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ALMOST-PERIODIC FUNCTIONS WITH
UNBOUNDED INTEGRAL

RUSSELL A. JOHNSON

Let B be an almost-periodic (a.p.) function with mean

S t
B(s)ds. The well-known theorem

0

of Bohr states that Git) is uniformly bounded iff Git) is a.p.
This theorem may be reformulated in the following way.
Let Ω be the hull of B, and let (Ω, R) be the flow on Ω
defined by translation. Since B is a.p., Ω is a compact
abelian topological group. There is a continuous b: Ω~»R
and an ωQeΩ such that b{ωQ t)~B{t). I.e., b "extends B to
Ω". Then Bohr's theorem is equivalent to the following:
G(t) is bounded iff there is a continuous r: Ω->R such that

S t
b(ω s)ds{ωeΩ,teR).

o

In this paper, we consider the case when G(t) is un-
bounded. Two results are obtained. The first is a gener-
alization of Bohr's theorem: let μ be (normalized) Haar
measure on Ω, and let gω(t)~ 1 b(ω-s)d$(ωeΩ, t eR); then

Jo

lim^oo Il2nγ{t e [—n, n]\gω(t) e Z}>0 for some compact IczR and
some ωeΩ iff there exists a ^-measurable r: Ω-+R such
that r(ω t)—r(ω)— \ b(ω-s)ds(ωeΩ,te R). Here γ is Lebesgue

Jo
measure on R. Thus, r exists if some gω(t) is not too badly
unbounded. This theorem is stated for the class of
"minimal" functions (see below), which includes the a.p.
ones.

Now, an example in ([10]) shows that there exist a.p. functions
b -with gjf) unbounded which admit a discontinuous, ^-measurable
r as above. It is natural to ask whether r always exists. Our
second result (§ 4) states that this is false; residually many functions
b 6 C(Ω) with mean value zero admit no /^-measurable r. This is, at
first glance, a bit disappointing. However, combining our two theo-
rems, we can at least draw this conclusion: even a "measure-theore-
tic" Bohr's theorem applies to only a small (though non-vacuous) set
of a.p. functions.

The proof of the first result may be of interest. We make use
of techniques and [results from ergodic theory, lifting theory ([9]),
and the theory of linear skew-product flows ([14], [15]). Of special
importance is a close examination of a disintegration ([3], [9]) of a
certain ergodic measure. Said examination involves a deep theorem
of Furstenberg concerning such disintegrations ([7], Theorem 4.1).
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His theorem is stated for integer flows. Since our interest is in
real flows, we extend his theorem to this case (in fact, to the case of
an arbitrary phase group; we also make other generalizations. See
2.2, 2.3, 2.4). The extension is performed by mimicking Furstenberg's
proof.

1* Preliminaries* In 1.1-1.7, X is a locally compact Hausdorff
space unless there is a statement to the contrary.

DEFINITIONS 1.1. Let M(X) be the set of nonnegative (Radon)
measures on X ([1], Chpt. Ill, § 1, n° 3, Def. 2). We will always
give M(X) the topology of pointwise convergence (i.e., μn-*μ
iff μn(f) -» μ(f) for each continuous f:X-+C with compact support).
Let M^X) = {μeM(X) \\\μ\\ = μ(X) - 1}. If μeM(X), we use

ί f(x)dμ(x) , ί fdμ ,
Jx Jx

or μ(f) to denote an integral with respect to μ. Let Supp μ be
the support of μ.

DEFINITIONS, REMARKS 1.2. Let μeM(X), and let π map X to
a topological space Y. Say π is μ-Lusin-measurable if, for each
compact KaX and ε > 0, there is a compact Kxc:K such that
μ(ϋΓ ~ J£Ί) < ε and π | JKi is continuous. If F is separable metric,
then 7Γ is μ-Lusin-measurable iff π~\B) is ^-measurable for every
closed ball BczY. See ([1], Chpt. IV, §5, Prop. 1 of n°l and Thm.
4 of n°5).

DEFINITIONS, REMARKS 1.3. Let Y be locally compact Hausdorff,
let μeM(X), and let π: X-* Y be μ-Lusin-measurable. Say π is μ-
proper if, for every compact CczY, π~~\C) is essentially μ-integrable
(i.e., sup^μ(π~\C) Π K) < °°9 where KaX is compact). If π is μ-
proper, one can define an image measure v — π(μ) ([2], § 6, n°l,
Def. 1). If X is compact and π is /i-Lusin-measurable, then π is
necessarily μ-proper. If X and Y are compact, then v — π(μ) has
the following property: feL\Y, v) iff foπeL\X, μ), and

I fdv = I foπdμ .

See ([2], § 6, n°2, Thm. 1).

DEFINITION 1.4. Let X and Y be compact Hausdorff, μeM(X),
π: X—> Y a μ-proper map, and v — π(μ). A mapλ: Y —> M(X): y-*Xy

is a disintegration of μ with respect to v (or wiίfe respect to π) if:
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(a) Supp λ, c π~\y){y e Y);
(b) | |λ,| | = l ( y 6 F ) ;
(c) λ is υ-adequate ([2], §3, n°l, Def. 1); see also 1.5(a);
(d) if / : X —> R is continuous, then y —»\(f) is v-integrable,

and ί f(x)dμ(x) = \ Xy{f)dv(y).
JI JY

REMARKS 1.5. (a) If λ is y-Lusin-measurable, it is v-adequate
([2], §3, n°l, Prop. 2).

(b) One can define the notion of disintegration if X and Y are
locally compact; slight modifications are needed in 1.4(d). See [3],
§3, n°l, Thm. 1).

THEOREM 1.6. Let X and Y be compact metric, π: X—> Y a μ-
proper map, v = π{μ).

(a) There exists a disintegration λ of μ with respect to v.
(b) If λ': Y —> M(X) is another map satisfying (a), (c), and (d)

of 1.4, then λ' = λ v — a.e.

(c) // feL\X,μ), then y-*\(f) is defined v — a.e., is v-inte-

grable, and μ(f) = I \(f)dv(y).
JY

Parts (a) and (b) of 1.6 follow from a more general theorem, in
which X and Y are locally compact second countable ([3], § 3, n°l,
Thm. 1). Part 1.6(c) follows from 1.6(a) and ([2], §3, n°3, Thm.

1).

DEFINITION 1.7. Let μeM(X), and let M°°(X, μ) = {f:X-*R\f
is bounded and ^-measurable}. A map p: M°°(X, μ) —> M°°(X, μ) is a
lifting of M°°(X, μ) if (i) it is linear, (ii) p(f) = / locally μ - a.e.;
(iii) if /j. = /2 locally μ—a.e., then ρ(f) = p(f2) everywhere; (iv) / ^
0-/o(/) ^ 0; (v) p(frf2) - pifd pifj. If, in addition, (vi) /o(/) = /
for every continuous feM°°(X,μ), then ^ is a strong lifting of
Λf%X; jei). See ([9], Chpt. Ill, Def. 1).

THEOREM 1.8 ([8]). Let X be a locally compact topological group
with left Haar measure μ. There exists a strong lifting p of
MCO{X, μ) which commutes with left translations {thus, let (Txf)(x) =
/ ( Γ ^ ) ( / G F ( I , μ); x, xeX); one has p(T.f) = Tm(p(f))).

DEFINITIONS 1.9. A (right) transformation group (or flow) is a
triple (X, T, Φ), where X is a topological space, T is a topological
group, and Φ: X x T —> X: (x, t) —>x-t is a continuous map such that:
(i) x idy = x(x e X; idy = identity in T); (ii) (&•*)• 8 = x-(t s)(xeX;
t,seT). We will always suppress Φ, writing just (X, T) when
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referring to a flow. If t e T and i d , define A t = {x t | a? e A}.
lίteT and/: X-> Γ, define (t'f)(x) = f(x t)(x e X). If X is compact
Hausdorff and μ e M(X)9 define G« •«)(/) = μ(t f)(t e T, fe C(X)).
Equivalently, one could define (μ t)(A) = μ(A-t~1) for each //-meas-
urable A c X.

DEFINITIONS, REMARKS 1.10. Let (X, T) be a flow with X com-
pact Hausdorff. Let μeMλ(X). A set i c l i s 1'-invariant if μ(A
tΔA) - 0 for each teT. It is strictly T-invariant if A-t = A(t e Γ).
The element μ of Mλ(X) is T-invariant iί μ t = μ(teT). It is Γ-
ergodic if, in addition, μ(A) = 0 or μ(A) = 1 for every T-invariant
set JL. If (X, T) has only one invariant measure μ, then /i is
ergodic ([13]).

DEFINITIONS 1.11. Let B:R->Rn be a uniformly bounded, uni-
formly continuous map. Let C(R, Rn) be the space of continuous
maps from R to R%, with the compact-open topology. For each
τ e R, define /Γ(ί) = /(ί + τ)(/ e C(R, Rn), t e R), and let Ω = els {£r | τ 6
R}(zC(R, Rn). Then i2 is compact metric ([12]), and the translation
(f,τ)~~^fτ induces a flow (Ω, R). The space Ω is the hull of I?.
Let ω0 represent the element B of Ω. Define b: Ω —> Rn: b(ω) — α>(0).
Then &(α>0 ί) = Bt(0) = J?(t). Thus 6 "extends JS to Ω". If B(t) is
almost periodic, then ([5]) Ω is a compact abelian topological group,
with dense subgroup R; the flow (Ω, R) is defined by the group
operation (ω-t is the product of ωeΩ and teRdΩ). The unique
invariant measure for (β, R) is normalized Haar measure. If (β, R)
is minimal (i.e., the only nonempty closed invariant subset of Ω is
Ω itself), we say that B is minimal. If B is a.p., then B is
minimal.

2* Furstenberg's theorem* In this section, we generalize Fur-
stenberg's theorem. We have tried to compromise between, on the
one hand, ignoring the fact that Furstenberg's proof is readily
available, and, on the other, giving no details at all and simply
giving references to that proof.

NOTATION 2.1. For the most part, we adopt the notation of
([7]). However, a disintegration of a measure μ will be written
(O—>μωf rather than ω—>μ(ω). Compare also with 1.4, where we
let λ denote a disintegration. If B is a set, we let |J5| be its
cardinality. Let Ω denote a compact metric space. If (Ω, T) is a
flow, we sometimes write ωt for ω t(ω eΩ, t e T). In §2, T is an
arbitrary topological group.
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THEOREM 2.2. Let (Ω, T) be a flow with μQ a T-ergodic measure
on Ω. Let K be the unit circle, let Σ = Ω x K, and let π: Σ —* Ω:
(ω, ζ)-*α> be the projection. Let (Σ, T) be a flow satisfying π((α>,
ζ)-t) — [τc{ω, ζ)]'t = a) t((ω, ζ) eΣ). {Equivalently, suppose (α>, ζ) ί =
(ωt, ht(ω, ζ)) for continuous functions ht: Σ -> K). Let μ be a
measure ergodic with respect to (Σ, T) such that π(μ) = μOf and let
co—* μω: Ω—> Mχ(Σ) be a disintegration of μ with respect to μQ(1.6).
If μ is not the only ergodic measure on (Σ, T) such that π{μ) — μQ,
then there is an integer n such that | S u p p μ J = n μ0 — a.e.

Proof. We divide the proof into steps.
(1) hetj e Γ, and define μω e M,{Σ) by βJJ^μ^fW e C(Σ)).

Clearly ω -»μ ω satisfies 1.4(a), (b), (c). Since

\/Λf)dμo(ω) - ^μUr'fWμoiω) = (by 1.3)

) = μ(fιf) = μ{f) , ω > μω

satisfies 1.4(d). By 1.6(b), μω=μ(ti v — a.e.; i.e., —{μω)-t ^0-a.e. for each
fixed t.

( 2 ) For each integer n, let 2?w = {α> e Ω \ \ Supp μω \ <: n}. We
claim Bn is ^-measurable. For, let Γ be a compact set such that
ω -> μω is continuous on Γ. It suffices to show that B Π Γ is closed.
Let o)z —> ft), ωteBnf] Γ. Suppose μωι is supported on points

letting δ^ denote the Dirac measure at p, we write

n

where 0 = oίk+1(ωi) = = αΛ(ωz) if & < w ' Choosing a subsequence,
we assume ai(ωι)-+at,ζi(ωι)'-*ζt(l£ίi<in). If feC(Σ), then μω(f) =

(a) Suppose J = Supp μω is infinite. Since i£ is compact, ^
assigns positive measure to open subsets of Δ. Let V be an open
set in Δ whose closure does not contain ζl9 , ζΛ. Let 0 <| f eC(Σ)
be equal to 1 on V, and equal to zero at (ω, ζ,)(l ^ i ^ n). We
obtain a contradiction; hence | Supp μω \ < °o.

(b) Suppose | S u p p μ J < o o , with ^ ω = ΣΓ^^Λω,:,). Let ai9ζt

be as above. Then
(*) each ζ, 6 {ζ, I α y ^ 0, 1 ^ i ^ w}, if a, Φ 0;
(**) each ζ, 6 {Ci i a; Φ 0, 1 ^ j ^ r}, if α, Φ 0. For suppose (*)

is false. Choose 0 ^ / e C(Σ) such that / ( Q = 1 and f(ζd) = 0 if
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aό Φ 0; one obtains a contradiction. Similarly for (**). Now, by
(*), we must have |Suppμω[ <; n; hence μωeBn.

We have shown Bn is ^-measurable. As a corollary to the
proof, Cn — {ωeΩ\ [SuppμJ > n} is ^-measurable, since Cn Π Γ is
open in Γ.

From (1) and (2), we obtain two conclusions.
(3) If D= {ωeΩ\ |SuppμJ < oo}, then D = U ? = i # » is μ0-

measurable. Also, D is T-invariant; hence μo(D) = 0 or 1.
(4) Note D = U?=i Dn, where Dn = BnΠ Cn^ is ^-measurable

and Γ-invariant. Suppose v(D) — 1. Then, for some n, Dn = {ω e
Ω I |Supp/iJ = n] has ^-measure 1.

From now through (15), assume for contradiction that |Supp#J =
oo μQ — a.e. Let μ' be another ergodic measure on Σ, with disinte-
gration ω -> μ'ω9 such that π(μ') = μ0.

(5) As on p. 593 of ([7]), one can show that μω is nonatomic
(i.e., no point has nonzero measure) μQ — a..e. As on p. 594 of ([7]),
one can show that μ'ω is also nonatomic μ0 — a.e.

Let λ = l/2(μ + μ'). Then ω -> λω = 1/2(̂ Λ + ^ ) is a disintegra-
tion of λ with respect to μ09 and λω is μo—a,.e. nonatomic. Fix ζ oe
K, let {ζ0, ζ}αK denote the interval from ζ0 to ζ (counterclockwise),
and let K' be the unit circle in the complex plane. Let πr: Ω x K'-»
Ω denote the projection (ωf ζ) —> α>.

Define

( 6 ) ψ: Σ > Ω x K': (ω, ζ) > (α>, β 8 * " - " ^ " ^ ,

a n d for each t,

( 7 ) ^ t : Ω > K'\ ω > e2^«««<tc0.At(«.Co)n .

For each t e T, define t: Ω x JSΓ' -> Ω x JBΓ': (α>, ζ) -> (α) ί, ^(α>)ζ).
Denote the image of (α>, ζ) under ? by (ω, ζ) t. As on p. 594 of
([7]), one has

( 8 ) f{(ω, ζ) t) = hKα>, 0 ] ί for (α>, ζ) e π~\B), where JB C β has
/Vmeasure 1 (B depends on t).

( 9 ) We show that ψ is ^-Lusin-measurable for any measure η
on Σ such that π(η) = ^o

x (in particular, for jM, JW', λ). It ζoφ ζeK
and m > 1, construct continuous functions gm,ζ: K-^R such that (i)
limm^oogmfζ(ζ) = <£>{ζo,ζ}(ζ) (here <£> denotes characteristic function); (ii)
for fixed^m, gm>ζn ^gmiζ_uniformly i f ζ Λ - + ζ ; (iii) 0 ^ gmX(ζf) ^ 1 for
all m, ζ, ζ. Let srw,ζ(ω, ζ) = §w(ζ). Define rm: J - > Λ : (^ζ)->λω(srTO,ζ).
Let Γ cΩ be a compact set on which ω —> Xω is continuous. Let
(ωn, ζ j -> (α), ζ) in π~\Γ). Then |λωjflrm,cj - Xω(gm,z) \ ̂  \ Kn(θ-.ϋ ~
Kn(gm>ζ) 1 + I Kn(9m,ύ - λ . ί ^ c ) I ̂  II βrm,ζ% - flτm,c H + I λωπ(srWtζ) -

1 Here and in (11) below, we assume η admits a disintegration ω-*ηω with ηω non-
atomic for all ω (hence η{Ωx{ζo\) = 0).
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»,c) I —» 0 as n-*°°. Hence τm is ^-Lusin-measurable. Now,
^ ^ τm(ω, ζ) = λω({ζ0, ζ}). Hence ψ is ^-Lusin-measurable.
(10) In a similar fashion, each gt is /vLusin-measurable. Hence

each map t is ^'-Lusin-measurable for any measure rf on Ω x JK"'
which satisfies π'(τ?') = μ0.

(11) By 1.3 and (9), ψ is 97-proper if π(rj) = #>. By 1.8 and
(10), F is ^'-proper if TΓ'(J/) = μo Hence ψ(μ) = μ* and ψ*(μf) = jtβi.
are Radon measures, and have unique disintegrations with respect
to μo(1.6). As on p. 595 of ([7]), ψ(X) = μQ x m, where m is nor-
malized Lebesgue measure on K\ Moreover, by (8), (10), and ([2],
§6, n°3, Prop. 4(a)), one has μ*-t== ψ(μ t) = φ(μ) = μ*. Similarly
μ'*-ΐ= μ», (μ0 xm) t = μox m(ίeΓ).

(12) Note μ0 x m = lβ{μ* + μ*). We show that the assumption
μ* Φ μ* implies the existence of an feL\Ω x K', μ0 x m) such that
(i) for each t, /((α>, ζ)-t) — f(ω, ζ) μQ x m — a.e.; (ii) / is not equal
to a constant μQ x m — a.e. (The existence of / does not follow
from standard ergodic theory, since the flow (α>, ζ, t) —> (α>, ζ) ? has
not been proved measurable. However, we need only imitate a
standard proof.) Note that μ* < μQ x m. Hence, if EcΩ x Kf is

/Vmeasurable, then μ*{E) = I /(Z(^o x m) for a unique f eLι(μ0 x

m). Now, /i*(J^) - (1.3 and ( l ί ) K ( # ί"1) = ^ ^ M Λ o x m) = (1.8

and (11)) ί /((ω, ζ) t)d(μ0 x m)(ω, ζ). Hence /f(α),ζ) t - /(α>, ζ) ftx

m — a.e. for each t, and (i) is proved. If / = const. μQ x m — a.e.,
then const. = l(let E = Ω x K'). But then μ^ = μ0 x m, contradict-
ing μ* Φ μf*. So (ii) holds, also.

(13) Using Fubini's theorem, expand / in a partial Fourier
series: / ~ Σm-00 am(ω)ζm. Fix teT. By (i) in (12) and uniqueness
of Fourier coefficients, am(ω t)g?(ω) = am(ω)μ0 — a.e. (— 00 < m <°o)#

Since μ0 is ergodic, / is not a function of ω alone (otherwise (ii) of
(12) is violated). Hence there exists k Φ 0 with ak(ω) Φ 0. Arguing
as in Lemma 2.1 of ([7]), we see that, for each teT, gi(ώ) = R(ω't)/
R(ω)μ0 — a.e., where \R(o))\ — 1 μ0 — a.e. (in fact, R(ω) — ak(ω)/
\ak(ω)\).

(14) As on p. 595 of ([7]), let JaK' be any interval, and let
Λ\J) = {(ft), ζ)eΩ x K'\ R{ω)~V6 J } . Then (p. 595)μ0 x m(Λ'(J)) =

m{J). By (11) and (13), and arguing as on p. 595, one has μox
m(Λ'(J)>t4Λ'(J)) = 0 for each teT. By (8) and (11), X(Λ(J)-UΛ(J)) =
0 if Λ{J) = ψ-\Λ\J)){t 6 T). Also, X(Λ(J)) = m(J). So λ has
invariant sets of all measures. Argue as on p. 595 again to obtain
a contradiction to the assumption μ* Φ μf*. We conclude μ* — μr*.

(15) Note ψ\[ω{χK is continuous for μ0 — a.a.ft). Hence μ*,ω^Ξ
ψ(μω) and μ*,ω == ψ^(^) are defined JM0 — a.e., and can be shown to
be disintegrations of μ*r μ* with respect to μ0. By 1.6(b), μ*>ω —
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μ0 — a.e. As on p. 595 of ([7]), it follows that μω = μ'ω μ0 — a.e., and
hence that μ = μ\

We have contradicted our assumption that |Suppμω | = coμ0—a.e.
By (3), |SuppμJ < oo μ0 - a.e., and by (4), |SuppμJ = n μ0 - a.e.
for some n.

THEOREM 2.3. 1.2 remains true if Ω is compact Hausdorjf.

Proof, The proof is not a repetition of that just given, since
1.6 does not now apply. Even if it did, a map ω-^μω which satis-
fies 1.4(a), (b), (c), (d) need not be μ0 — Lusin measurable since
Mλ(Σ) is not metrizable. (We used μ0 — Lusin-measurable of Q)—>μω

heavily.) However, note that K acts freely ([3]) on Ω x K by
group multiplication. By ([11], Theorem 1.9), every measure η on
Σ (T-invariant or not), has a 7r()7)-Lusin-measurable disintegration
ω —>ηω with respect to π{η); moreover, ω -*ηω is unique in the sense
that, if ω-*ΎJω is another π()7)-Lusin-measurable disintegration, then
Vω = Va> π(y) - a.e.

Now go through the proof of 2.2, using /v Lusin-measurable
disintegrations co —> μm ω -> μ'ω. Nothing changes in steps (l)-(10),
except that sequences are replaced by nets in various places. In
(11), "unique disintegrations" is replaced by "unique ^-Lusin-measur-
able disintegrations". All is the same in steps (12)-(14). In (15),
however, we hit a snag. It is not clear that the maps ω—>μ*,ω

and cΰ-+μ*ιω are μo-Lusin-measurable; hence we cannot apply unique-
ness to conclude that μ*tω = μ*,ω μ0 — a.e. We escape as follows.
Define μ*tω = φ(μω), μ*,ω = ψiμ'J). Recall K' is the unit circle. Let
π2: Ω x K' ~^> Kf be the projection. Define elements aω9 a'w e Mx{Kr)
by aω(h) = μ*,ω(hoπ2), a'JJi) = μ'*,ω{h<>π«). Let feL\Ωf μ0). Note

( f(ω)hoπ2(ω, ζ)dμ*(ω, ζ) - (1.3) ί (f hoπ2)ofdμ = (1.6c)
}ΩxK' JΣ

\ f(co)μω(hoπ2o^)dμ0(ω) = (1.3) ί f(ω)μ*>ω
JΣ JΩ

= \ f(ω)aω(h)dμ0(ω) .

Similarly,

\f(a))hoπ2(ω, Qdμ'*(ω, ζ)= \/(ω)a'ω(h)dμ0(ω) .

Recall μ* = μ*t and define

S: L\Ω, μo)-+M(K'): S(f)*h = ί f{ω)μ*yφQι°
JΩ

The Dunford-Pettis theorem ([4], [9]) applies; there exists a unique
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(up to sets of /vmeasure zero) map σ: Ω -> M(K'): ω -> σω such that

S(f) h = [ f(ω)σω(h)dμ0(ω) for all /, ft. Hence a{ω) = σω = α'(ft))

μo-a.e.; since Supp /**,„ and Supp μ*,ω are subsets of {ω}xK'f μ*,ω=
μ*,ω. The rest of the proof of 2.2 is the same as before.

THEOREM 2.4. 2.3 remains true if K acts freely on Σ {with, of
course, Ω — Σ/K).

We say K acts freely on Σ if (if, Σ) is a transformation group
such that, if ζ σ = σ for some ζ e K and σ eΣ, then ζ = idy in if.

Proof. Using the technique of ([11], § 1), we construct a Borel
isomorphism φ of Ω x K onto J which (i) maps {ft)} x if homeomor-
phically onto π~\ώ) c Σ for all α)6fi (π: Σ —>Ω is the quotient map);
(ii) is ^-proper for every τjeM(Ω x K). If ί e T , define tψ\Σ-^Σ\
tφ = φotoφ"1; one obtains a flow (i2 x if, ϊ7^), where ϊ7^ consists of
Borel measurable maps which are 37-proper for every ηeM(Ω x if).
We may apply all the steps of 2.2 (with the modifications of 2.3) to
the flow (Σ x if, Tφ). (In step (10), some extra work must be done
because Tφ does not consist of continuous maps, but the changes
are straightforward.)

NOTATION 3.1. Let B(t) be a minimal function (1.11), with

G(t) = [tB(s)ds. Let Ω be the hull of B, and define 6 e C(Ω) and
Jo

ωoeΩ so that b(ωo-f) = B(t)(teR). If B is almost periodic (a.p.),
let μQ be normalized Haar measure on Ω (see 1.11). By uniqueness
of Haar measure and 1.10, μ0 is JB-ergodic; it is the only ergodic
measure on Ω.

3.2. Consider the set of two-dimensional ordinary differential

equations E(ω): A = (b(a)'t) o) x (χeR2> ωe®)- ( W e r e a d E(ω) a s

"the equation corresponding to <o".) The solutions to these ODEs
generate a flow on Ω x U2, as follows: (ω, x) t = (ώ •<,»(*)), where
a5(t) is the solution to E(ώ) with initial condition x(fi) — x. The flow
(ΩxR2,R) is an example of a linear skew-product flow ([14], [15]).
It is called "linear" because each mapiVt,ω: {ω} x iϊ2—»{α> £} x R2:
(ft), #) ->(α>, x) t is linear. Let P 1 = protective one-space = the set
of lines through the origin in R2. By linearity, each map Nttύύ takes
a line in {ω} x R2 to a line in {(*)•£} x iί2; hence (i3 x R2, R) induces
a flow (Ω x P\ R). We let Σ = Ω x P1, TΓ: J -> i2: (ω, ζ) -> ft). Note
P 1 is homeomorphic to a circle.

3.3. We can describe (Σ, R) more usefully. Let S1 c Λ2 be the
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unit circle, with polar coordinate θ. We may visualize P 1 as that
part of S1 such that -π/2 ^ θ ̂  π/2, with θ = -ττ/2 and 0 = π/2
identified. We will coordinatize P 1 with θ where — π/2 < # ̂  ττ/2
(note the strict inequality). The flow (J, Λ) may now be given as
follows: (i) if (ω, θ)eΣ with -π/2 < θ < π/2, then (α>, 0) ί = (ω t,

taiΓ1/^ + Γδ(ft) s)cZs\ (ii) if 0 = ττ/2, then (α>, πJ2) t = (ω, π/2)(teR).
\ Jo /

One sees this by solving equations E(ω).

DEFINITIONS 3.4. Note that Σo = {(α>, ττ/2) | ω e Ω) is a compact
invariant subset of Σ. The projection π: Σ —» i2 induces a homeo-
morphism ττ0 — π Uo of Σo onto i2 which commutes with the flows.
If μ0 is an ergodic measure on Σ9 then η = πόι(μ0) is a measure on
ΣQ. If we view 77 as a measure on Σ in the obvious way, then rj
is supported on ΣQ and ergodic with respect to (Σ, R).

LEMMA 3.5. Let Ω, Σ, Σo, π0 be as above (except that, in this
lemma, Ω need not be metric). Suppose that every measure on Σ
which is ergodic with respect to (Σ, R) has the form π^1(μ^) for
some ergodic μ0 on Ω. Let feC(Σ) satisfy f\Σ = 0. Let vt,a(g) =

S t

g(σ s)ds(σeΣ,teR, g eC(Σ)). Then, given ε > 0, 3Ϊ7 such that

\ \ £ \ \
Proof. Observe that η(f) = 0 for every ergodic rj on Σ. Sup-

pose for contradiction that / does not satisfy the conclusion of 3.5.
Let tn and ωn be points such that \tn\ > n and \vtntβ,n(f)\ ^ ε. Choose
a subnet (ία, σa) of (tn, con) such that vta,ωa converges to some v e
MX(Σ). Then v(f) Φ 0. We may assume ta —> + 00, ωa->ω. But
these two conditions imply that v is invariant. Now, it is well-known
that the set of invariant measures is the closed convex hull of the
set of ergodic measures (in the topology of pointwise convergence).
Hence v(f) — 0. This contradiction proves 3.5.

DEFINITION 3.6. If IaR,be C(Ω), and ωeΩ, let A(n, I, ω, b) =

l/2n7{te[ — n, n] \ gω(t)el}, where gω(t) = \ b(ω-s)ds and 7 is Lebes-
JQ

gue measure on JB(τ[O, 1] = 1). When confusion cannot arise, we
will write A(n, I, a)).

PROPOSITION 3.7. Assume there is a compact set IaR such

that lim^^ A(n, I, Q)o) > 0 for some ω0 e Ω. Then there is an ergodic
μ0 on Ω and at least two ergodic measures η, μ on Σ such that
πirj) - μQ.

Proof. There is at least one ergodic measure on i2([13]). If
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the conclusion of 3.7 is false, then, given an ergodic μ0 on Ω, the

measure η = π^{μQ) (see 3.4) is the only ergodic measure on Σ

satisfying π(η) = μ0. Let I, = t a n ^ / c (-π/2, π/2) c P\ and let Σλ =

I' x /1# Let / be a continuous, nonnegative function which is 0 on

Σo and 1 on Σx. Let En = {t e [-n, n] | 0ωo(£) e /}. QThen f((ωQ, 0) ί) =

1 if ί eJEv Hence fiϊn^ l/2wΓΓ/(ω0, 0) sds + Γ /(α>0, O) sds~j > 0.

This contradicts 3.5; 3.7 is proved.
Let μ0 be an ergodic measure on Ω which satisfies the condition

of 3.7. If B(t) is a.p., then μ0 is normalized Haar measure (3.1).

THEOREM 3.8. (a) Suppose there exist co0eΩ and a compact

Id R such that lim^^ A(n, I, β)0) > 0. Then there is a μo-measurable
ct

function r on Ω such that r((t)'t) — r(o))—\ b(ω s)ds μo — s,.e. for each
Jo

teR.
(b) If B(t) is a.p., then r may be chosen so that r(α) ί)—r(α>) =

S t
b(ω s)ds for all ωeΩ, teR.

0

Proof, (a) Using 3.6, we can find an ergodic μ0 on Ω and ergodic
measures η — π^\μ0) and μ Φ η on Σ such that π{η) — π(μ) = μQ.
Let λ: Ω -> MX(Σ): ω —>Xω be a disintegration of μ with respect to
μo(1.6). Using uniqueness in 1.6 (1.6(b)), it is easy to see that
(*)λα,.e = (λj ί μ0 — a.e. for each teR.

By 2.2, there exists an integer n such that |Suppλω | = n on a
set 5 c f l of ^-measure 1. For ωeB, we write λω=X?=1αί(Λ))δ((y^.(ω))

(δ = Dirac measure), where θQ(ω) < Θ2(ω) < < 0Λ(β>) .

Let B, = {ωeB\ θn(ω) = π/2} (recall θ has range π/2 < θ £ π/2).
By (*) and in variance of Σo, Bλ is jR-in variant in the sense of

2.10.
We claim Bλ is ^-measurable. Let f c ί b e a compact set such

that λ \Γ is continuous. It suffices to show that Bίf\Γ is closed.
Let ωt eB t D /\ o)j —> ωeB. Choosing a subsequence, we may assume
that ottioot) —>«,, ̂ (ωz) —> ̂ . It is easy to see that {Θ1{ώ)9 - , ^n(ω)}c
{β. \ at Φ 0(1 <* i <. n)}. Hence the two sets are equal, and no aύ can
be zero. Since θ — π/2, we must have θn(ω) = π/2. So Bx is μ0-
measurable.

Since μ0 is ergodic, μQ(Bx) = 0 or 1. It cannot be 1. For, sup-
pose it is. The ergodic measures η and μ are mutually singular
(considerably more is true; see, e.g., [13], pp. 496-508). Let Dx and
D2 be Borel sets in Σ such that 1 = 7](D1) = μ(D2)9 A Π A = f Clearly
η{Dx Π ΣQ) = 1. This implies that, for μQ — a.a. ω, one has DίΠΣQΓ\
π~1(ω) — φ. Clearly η(DLf]Σ0) = l. This implies that, for μ0 — a.a. ω,
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one has A Π ΣQ Π π~\ω) — φ. Since μo(A) — 1, we have Xω(D2) < 1
for μQ ~ a.a.ft). But 1 = μ(D2) = (1.6(c))

The contradiction shows that μo(A) = 0.
Let B2 = Ω ~ Bλ; then μo(B2) = 1. Let Z>3 = {(α), 0) e Σ\ ω e B2,

Θ = m a x ^ i ^ #*(ft>)}. Then A is j?-invariant ((*) and the fact that
the flow on Σ preserves the 0-order). We claim A is /^-measurable.
Let Γ czB2 be a compact set such that X\Γ is continuous, and let
Γ1 = π~\Γ). We show that A Π Λ is closed. Let (ωh θι) e A Π A,
with (ωh θι) —> (ft), θ). Then ωeB2, and λω/—>λω. Choosing a sub-
sequence, we assume at(a>ι) —> ai9 θ^ωi) —> θit Now each θt is equal
to θn(ωt). Hence β = θn. As before, {^(α)), , θn(ω)} = {θu - - , £n} =
{̂ i, * , β}. We claim that ^ = 0Λ(α>). Since the ^(ωz) were arranged
in increasing order, it suffices to show that θx Φ —π/2. But, if this
were not the case, then 0»(α>) would be π/2. Since it is not (ωeB2),
we have θ = ^n(α>), and hence (α>, ί) 6 A

Either ^(A) = 0 or μ(D3) = 1. But μ(A) = ( K(DH)dμQ(ω)f and

λω(A) > 0 on A Hence ^(A) = 1. This implies Xω is supported on
the point (α>, ̂ ) if ωeB2; i.e., λω = δ(ω,^.

We now define r. If α> e j?2> let (ft), 0) be the corresponding
point in A> &nd let r(ω) — tan 0. If co ί B2, define r arbitrarily.

Since A is i?-invariant, one has r(ω t) = tan tan" 1 (#4-1 b(ω-s)ds =

S * V Jo

6(ω s)cίs ^o — a.e. for each ί e j β . Also, it follows immedi-
0

ately from the proof of μ-measurability of A that is ^-measurable.
This completes the proof of (a).

(b) Let Xω be the disintegration of μ with respect to μ0 of (a).
We first arrange that Xω.t = (λj ί for all ωeΩ and teR. To do
this, let p be a strong lifting of M°°(Ω, μ0) commuting with transla-
tions (1.8). As in ([9], Chpt. VI, Prop. 1), we may define a new
disintegration λ' of μ with respect to μ0 by the formula X'ω(f) =
p(g)(ω), where g: Ω-+R: g(ώ) = X-(f)(f eC(Σ)). It is easily seen
that Xr

ω.t = (λ )̂ ί for all ft), t.
Now go through the proof of (a) with λ' in place of λ. One

finds that B2 is strictly iϊ-invariant (in the sense of 1.10). If ωeB2,
define r(ω)=ta.nθ; define r on Ω~B2 in any manner so that r(ω -1) —

b((ϋ's)ds holds. Then this equation holds for all ft), t. As
0

in (a), r is /^-measurable. The proof of (b) is complete.
By restating the hypotheses of 3.8, we obtain a theorem whose

converse is also true.
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THEOREM 3.9. The following are equivalent.
(a) There is an ergodic measure μ0 on Ω, a set Ω1d.Ω with

— 1 and compact sets IωcR such that lim^^ A(n, Iω, co) exists
and is positive (ωeΩ^.

(b) There is an ergodic measure μ0 on Ω and a [immeasurable

function r such that r(ω t) — r(ω) — 1 b(ω-s)ds μQ—a.e. for each te
Jo

R. If B{t) is a.p., then r may be chosen so that equality holds for
all ωf t.

Proof (a) => (b): follows from 3.8.
(b)=>(a): Let J be any compact set such that B — r~\J) has

positive ^-measure. Let φβ be the characteristic function of B. By

the Birkhoff ergodic theorem ([13]), l/t\ φB(ω-s)ds —> μo(B) as ί-> co
Jo

and as ί —• — oo, for μ0 — a.a.ω. Fix such an ω. Note that ω seB
iff r(ω-s) 6 J. Let Iω = {s — r{ω) | s e J}. Then lim^^ A(n, Iω, ω) =

0.

REMARKS 3.10. (a) Since (b) => (a) in 3.9, we can conclude that
the hypothesis of 3.8 implies 3.9(a). Thus the relative density
hypothesis "extends from a point to almost all of the hull".

(b) Since J can be chosen to be an interval of arbitrarily small
length, so can the sets Iω.

(c) Theorems 3.8 and 3.9 say nothing about μo-integrability
of r.

(d) Using the techniques of § 3, one can prove results analog-
ous to 3.8, 3.9 for minimal integer flows (Ω, T) (Ω a compact metric
space, T: Ω —> Ω a homeomorphism). Let 6: Ω -> R be continuous.

The analogues of 3.8, 3.9 are obtained by simply replacing! b{ω - s)ds
Jo

by gω(m) = ΣϊUiKω T*) throughout (if m is negative, let gω(m) =
Σik™ob(ω*T~k)), and by replacing A(n, I, ω, b) by l/2n card {me[ — n,
n]\gω(m)el}.

(e) Let (Ω, R) be a.p. minimal. Let C0(Ω) = {b 6 C(Ω) | b has
mean value zero}. There is a boeCo(Ω), and a /vπieasurable, dis-
continuous function rQ: Ω —> R such that

rQ(ωt) — ro(ω) = I bo(ω s)ds(ω ώ teR) .
Jo

One can prove this by constructing r0, using a method similar to
that of ([7], p. 585). See also ([10]). We will not give details here.

Now, in 4.3 below, it is shown that V= \veC0(Ω)\\ v(ω-s)ds is

bounded (ωeΩ)l is dense in CQ(Ω). Then δ0 + V is also dense in

C0(Ω). Hence the set of functions & e C0(Ω) with a a "/v^easurable,
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discontinuous antiderivative" r, is dense in C0(Ω).

4* In this section, we show that "most" a.p. functions satisfy
neither conditions of 3.9. To make this precise, we alter our point
of view somewhat, and consider some almost periodic minimal set
([5])(42, R). If Ω is metrizable, then Ω is the hull of some a.p.
function B(t). However, we will not assume Ω is metrizable. The
result is then the following. Suppose (Ω, R) is not a periodic flow
(i.e., Ω is not the hull of a periodic function), and let C0(Ω) = {be
C(Ω) I b has mean value zero}; then there is a residual subset d of

C0(Ω) such that b e Cx => l i m ^ Iβn 7 jί e [-n, n]\ ['b(ω - s)ds e l\ = 0

for all ωeΩ and all compact IczR.

NATATION 4.1. Let {Ω, R) be an a.p. minimal set. As in 3.6,

let A(n, I, ft), b) = l/2n y\t e [-n, n]\ Γ&(α) s)d« el\ for b e C{Ω) and

compact IczR. Recall that the mean value of beC(Ω) equals

\ b(ω)dμϋ(ω)(μ0 = normalized Haar measure on Ω) .

Let CQ(Ω) = {b e C(Ω) \ b has mean value zero}. Give C(Ω) the sup-
norm topology.

LEMMA 4.2. Suppose (Ω, R) is not a periodic flow. Let 0 < ε < l
and compact IaR be given. Then there is a ceC0(Ω) with | |c | | —1
such that A(n, I, ft), c) < ε for all ω if n is sufficiently large.

Proof. First pick ωQeΩ and beC0(Ω). We may assume that
B(t) = b(ωo t) is not periodic in t. Expand B(t) in a Bohr-Fourier
series: B(t) = Σ*U αte"**. We may assume λfc ^ 0 for all k. Either
(i) XjXi is rational for all m and Z, in which case lim | Xm | = 0, or
(ii) XjXi is irrational for some m, I. Let i2x be the hull of B{t),
and write Bτ(t) = JB(ί + τ)(t, re22). The correspondence ωQ-τ-+BΓ:
{a)0 t\teR} -+ Ωi is uniformly continuous, hence extends to a surjec-
tion τt: Ω —> Ωx which commutes with the flows.

Next, let K be the unit circle, and let K^ = ΠϊU K. Define a
flow &„, R) as follows: (ei0^=rt = (ei(^+^ί})?=i. The correspondence
j?r -^ («"**)*=:!: {JBZ I T e iϊ} -> ULoo is uniformly continuous, hence extends
to a continuous map r2: Ωx —> ϋΓ̂ . Let 422 = Image (r2); then Ω2 is
compact invariant, and τ2: ^ -^ JSΓoo commutes with the flows.

Now consider case (i). Define cm: K^ ->-22: (eίθk)ΐ=1 —> cos ^w. Note

that, if p = (e"*)ϊU, then Γc jp β ) ^ - (l/λj[sin(^w + XJ) - sintfj .
Jo

The following is not hard to prove (we will not do so): if δ > 0,
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and if fά(xy δ) = (1/2 j)j{y e[-j, j] \ | sin (x +1 y) - sin x | ^ <5}(0 < j e R,
x e R), then given ε > 0, 3<5 > 0 and J such that i ^ J=>fj(x, δ) <> ε
uniformly in #. Let I and ε be as in the statement of 4.2. (Choose
M > 0 so that /c[-ikf, M]. Choose δ > 0 and J so that j ^ J=>
/y(α?, δ) < ε for all xeR. There is a λw such that |λm | M < 3. Let

n = j/\Xm\. Note that (l/2n)j\t e [-n, n] Γcm(p s)cίs e [-M, M] | =

(l/2i)7{τ e [-j, i] I I sin (βm + r) - sin ^m | ^ δ} < ε if j ^ J, for all p e
JKΓ̂ . Let C = cmor2orx, and choose N^ J/|λm |. Then ^GiV=>A(n,
/, ft>, c) < ε for all ωeΩ.

Finally, consider case (ii). Suppose λw/λ, is irrational. The
map (e"**)2U ~> (β^4, e*1**) of {(β"*')?^ | ί e R} into the 2-torus KxK=
K2 is uniformly continuous, hence extends to a continuous map r3

of i22 onto K2 which commutes with the flows (the flow on K2 is
of course the irrational twist defined by λm and λ,). For integers
τ and s, define CTS: K

2 —> R: (eίθ, eiφ) —> cos (τθ + s9>). We can choose
τ and s so that |τλm + s\x\ is as small as we please. Therefore,
we can apply an argument like that used in case (i) to show that,
if C — Cτsoτ3oτ2oτίf then (for appropriate r and s) C satisfies 4.2.

LEMMA 4.3. Let V= \beC0(Ω)
t

b(ω - s)ds is uniformly bounded
0

C(Ω)
S

0

(ωeΩ, teR)[. Then V is dense in C0(Ω).
Proof Let 6 e C0(Ω), ω0 e Ω, B(t) == b(ωo f), B(t) =

Then B(t) may be uniformly approximated by trigonometric
polynomials without constant term whose frequencies are among the
λfcs([6]). Such a polynomial defines a function b on Ω such that

I b(ω s)ds is uniformly bounded as a function of ω e Ω and teR.
Jo

The lemma follows.

THEOREM 4.4. Let (Ω, R) be a nonperiodic, almost periodic
minimal set. Then there is a residual subset d of C0(Ω) such that

, ^ A(n, I, ω,b) = Q for all ωeΩ and all compact IaR(bed).

Proof Let Q(I, k, N) = {beCQ(Ω) \ for some ωeΩ (depending on
6), one has A(n, I, ω, b) ̂  1/fc for n ^ N}. By 3.8 and 3.3, \JIC1R

U?=i U^=iQ(I9 k> N) = {beC0(Ω)I for some ωeΩ and some compact
la R, ϊ ϊ ϊ n ^ A(n, J, ft), 6) > 0}.

Without loss of generality, we can restrict attention to sets /
of the form [—a, a], where a is an integer. It is easily seen that,
if I=[-a, a], then els Q(I, k, N) c Q(Iί9 k, N), where I, = [ - α - 1 ,
a + 1]. Hence, if 4.4 is false, then some Q(I, k, N) contains a ball
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W of radius δ > 0. By 4.3, we may suppose that, if a is the center

S t

a(ω s)ds is in some compact interval J2 for all t, ω.
Let IU/ 2 <=[-«! , αA], then let J3 = [~2ajδ, 2ajδ]. Apply 4.2 with
/3 replacing J and 1/fc replacing ε. We obtain a function c such
that α + δc e W and A(n, I, ω, a + δc) < 1/fc for all ω if w is suffici-
ently large. We have arrived at a contradiction, and proved 4.4.

REMARKS 4.5. (a) By 4.4 and 3.9, residually many beC0(Ω)

S t
b(ω s)ds.

0

(b) A theorem analogous to 4.4 holds for integer a.p. minimal
flows (Ω, T). The statement of this theorem is obtained (as in
3.10(d)) by simply replacing Γδ(α> s)cZβ with gω{m) = ΣΓ-o&Cω T*)

Jo

(Σik=ob(ω'T k) if n<0), and replacing A(w, I, ωy b) by l/2w card {me
[—n, n]\gω(m) sl} We must assume (Ω, T) is not periodic; i.e., that
Tj = idy on Ω for no i.
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