ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A RE-ENTRANT CORNER

NICHOLAS J. KOREVAAR

Changes in a domain's geometry can force striking changes in the capillary surface lying above it. Concus and Finn [1] first studied capillary surfaces above domains with corners, in the presence of gravity. Above a corner with interior angle θ satisfying $\theta < \pi - 2\gamma$, they showed that a capillary surface making contact angle γ with the bounding wall must approach infinity as the vertex is approached. In contrast, they showed that for $\theta \ge \pi - 2\gamma$ the solution u(x, y) is bounded, uniformly in θ as the corner is closed. Since their paper appeared, the continuity of u at the vertex has been an open problem in the bounded case. In this note we show by example that for any $\theta > \pi$ and any $\gamma \neq \pi/2$ there are domains for which u does not extend continuously to the vertex. This is in contrast to the case $\pi > \theta > \pi - 2\gamma$; here independent results of Simon [5] show that u actually must extend to be C^1 at the vertex.

We consider bounded domains Ω in \mathbb{R}^2 with piecewise smooth boundaries $\partial \Omega$, and functions u(x, y) satisfying

(i) div $Tu = 2H(u) = \kappa u$ in Ω ; $Tu = Du/\sqrt{1 + Du^2}$, H(u) = mean curvature of the surface z = u(x, y), $\kappa > 0$.

(ii) $Tu \cdot n = \cos \gamma$ on the smooth part of $\partial \Omega$; $0 \leq \gamma \leq \pi$, $n = \exp terior$ normal to $\partial \Omega$.

Physically u describes the capillary surface formed when a vertical cylinder with horizontal cross section Ω is placed in an infinite reservoir of liquid having rest height z = 0. Then

$$\kappa=rac{
ho g}{\sigma}$$
,

where

 $ho = ext{density of liquid}$ $g = (ext{downward}) ext{ acceleration of gravity}$ $\sigma = ext{surface tension between liquid and air.}$

$$\cos\gamma=\frac{\sigma_1}{\sigma}\,,$$

where

 σ_1 = surface attraction between liquid and cylinder.

Geometrically γ is the contact angle between the capillary surface and the bounding cylinder; it is the angle between the downward normal of the surface z = u(x, y), and the exterior normal of the cylinder $\partial \Omega \times \mathbf{R}$.

If $\gamma = \pi/2$, the only solution to (i) and (ii) is $u \equiv 0$. If $\gamma \neq \pi/2$, by considering either u or -u, we make the usual assumption that $0 \leq \gamma < \pi/2$. This is the case in which the surface rises to meet the cylinder, or "wets" it.

Let θ and γ satisfy

$$\pi < heta \leqq 2\pi$$
 , $0 < \gamma < \pi/2$.

We will construct a domain for which a bounded solution u to (i) and (ii) exists, but having a corner of interior angle θ at which there is a jump discontinuity in u. (The arguments can be modified to include the case $\gamma = 0$.)

Determine the domain scale by fixing R > 0 (Fig. 1). Since $\theta > \pi$, we can pick θ_1 and θ_2 , satisfying

 $heta_1 > \pi - \gamma$, $\pi > heta_2 > \gamma$, $heta_1 + heta_2 = heta$.

FIGURE 1. The intersection of Ω_{ε} with the disc of radius 3R

$\theta_1 > \pi - \gamma$	$P_0 = (0, 0)$	$l_0 = \{y \cos \theta = x \sin \theta\}$
$\pi > heta_2 > \gamma$	$P_1 = (-\varepsilon \cot \theta_2, -\varepsilon)$	$l_1 = \{y \cos \theta_2 = x \sin \theta_2\}$
$ heta_1+ heta_2= heta>\pi$		$l_2 = \{y = -\varepsilon\}$
		$l_3 = x$ -axis

For positive ε less than $R \sin \theta_2$, let Ω_{ε} be a bounded domain, of which the intersection with $B_{3R}(0)$ is shown in Fig. 1, and which has C^4 boundary except at P_0 and P_1 . $(B_{3R}(0)$ is the disc of radius 3R centered at the origin.)

LEMMA 1. There exists a unique solution to (i) and (ii) in any Ω_{ϵ} . It is bounded above and nonnegative.

ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A RE-ENTRANT CORNER 381

Proof. Because Ω_{ε} is C^2 , except for a finite number of re-entrant corners, it satisfies a uniform internal sphere condition with contact angle γ , for any γ . Therefore it is admissible in the sense of Finn and Gerhardt [4]. Thus there is a bounded, nonnegative, real analytic function $u_{\varepsilon}(x, y)$ in Ω_{ε} , satisfying (i). Because u is energy minimizing in the sense of Emmer [3], the regularity theory of Simon and Spruck [6] implies that everywhere the boundary is C^4 , u_{ε} extends to be at least C^2 , and satisfies (ii). Uniqueness follows from a maximum principle of Concus and Finn [2].

We are interested in the behavior of u_{ε} near P_0 , as ε approaches 0. Lemma 2 will show that u_{ε} stays uniformly bounded in one sector near P_0 , and Lemma 3 show that in another sector it gets uniformly large. It follows that u_{ε} eventually has a jump discontinuity at P_0 .

Let I_{ε} be the subdomain of Ω_{ε} shown in Fig. 2. Then we have

FIGURE 2. The subdomains I_{ε} and II_{ε} $\theta_2 > \theta'_2 > \gamma$ $B_R(0) = \{x^2 + y^2 < R^2\}$ $I_{\varepsilon} = B_R(0) \cap \{y \cos \theta > x \sin \theta\} \cap \{y \cos \theta_2 < x \sin \theta_2\}$ $II_{\varepsilon} = B_R(0) \cap \{y < 0\} \cap \{y > -\varepsilon\} \cap \{y \cos \theta'_2 > x \sin \theta'_2\}$

Proof. In this and the following lemma the basic tool is a comparison method of Concus and Finn [2] for surfaces of known mean curvature and contact angle.

Consider circles of radius R which either lie entirely in Ω_{ε} or contact $\partial \Omega_{\varepsilon}$ only at a point of tangency. (In particular, do not allow them to have contact at P_0 or P_1 .) If $\theta_1 < \pi$, also allow circles which intersect $\partial \Omega_{\varepsilon}$ at two points on $l_0 - P_0$, making an angle of no more than $\pi - \theta_1$ with l_0 at these intersections. Every point in I_{ε} lies interior to at least one of these circles (see Fig. 3).

FIGURE 3. Equatorial circles near I_{ε} The region II'_{ε} above which v is defined.

In \mathbb{R}^3 consider a closed lower hemisphere L with equatorial circle E, so that the projection $\pi(E)$ of E onto \mathbb{R}^2 is one of the above circles (see Fig. 4). If L contacts $l_0 \times \mathbb{R}$, then along the arc of intersection A the contact angle γ_L equals the angle between $\pi(E)$ and l_0 . Thus $\gamma_L \leq \pi - \theta_1 < \gamma$. Because P_0 and P_1 are the only two boundary points at which u_{ε} may not be C^2 , u_{ε} is C^2 on $\overline{\pi(L) \cap \Omega_{\varepsilon}}$.

FIGURE 4. A lower hemisphere L contacting $\partial \Omega_{\varepsilon} \times \mathbf{R}$ along A, with contact angle less than γ . The "undeside" T_{δ} of a torus, contacting $\partial \Omega_{\varepsilon} \times \mathbf{R}$ with contact angle greater than γ .

Raise L until it lies above the bounded surface $\{z = u_{\varepsilon}(x, y)\}$. Lower L until the two surfaces first contact each other. Let $Q_0 = (x_0, y_0, u_{\varepsilon}(x_0, y_0))$ be a point of first contact.

 Q_0 is not on *E*. This is because *L* is vertical along *E* whereas u_{ε} is C^2 .

 Q_0 is not on A: The end points of A are on E and are already excluded. If Q_0 was not an end point, the traces of the two surfaces on $l_0 \times \mathbf{R}$ would be tangent there. Since L contacts $l_0 \times \mathbf{R}$ at a steeper angle than the capillary surface, it would follow that L was actually below the surface in the interior normal direction from Q_0 . Thus Q_0 would not be a point of first contact.

Thus (x_0, y_0) lies in the interior of $\pi(L) \cap \Omega_{\varepsilon}$. Since Q_0 is an interior point of first contact, the two surfaces are tangent there, and since L is nowhere below $\{z = u_{\varepsilon}(x, y)\}$, it follows that

$$H(u_{\scriptscriptstyle{arepsilon}})(x_{\scriptscriptstyle{0}},\,y_{\scriptscriptstyle{0}}) \leq rac{1}{R} \;\; \left(ext{since } rac{1}{R} \;\; ext{is the mean curvature of } L
ight).$$

Using (i) gives:

$${\mathfrak u}_{\scriptscriptstyle arepsilon}(x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0}) \leq rac{2}{\kappa R}\;.$$

Since L varies in height by R,

$$u_{arepsilon}(x,\,y) \leq rac{2}{\kappa R} + R \quad ext{for all} \quad (x,\,y) \in \pi(L) \cap \, arepsilon_{arepsilon} \; .$$

By our previous comments this estimate holds in all of I_{ϵ} .

Fix θ'_2 with $\gamma < \theta'_2 < \theta_2$ and let II_{ε} be the subregion of Ω_{ε} as described in Fig. 2. Then we have

LEMMA 3. $u_{\varepsilon}(x, y)$ approaches ∞ uniformly in II_{ε} , as ε approaches 0.

Proof. Consider the unique circle C_1 , containing P_0 , making an angle θ'_2 with l_3 and going through P_1 if $\theta_2 \leq \pi/2$, or through $(0, -\varepsilon)$ if $\theta_2 > \pi/2$. Let C_2 be a circle of the same radius translated 2R units to the left.

There is a unique torus in \mathbb{R}^3 containing C_1 and C_2 . It is generated by rotating C_1 about an axis parallel to the y-axis and going through Q_1 , the point midway between C_1 and C_2 . Let II_{ϵ} be the part of \overline{Q}_{ϵ} on or to the left of C_1 , and on or to the right of C_2 (see Fig. 3). Then in II_{ϵ} , the "underside" T of the torus is given by

$$v(x,\,y)=[(R-\sqrt{r^2-(y-y_1)^2})^2-(x-x_1)^2]^{1/2}$$
 ,

where $(x_1, y_1) = Q_1$ (see Fig. 4). T contacts $l_3 \times \mathbf{R}$ with contact angle $\theta'_2 > \gamma$, and contacts $l_2 \times \mathbf{R}$ with contact angle of at least θ'_2 . It is vertical at C_1 and C_2 .

Let any $\delta > 0$ be given. In order to avoid P_0 and P_1 translate $T \delta$ units to the left and call it T_s , as in Fig. 4. Lower T_δ beneath $\{z = u_{\epsilon}(x, y)\}$, and raise it until the first contact is made. By reasoning as in Lemma 2 it follows that if $(x_0, y_0, u_{\epsilon}(x_0, y_0))$ is a point of first contact, then it does not occur on the boundary of T_{δ} . Thus it is a point of tangency and since T_{δ} is nowhere above $\{z = u_{\epsilon}(x, y)\}$, the mean curvature of T_{δ} is no bigger than that of u_{ϵ} at $(x_0, y_0, u_{\epsilon}(x_0, y_0))$. But by looking at the normal curvatures for a torus, one can calculate the following inequality:

$$H(v)(x, y) \geq \frac{1}{2} \left(\frac{1}{r} - \frac{1}{R-r} \right) \quad (x, y) \in H'_{\varepsilon}$$

so that

$$ext{div } Tu_{arepsilon}(x_{\scriptscriptstyle 0},\,y_{\scriptscriptstyle 0}) \geqq \Bigl(rac{1}{r} - rac{1}{R-r}\Bigr)$$

or

$$u_{\mathfrak{s}}(x_{\mathfrak{o}}, y_{\mathfrak{o}}) \geq rac{1}{\kappa} \Big(rac{1}{r} - rac{1}{R-r} \Big) \; .$$

Since T_{δ} varies in height by at most R, and since δ can be chosen arbitrarily small,

$$u_{\epsilon}(x, y) \geq rac{1}{\kappa} \Big(rac{1}{r} - rac{1}{R-r}\Big) - R ext{ for } (x, y) ext{ in } II_{\epsilon}'$$

Since $II_{\varepsilon} \subset II'_{\varepsilon}$ for ε small enough, the last inequality eventually holds in II_{ε} . Noticing that r is proportional to ε and R is fixed, the result follows.

Combining the three lemmas yields the desired result:

THEOREM. For ε sufficiently small, the solution $u_{\varepsilon}(x, y)$ to the capillary problem (i) and (ii) in Ω_{ε} cannot be extended continuously to the vertex of the re-entrant corner of angle θ .

Although this theorem shows that u_{ε} need not extend nicely to the vertex, simple experiments with glass slides placed vertically in water indicate that the capillary surface itself still extends in a regular fashion to its boundary.

ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A RE-ENTRANT CORNER 385

References

1. P. Concus and R. Finn, On the behavior of a capillary surface in a wedge, Proc. Nat. Acad. Sci., **63** (1969), 292-299.

2. _____, On capillary free surfaces in a gravitational field, Acta Math., **132** (1974), 207-223.

3. M. Emmer, Esistenzá, unicitá e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrara Sez VII, **18** (1973), 79-94.

4. R. Finn and C. Gerhardt, *The internal sphere condition and the capillarity problem*, Ann. Mat. Pura Appl. IV, **112** (1977), 13-31.

5. L. Simon, Regularity of capillary surfaces over domains with corners. (to appear in Pacific J. Math.).

6. L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., **61** (1976), 19-34.

Received November 16, 1979.

STANFORD UNIVERSITY STANFORD, CA 94305