ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A RE-ENTRANT CORNER

Nicholas J. Korevaar

Changes in a domain's geometry can force striking changes in the capillary surface lying above it. Concus and Finn [1] first studied capillary surfaces above domains with corners, in the presence of gravity. Above a corner with interior angle θ satisfying $\theta<\pi-2 \gamma$, they showed that a capillary surface making contact angle γ with the bounding wall must approach infinity as the vertex is approached. In contrast, they showed that for $\theta \geqq \pi-2 \gamma$ the solution $u(x, y)$ is bounded, uniformly in θ as the corner is closed. Since their paper appeared, the continuity of u at the vertex has been an open problem in the bounded case. In this note we show by example that for any $\theta>\pi$ and any $\gamma \neq \pi / 2$ there are domains for which u does not extend continuously to the vertex. This is in contrast to the case $\pi>\theta>\pi-2 \gamma$; here independent results of Simon [5] show that u actually must extend to be C^{1} at the vertex.

We consider bounded domains Ω in \boldsymbol{R}^{2} with piecewise smooth boundaries $\partial \Omega$, and functions $u(x, y)$ satisfying
(i) $\operatorname{div} T u=2 H(u)=\kappa u$ in $\Omega ; T u=D u / \sqrt{1+D u^{2}}, H(u)=$ mean curvature of the surface $z=u(x, y), \kappa>0$.
(ii) $T u \cdot n=\cos \gamma$ on the smooth part of $\partial \Omega ; 0 \leqq \gamma \leqq \pi, n=$ exterior normal to $\partial \Omega$.

Physically u describes the capillary surface formed when a vertical cylinder with horizontal cross section Ω is placed in an infinite reservoir of liquid having rest height $z=0$. Then

$$
\kappa=\frac{\rho g}{\sigma},
$$

where

$$
\begin{aligned}
& \rho=\text { density of liquid } \\
& g=\text { (downward) acceleration of gravity } \\
& \sigma=\text { surface tension between liquid and air. }
\end{aligned}
$$

$$
\cos \gamma=\frac{\sigma_{1}}{\sigma},
$$

where

$$
\sigma_{1}=\text { surface attraction between liquid and cylinder. }
$$

Geometrically γ is the contact angle between the capillary surface and the bounding cylinder; it is the angle between the downward
normal of the surface $z=u(x, y)$, and the exterior normal of the cylinder $\partial \Omega \times \boldsymbol{R}$.

If $\gamma=\pi / 2$, the only solution to (i) and (ii) is $u \equiv 0$. If $\gamma \neq \pi / 2$, by considering either u or $-u$, we make the usual assumption that $0 \leqq \gamma<\pi / 2$. This is the case in which the surface rises to meet the cylinder, or "wets" it.

Let θ and γ satisfy

$$
\pi<\theta \leqq 2 \pi, \quad 0<\gamma<\pi / 2
$$

We will construct a domain for which a bounded solution u to (i) and (ii) exists, but having a corner of interior angle θ at which there is a jump discontinuity in u. (The arguments can be modified to include the case $\gamma=0$.)

Determine the domain scale by fixing $R>0$ (Fig. 1). Since $\theta>\pi$, we can pick θ_{1} and θ_{2}, satisfying

$$
\theta_{1}>\pi-\gamma, \quad \pi>\theta_{2}>\gamma, \quad \theta_{1}+\theta_{2}=\theta
$$

Figure 1. The intersection of Ω_{ε} with the disc of radius $3 R$

$$
\begin{array}{lll}
\theta_{1}>\pi-\gamma & P_{0}=(0,0) & l_{0}=\{y \cos \theta=x \sin \theta\} \\
\pi>\theta_{2}>\gamma & P_{1}=\left(-\varepsilon \cot \theta_{2},-\varepsilon\right) & l_{1}=\left\{y \cos \theta_{2}=x \sin \theta_{2}\right\} \\
\theta_{1}+\theta_{2}=\theta>\pi & & l_{2}=\{y=-\varepsilon\} \\
& & l_{3}=x \text {-axis }
\end{array}
$$

For positive ε less than $R \sin \theta_{2}$, let Ω_{ε} be a bounded domain, of which the intersection with $B_{3 R}(0)$ is shown in Fig. 1, and which has C^{4} boundary except at P_{0} and $P_{1} . \quad\left(B_{3 R}(0)\right.$ is the disc of radius $3 R$ centered at the origin.)

Lemma 1. There exists a unique solution to (i) and (ii) in any Ω_{ε}. It is bounded above and nonnegative.

Proof. Because Ω_{ε} is C^{2}, except for a finite number of re-entrant corners, it satisfies a uniform internal sphere condition with contact angle γ, for any γ. Therefore it is admissible in the sense of Finn and Gerhardt [4]. Thus there is a bounded, nonnegative, real analytic function $u_{\varepsilon}(x, y)$ in Ω_{ε}, satisfying (i). Because u is energy minimizing in the sense of Emmer [3], the regularity theory of Simon and Spruck [6] implies that everywhere the boundary is C^{4}, u_{ε} extends to be at least C^{2}, and satisfies (ii). Uniqueness follows from a maximum principle of Concus and Finn [2].

We are interested in the behavior of u_{ε} near P_{0}, as ε approaches 0 . Lemma 2 will show that u_{ε} stays uniformly bounded in one sector near P_{0}, and Lemma 3 show that in another sector it gets uniformly large. It follows that u_{ε} eventually has a jump discontinuity at P_{0}. Let I_{s} be the subdomain of $\Omega_{\mathrm{\varepsilon}}$ shown in Fig. 2. Then we have

Figure 2. The subdomains I_{ε} and $I I_{\varepsilon}$

$$
\begin{aligned}
\theta_{2}>\theta_{2}^{\prime}>\gamma \quad B_{R}(0) & =\left\{x^{2}+y^{2}<R^{2}\right\} \\
I_{\varepsilon} & =B_{R}(0) \cap\{y \cos \theta>x \sin \theta\} \cap\left\{y \cos \theta_{2}<x \sin \theta_{2}\right\} \\
I I_{\varepsilon} & =B_{R}(0) \cap\{y<0\} \cap\{y>-s\} \cap\left\{y \cos \theta_{2}^{\prime}>x \sin \theta_{2}^{\prime}\right\}
\end{aligned}
$$

Lemma 2. u_{s} is uniformly bounded in I_{ε}, independently of ε.
Proof. In this and the following lemma the basic tool is a comparison method of Concus and Finn [2] for surfaces of known mean curvature and contact angle.

Consider circles of radius R which either lie entirely in Ω_{ε} or contact $\partial \Omega_{\varepsilon}$ only at a point of tangency. (In particular, do not allow them to have contact at P_{0} or P_{1}.) If $\theta_{1}<\pi$, also allow circles which intersect $\partial \Omega_{\varepsilon}$ at two points on $l_{0}-P_{0}$, making an angle of no more than $\pi-\theta_{1}$ with l_{0} at these intersections. Every point in I_{s} lies interior to at least one of these circles (see Fig. 3).

Figure 3. Equatorial circles near I_{ε}
The region $I I_{\varepsilon}^{\prime}$ above which v is defined.
In \boldsymbol{R}^{3} consider a closed lower hemisphere L with equatorial circle E, so that the projection $\pi(E)$ of E onto \boldsymbol{R}^{2} is one of the above circles (see Fig. 4). If L contacts $l_{0} \times \boldsymbol{R}$, then along the arc of intersection A the contact angle γ_{L} equals the angle between $\pi(E)$ and l_{0}. Thus $\gamma_{L} \leqq \pi-\theta_{1}<\gamma$. Because P_{0} and P_{1} are the only two boundary points at which u_{ε} may not be C^{2}, u_{ε} is C^{2} on $\overline{\pi(L) \cap \Omega_{\varepsilon}}$.

Figure 4. A lower hemisphere L contacting $\partial \Omega_{\varepsilon} \times \boldsymbol{R}$ along A, with contact angle less than γ. The "undeside" $T_{\dot{\delta}}$ of a torus, contacting $\partial \Omega_{\varepsilon} \times \boldsymbol{R}$ with contact angle greater than γ.

Raise L until it lies above the bounded surface $\left\{z=u_{\varepsilon}(x, y)\right\}$. Lower L until the two surfaces first contact each other. Let $Q_{0}=$ ($\left.x_{0}, y_{0}, u_{\varepsilon}\left(x_{0}, y_{0}\right)\right)$ be a point of first contact.
Q_{0} is not on E. This is because L is vertical along E whereas u_{ε} is C^{2}.
Q_{0} is not on A : The end points of A are on E and are already excluded. If Q_{0} was not an end point, the traces of the two surfaces on $l_{0} \times \boldsymbol{R}$ would be tangent there. Since L contacts $l_{0} \times \boldsymbol{R}$ at a steeper angle than the capillary surface, it would follow that L was actually below the surface in the interior normal direction from Q_{0}. Thus Q_{0} would not be a point of first contact.

Thus (x_{0}, y_{0}) lies in the interior of $\pi(L) \cap \Omega_{\varepsilon}$. Since Q_{0} is an interior point of first contact, the two surfaces are tangent there, and since L is nowhere below $\left\{z=u_{s}(x, y)\right\}$, it follows that

$$
H\left(u_{\varepsilon}\right)\left(x_{0}, y_{0}\right) \leqq \frac{1}{R} \quad\left(\text { since } \frac{1}{R} \text { is the mean curvature of } L\right)
$$

Using (i) gives:

$$
u_{\varepsilon}\left(x_{0}, y_{0}\right) \leqq \frac{2}{\kappa R}
$$

Since L varies in height by R,

$$
u_{\varepsilon}(x, y) \leqq \frac{2}{\kappa R}+R \quad \text { for all } \quad(x, y) \in \pi(L) \cap \Omega_{\varepsilon} .
$$

By our previous comments this estimate holds in all of I_{ε}.

Fix θ_{2}^{\prime} with $\gamma<\theta_{2}^{\prime}<\theta_{2}$ and let $I I_{\varepsilon}$ be the subregion of Ω_{ε} as described in Fig. 2. Then we have

Lemma 3. $u_{\varepsilon}(x, y)$ approaches ∞ uniformly in $I I_{\varepsilon}$, as ε approaches 0.

Proof. Consider the unique circle C_{1}, containing P_{0}, making an angle θ_{2}^{\prime} with l_{3} and going through P_{1} if $\theta_{2} \leqq \pi / 2$, or through $(0,-\varepsilon)$ if $\theta_{2}>\pi / 2$. Let C_{2} be a circle of the same radius translated $2 R$ units to the left.

There is a unique torus in \boldsymbol{R}^{3} containing C_{1} and C_{2}. It is generated by rotating C_{1} about an axis parallel to the y-axis and going through Q_{1}, the point midway between C_{1} and C_{2}. Let $I I_{\varepsilon}^{\prime}$ be the part of $\bar{\Omega}_{s}$ on or to the left of C_{1}, and on or to the right of C_{2} (see Fig. 3). Then in $I I_{\varepsilon}^{\prime}$, the "underside" T of the torus is given by

$$
v(x, y)=\left[\left(R-\sqrt{\left.r^{2}-\left(y-y_{1}\right)^{2}\right)^{2}}-\left(x-x_{1}\right)^{2}\right]^{1 / 2},\right.
$$

where $\left(x_{1}, y_{1}\right)=Q_{1}$ (see Fig. 4). $\quad T$ contacts $l_{3} \times \boldsymbol{R}$ with contact angle $\theta_{2}^{\prime}>\gamma$, and contacts $l_{2} \times \boldsymbol{R}$ with contact angle of at least θ_{2}^{\prime}. It is vertical at C_{1} and C_{2}.

Let any $\delta>0$ be given. In order to avoid P_{0} and P_{1} translate $T \delta$ units to the left and call it T_{i}, as in Fig. 4. Lower T_{δ} beneath $\left\{z=u_{s}(x, y)\right\}$, and raise it until the first contact is made. By reasoning as in Lemma 2 it follows that if ($x_{0}, y_{0}, u_{s}\left(x_{0}, y_{0}\right)$) is a point of first contact, then it does not occur on the boundary of T_{j}. Thus it is a point of tangency and since T_{δ} is nowhere above $\left\{z=u_{\varepsilon}(x, y)\right\}$, the mean curvature of T_{δ} is no bigger than that of u_{ε} at $\left(x_{0}, y_{0}, u_{\varepsilon}\left(x_{0}, y_{0}\right)\right)$. But by looking at the normal curvatures for a torus, one can calculate the following inequality:

$$
H(v)(x, y) \geqq \frac{1}{2}\left(\frac{1}{r}-\frac{1}{R-r}\right) \quad(x, y) \in I I_{\varepsilon}^{\prime}
$$

so that

$$
\operatorname{div} T u_{\epsilon}\left(x_{0}, y_{0}\right) \geqq\left(\frac{1}{r}-\frac{1}{R-r}\right)
$$

or

$$
u_{\varepsilon}\left(x_{0}, y_{0}\right) \geqq \frac{1}{\kappa}\left(\frac{1}{r}-\frac{1}{R-r}\right) .
$$

Since T_{o} varies in height by at most R, and since δ can be chosen arbitrarily small,

$$
u_{\varepsilon}(x, y) \geqq \frac{1}{\kappa}\left(\frac{1}{r}-\frac{1}{R-r}\right)-R \quad \text { for }(x, y) \text { in } I I_{\varepsilon}^{\prime} .
$$

Since $I I_{\varepsilon} \subset I I_{\varepsilon}^{\prime}$ for ε small enough, the last inequality eventually holds in $I I_{\varepsilon}$. Noticing that r is proportional to ε and R is fixed, the result follows.

Combining the three lemmas yields the desired result:

Theorem. For ε sufficiently small, the solution $u_{\varepsilon}(x, y)$ to the capillary problem (i) and (ii) in Ω_{ε} cannot be extended continuously to the vertex of the re-entrant corner of angle θ.

Although this theorem shows that u_{ε} need not extend nicely to the vertex, simple experiments with glass slides placed vertically in water indicate that the capillary surface itself still extends in a regular fashion to its boundary.

References

1. P. Concus and R. Finn, On the behavior of a capillary surface in a wedge, Proc. Nat. Acad. Sci., 63 (1969), 292-299.
2. 207-223.
3. M. Emmer, Esistenzá, unicitá e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrara Sez VII, 18 (1973), 79-94.
4. R. Finn and C. Gerhardt, The internal sphere condition and the capillarity problem, Ann. Mat. Pura Appl. IV, 112 (1977), 13-31.
5. L. Simon, Regularity of capillary surfaces over domains with corners, (to appear in Pacific J. Math.).
6. L. Simon and J. Spruck, Existence and regularty of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.

Received November 16, 1979.
Stanford University
Stanford, CA 94305

