(2 n_{i}+1\right)$-sphere has cohomology only in dimension $2 n_{i}+1$. Hence there is a map $S_{(p)^{2 n+1}}^{2 i_{i}} \rightarrow Y_{(p)}$ realizing each projection $M_{Y} \rightarrow \operatorname{Tr}\left(2 n_{i}+1\right)$. By the discussion in the beginning of the section, this proves the theorem.

Before proving Theorem C, we first observe the following
Lemma 4.1. If Y and Y^{\prime} are $\bmod p H$-spaces whose cohomology is primitively generated and if Y and Y^{\prime} are very nice spaces and $g: M_{Y} \rightarrow M_{Y^{\prime}}$ a morphism in $\mathscr{\mathscr { C }} \mathscr{M}$, then the class $\left[f_{2}^{\prime} \circ \gamma \circ p_{1}\right] \in$ $\mathcal{O}_{1}(g)$ is primitive.

Proof. By Corollary 2.3, E_{1} and E_{1}^{\prime} are $\bmod p H$-spaces and f_{1}^{2} is an H-map. From 2.1E) we see that $p_{1}: Y \rightarrow E_{1}$ is an H-map. It suffices to note that γ is an H-map. However this is clear since γ lifts the commutative square

and the assumption that Y and Y^{\prime} are primitively generated gives that $\phi_{0}, f_{1}^{\prime}, f_{1}$ and ψ_{1} are all H-maps.

Proof of Theorem B. The spaces $B_{n_{i}}(p)$ have nonzero cohomology in dimensions $2 n_{i}+1,2 n_{i}+1+2(p-1)$ and $2\left(2 n_{i}+1\right)+2(p-1)$. When $p \geqq 5$ the spaces $B_{n_{i}}(p)$ are $\bmod p H$-spaces [12] and so we need only consider primitives as \mathscr{O}_{1} obstructions. The inequality
$2 p>n_{\mathrm{t}}-n_{1}+2$ implies that the first obstructions to realizing maps $M_{Y} \rightarrow M B_{n_{i}}(p)$ or $M_{Y} \rightarrow \operatorname{Tr}\left(2 n_{j}+1\right)$ lie in dimensions larger than $2 n_{1}+1$ and hence vanish for dimension reasons.

Now observe that the inequality $2 p>n_{\mathfrak{t}}-n_{1}+2$ guarantees that the highest dimension in which a product class $x_{r} \cup \mathscr{P}^{1} x_{r}$ can occur is less than $6 p-6$. Thus the C_{2} obstructions all vanish for dimension reasons. Since any higher obstructions lie in still higher dimensions, we have that any projection $M_{Y} \rightarrow M B_{n_{i}}(p)$ can be realized. Similarly any projection $M_{Y} \rightarrow \operatorname{Tr}\left(2 n_{j}+1\right)$ can be realized. This completes the proof of Theorem B.

We add that more can be said when the mod p cohomology data for Y is known. In [11] the author obtains results of Mimura and Toda [14] on the quasi-regularity of primes for compact Lie groups without the need of the restriction $p \geqq 5$.

References

1. W. D. Barcus, On a theorem of Massey and Peterson, Quart. J. Math., (2) 19 (1968), 33-41.
2. A. K. Bousfield and D. M. Kan, Pairings and products in the homotopy spectral sequence, Trans. Amer. Math. Soc., 177 (1973), 319-343.
3. H. Cartan, Séminaire, Algèbres d'Eilenberg-MacLane et Homotopie, Ecole Normale Supèrieure, Paris (1954/55).
4. J. M. Cohen, Homotopy groups of inverse limits, Proc. London Math. Soc., (3) 27 (1973), 159-177.
5. J. Harper, Mod p decompositions of finite H-spaces, LNM No. 428, Springer (1974), 44-51.
6. $\quad H$-spaces with torsion, preprint.
7. H. Hopf, Uber die topologie des Gruppen Mannigfaltigkeiten und ihren Verallgen einerungen, Ann. Math., 42 (1941), 22-52.
8. P. G. Kumpel, Lie groups and products of spheres, Proc. Amer. Math. Soc., 16 (1965), 1350-1356.
9. Mod p equivalences of $\bmod p H$-spaces, Quart. J. Math., 23 (1972), 173-178.
10. W. S. Massey and F. P. Peterson, On the mod 2 cohomology structure of certain fibre spaces, Amer. Math. Soc. Memoirs, 74 (1967).
11. J. McCleary, Obstructions to realization of morphisms between modules over the Steenrod algebra for very nice spaces, Ph.D. Thesis, Temple University (1978).
12. M. Mimura, On the mod $p H$-structures of spherical fibrations, Manifolds-Tokyo 1973, University of Tokyo Press (1975), 273-278.
13. M. Mimura, G. Nishida and H. Toda. Mod p decompositions of compact Lie groups, Publ. RIMS, Kyoto Univ., 13 (1977), 627-680.
14. M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups-I, Topology, 9 (1970), 317-336.
15. J. P. Serre, Groupes d'homotopie et classes des groups abéliens, Ann. Math., 58 (1953), 258-294.
16. C. Wilkerson, Mod p decompositions of $\bmod p H$-spaces, LNM No. 428, Springer (1974), 52-57.
17. A. Zabrodsky, On rank 2 mod odd H-spaces, New developments in topology, ed. G. Segal, Cambridge University Press, (1974), 119-128.

Received December 14, 1978.
Vassar College
Poughkeepsie, NY 12601

