A NOTE ON DISCONJUGACY FOR SECOND ORDER SYSTEMS

H. L. Smith

It is well-known that the equation

$$
\begin{equation*}
x^{\prime \prime}+A(t) x=0 \tag{1}
\end{equation*}
$$

is disconjugate on $[a, b]$ if and only if there exists a solution which is positive on $[a, b]$, in the case that $A(t)$ is scalarvalued. In this note we generalize this simple result to the case where $A(t)=\left(a_{i j}(t)\right)$ is an $n \times n$ matrix-valued function which satisfies certain generalized sign conditions. These results apply, for instance, if the off diagonal elements are nonnegative. Simple necessary and sufficient conditions are given for disconjugacy if $A(t) \equiv A$ and these are used to construct examples showing the necessity of sign conditions on $A(t)$ for the above mentioned results and other results of Sturm type for systems to be valid.

Introduction. Many authors have considered the problem of extending the well-known results on disconjugacy for the scalar equation (1) to systems. We mention the work of Morse [8] and Hartman and Wintner [5], where $A(t)$ is assumed symmetric or conditions are placed on the symmetric part of A. Recently, many new results have been obtained in the papers of Ahmad and Lazer ([1], [2], [3]) and Schmitt and the author, [9], where symmetry assumptions have generally been avoided.

Recall that (1) is said to be disconjugate on the interval $[a, b]$ if no nontrivial solution of (1) vanishes twice on [a, b], otherwise (1) is conjugate on $[a, b]$. If $x \in R^{n}$, we write $x \geqq 0$ if $x_{i} \geqq 0,1 \leqq i \leqq$ $n ; x>0$ if $x \geqq 0$ and $x \neq 0$; and $x \gg 0$ if $x_{i}>0,1 \leqq i \leqq n$. If A is an $n \times n$ matrix we denote by $\sigma(A)$ the spectrum of A.

Below we state two corollaries of our main results and some examples to indicate the necessity of the hypotheses involved. The main results are stated in $\S 2$ and the proofs are given in $\S 3$.

Corollary 1. Let $A(t)=\left(a_{i j}(t)\right)$ be a continuous, matrix-valued function satisfying $a_{i j}(t) \geqq 0, i \neq j$. If (1) is disconjugate on $[a, b]$ then there is a solution $x(t)$ of (1) satisfying $x(t)>0$ on $[a, b]$.

Corollary 2. Let $A(t)$ satisfy the conditions of Corollary 1. If there exists a solution $y(t)$ of the differential inequality $y^{\prime \prime}+$ $A(t) y \leqq 0$ satisfying $y(t) \gg 0, a \leqq t \leqq b$, then (1) is disconjugate on $[a, b]$.

Remark. Corollary 2 cannot be weakened with respect to the assumption that $y(t) \gg 0$ without additional conditions on $A(t)$ as seen by the following example: the equation

$$
\binom{x_{1}}{x_{2}}^{\prime \prime}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=0
$$

is easily seen to be disconjugate on every interval of length less π. However, a solution is given by

$$
x(t)=\binom{x_{1}}{x_{2}}(t) \equiv\binom{1}{0}>0
$$

but $x(t)>/>0$.
Corollary 2 generalizes Theorem 3 in [3].
We illustrate Corollary 2 by showing $x^{\prime \prime}+\left(\begin{array}{cc}-3 t & 1 \\ 2 & -4 t^{2}\end{array}\right) x=0$ is disconjugate on $[1, \infty)$. To see this, let $y(t)=\operatorname{col}(t, t)$ and observe that $y(t) \gg 0$ on $1 \leqq t<\infty$ and $y^{\prime \prime}+A(t) y \leqq 0$.

In case $A(t) \equiv A=\left(a_{i j}\right)$ we have the following necessary and sufficient conditions of a particularly simple form for (1) to be disconjugate on $[a, b]$ which do not involve sign conditions on A.

Lemma 3. Let $A(t) \equiv A$. Then (1) is disconjugate on $[a, b]$ if either $\sigma(A) \cap(0, \infty)=\phi$ or if $b-a<\pi / \sqrt{\bar{\lambda}}$ for all $\lambda \in \sigma(A) \cap(0, \infty)$. (1) is conjugate on $[a, b]$ if $b-a \geqq \pi / \sqrt{\lambda}$ for some $\lambda \in \sigma(A) \cap(0, \infty)$.

Lemma 3 may be employed to construct some interesting examples. For instance, let

$$
A(\varepsilon)=\left(\begin{array}{cc}
6 & 16+\varepsilon^{2} \\
-1 & -2
\end{array}\right)
$$

Then $\sigma(A(\varepsilon))=\{2+\varepsilon i, 2-\varepsilon i\}$. According to Lemma 3,

$$
x^{\prime \prime}+A(1) x=0
$$

is disconjugate on $[0,4]$ while

$$
x^{\prime \prime}+A(0) x=0
$$

is conjugate on $[0,4]$ since $4 \geqq \pi / \sqrt{2}$. Thus the Sturm comparison test does not hold, in general, for systems since $A(1) \geqq A(0)$ (in the usual sense). In [9] it was shown that the Sturm test does hold if, for instance, both matrices are nonnegative (they need not be constant; see [9] for a more precise result). It is easy to construct examples showing that the sign conditions on $A(t)$ in Corollary 1 are not superfluous.
2. Main results., Let K be a cone in R^{n} with nonempty interior. We write $x \geqq 0$ if $x \in K, x>0$ if $x \in K-\{0\}$, and $x \gg 0$ if $x \in \operatorname{int} K$ where int K denotes the interior of K. Let $A(t)$ be a continuous matrix-valued function defined on $[a, b]$ satisfying:
(H) There exists $\lambda \geqq 0$ such that $(A(t)+\lambda I)(K) \subseteq K$ for all $t \in[a, b]$ where I denotes the identity matrix.

Where required, we assume $A(t)$ is defined on all of R satisfying condition (H). Simply let $A(t)=A(b)$ for $t>b$ and similarly for $t<a$.

Theorem 1. Assume that (H) holds and that (1) is disconjugate on $[a, b]$. Then there is a solution $y(t)$ of (1) satisfying $y(t)>0$, $a \leqq t \leqq b$.

Theorem 2. If (H) holds and if $y(t)$ is twice differentiable, satisfies the differential inequality

$$
y^{\prime \prime}+A(t) y \leqq 0
$$

and if $y(t) \gg 0$ on $a \leqq t \leqq b$, then (1) is disconjugate on $[a, b]$.
Finally, we point out that Vandergraft [10] has given sufficient conditions for a matrix A to leave a cone with nonempty interior invariant involving only the spectral properties of A. In particular, every strictly triangular matrix has an invariant cone and if A is symmetric then either A or $-A$ leaves some cone invariant.
3. Proofs. First, we show that it suffices to prove Theorems 1 and 2 with the condition (H) replaced by the following: (H^{\prime}): For each $t, A(t)(K) \cong(K)$, i.e., $A(t)$ is a positive operator.

To see this make the change in dependent variable by letting $t(s)=a+1 / 2 k \log (1 / 1-s)$ and change the independent variable by letting $v(s)=e^{-k t(s)} x(t(s))$. Then (1) is equivalent to

$$
\begin{equation*}
v^{\prime \prime}(s)+\left(t^{\prime}(s)\right)^{2}\left[k^{2} I+A(t(s))\right] v(s)=0 \tag{2}
\end{equation*}
$$

It is assumed that $k^{2}=\lambda$ where λ is as in assumption (H). Clearly (1) is disconjugate on $[a, b]$ if and only if (2) is disconjugate on the appropriate interval. Thus, if Theorem 1 holds under assumption $\left(\mathrm{H}^{\prime}\right)$, then the assumption that (1) is disconjugate on $[a, b]$ implies the existence of a solution $v(s)>0$ of (2) on the interval $t^{-1}([a, b])$ and hence a solution $x(t)$ of (1) on [a,b] with $x(t)>0$ on $[a, b]$. Similar reasoning shows that it suffices to prove Theorem 2 under
the assumption $\left(\mathrm{H}^{\prime}\right)$. In all that follows we assume (H^{\prime}) holds.
At this point we require some notation. Let $X=B C\left(R, R^{n}\right)$, the Banach space of bounded continuous functions of R into R^{n} with supremum norm. Let $\mathscr{K}=\{x \in X: x(t) \in K$ for all $t \in R\}$. Then . \mathscr{T} is a cone in X wnich is total, i.e., $\overline{K-K}=X$. If $a, b \in R, a<b$, define the compact linear operator $A_{a, b}: X \rightarrow X$ by

$$
\left(A_{a, b} x\right)(t)=\left\{\begin{array}{lc}
0 & t>b \\
\int_{a}^{b} G(a, b ; t, s) A(s) x(s) d s \\
0 & t<a
\end{array}\right.
$$

where $G(a, b ; t, s)$ is the nonnegative Green's function for $-d^{2} x / d t^{2}=$ $f(t), x(a)=x(b)=0$. Notice, see [9], that (we assume (H^{\prime}) holds) $A_{a, b}$ is a positive operator, i.e., $A_{a, b} \mathscr{K} \subseteq \mathscr{K}$. If $a<b$ define $r(a, b)=\rho\left(A_{a, b}\right)$, the spectral radius of $A_{a, b}$. We require the following lemma which is a trivial modification of lemmas 3.1 and 3.4 and the proof of Theorem 3.5 in [9].

Lemma 1. The function $r(a, b)$ defined for $a<b$ is continuous in a for fixed b and continuous in b for fixed a. Moreover, $r(a, b)$ is nondecreasing in b (for fixed a) and nonincreasing in a (for fixed b), and $r(a, b) \rightarrow 0+a s b-a \rightarrow 0+$. In addition, (1) is disconjugate on $[a, b]$ if and only if $r(a, b)<1$.

Proof of Theorem 1. If (1) is disconjugate on $[a, b]$ then $r(a, b)<$ 1 by Lemma 1. Also by Lemma 1, we can choose $a_{1}<a$ and $b_{1}>b$ such that $r\left(a_{1}, b_{1}\right)<1$. Now either (i) $r\left(a_{1}, b_{2}\right)<1$ for all $b_{2} \geqq b_{1}$ or (ii) there exists $b_{2}>b_{1}$ such that $r\left(a_{1}, b_{2}\right)=1$. In case (ii) we may conclude (by the Krein-Rutman theorem as applied in [9]) the existence of a solution $y(t)$ of (1) satisfying $y\left(a_{1}\right)=y\left(b_{2}\right)=0$ and $y(t)>0, a_{1}<t<b_{2}$. Thus Theorem 1 is proved in this case. In case (i), (1) is disconjugate on $\left[a_{1}, \infty\right)$ and Theorem 3.11 of [9] completes the proof of this case.

Proof of Theorem 2. For this argument let $X=C\left([a, b] R^{n}\right)$ and \mathscr{K} the corresponding cone. If $y(t) \gg 0$ on $a \leqq t \leqq b$ is a solution of the differential inequality $y^{\prime \prime}+A(t) y \leqq 0$, then we observe that $y \in \operatorname{int} \mathscr{K}(y \gg 0)$. Let $z=A_{a, b} y$ so $z(t)$ satisfies

$$
z^{\prime \prime}+A(t) y=0, z(a)=z(b)=0, z(t) \geqq 0 \quad a \leqq t \leqq b .
$$

Then $y(t)-z(t)$ satisfies

$$
(y-z)^{\prime \prime} \leqq 0 \text { and }(y-z)(a) \gg 0,(y-z)(b) \gg 0 .
$$

Hence, if ρ is a positive linear functional with respect to $K \subseteq \boldsymbol{R}^{n}$ and $v(t)=\varphi(y(t)-z(t))$ then $v^{\prime \prime} \leqq 0$ and $v(a)>0, v(b)>0$. Thus $v(t)>0$ on $a \leqq t \leqq b$. Since φ was an arbitrary positive linear functional we conclude that $y(t)-z(t) \gg 0$ on $a \leqq t \leqq b$, i.e., $y \gg z$ in \mathscr{K}.

If (1) were not disconjugate on $[a, b]$, then $r(a, b) \geqq 1$ and thus there exists $b^{\prime} \leqq b$ with $r\left(a, b^{\prime}\right)=1$ and hence (Theorem 3.5 in [9]) a solution $u(t)$ of (1) satisfying $u(a)=u\left(b^{\prime}\right)=0$ and $u(t)>0$ on [a, $\left.b^{\prime}\right]$. Define $u(t)=0$ on $\left(b^{\prime}, b\right]$ so $u \in \mathscr{K}$. Since $y \in \operatorname{int} \mathscr{K}$ we may choose $\alpha>0$ maximal such that $\alpha u \leqq y$ (i.e., if $\beta u \leqq y$ then $\beta \leqq \alpha$). Then we have

$$
\alpha u=\alpha A_{a, b}(u) \leqq \alpha A_{a, b}(u) \leqq A_{a, b} y=z \ll y
$$

But $\alpha u \ll y$ implies we may choose $\eta>\alpha$ such that $\eta u \ll y$, a contradiction to the maximality of α. This contradiction proves the theorem. Notice that we used the easily established fact that if $a \leqq a^{\prime}<b^{\prime} \leqq b$ then $A_{a^{\prime}, b^{\prime}} x \leqq A_{a, b} x$ for all $x \in \mathscr{K}$.

Proof of Lemma 3. The lemma follows immediately from the following assertion: Equation (1) has a nontrivial solution satisfying $x(0)=x(T)=0$ if and only if there exists $\lambda \in \sigma(A) \cap(0, \infty)$ such that $\sqrt{\lambda} T=k \pi$ for some positive integer k. To prove the assertion, first assume that $0 \notin \sigma(A)$ so that there exists a complex matrix B satisfying $B^{2}=A$. A C^{n}-valued function $x(t)$ satisfies (1) and $x(0)=$ 0 if and only if there exists $x_{0} \in C^{n}$ such that $x(t)=(\sin B t) x_{0}$. Thus (1) has a nontrivial solution satisfying $x(0)=x(T)=0$ if and only if $\operatorname{det}[\sin B T]=0$. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of A. Then by the spectral mapping theorem and elementary properties of the determinant,

$$
\operatorname{det}[\sin B T]=\prod_{i=1}^{n} \sin \sqrt{\lambda_{i}} T
$$

Thus $\operatorname{det}[\sin B T]=0$ if and only if $\sqrt{\lambda_{j}} T=k \pi$ for some $j, i \leqq j \leqq n$ and some integer k. This last holds only if $\sqrt{\lambda_{j}}$ is real, in particular λ_{j} must be positive and k must be positive. Hence a necessary and sufficient condition for there to be a nontrivial C^{n}-valued solution of (1) satisfying $x(0)=x(T)=0$ is for $\sqrt{\lambda} T=k \pi$ for some $\lambda \in$ $\sigma(A) \cap(0, \infty)$ and some positive integer k. Such a solution will be of the form $x(t)=(\sin B t) x_{0}$ where $x_{0} \neq 0$ is in the null space of $\sin B T$. The real and imaginary parts of x_{0}, at least one of which is nonzero, will also be solutions of (1) satisfying $x(0)=x(T)=0$. This completes the proof of the assertion in case $0 \notin \sigma(A)$. In case $0 \in \sigma(A)$ write $\boldsymbol{R}^{n}=M \oplus N$ where M is the generalized nullspace of
$A,\left(M=\bigcup_{n=1}^{\infty} \operatorname{Ker} A^{n}=\operatorname{Ker} A^{p}, p\right.$ some positive integer which we may assume is the smallest such) and $N=$ Range A^{p}. The complementary subspaces M and N reduce A and A / M is nilpotent on M. Write $A / M=B, A / N=C$. Then (1) becomes

$$
\begin{align*}
& y^{\prime \prime}+B y=0 \tag{2}\\
& z^{\prime \prime}+C z=0 \tag{3}\\
& x=y+z
\end{align*}
$$

The previous analysis applies to (3) since $\sigma(C)=\sigma(A)-\{0\}$. Since B is nilpotent it is easy to see that the only solution of (2) satisfying $y(0)=y(T)=0$ is the trivial solution (multiply (2) by B^{p-1} where $B^{p}=0$). This completes the proof in this case.

References

1. S. Ahmad and A. C. Lazer, Component properties of second order linear systems, Bull. Amer. Math. Soc., 82, number 2, (March 1976).
2. - On the components of extremal solutions of second order systems, Siam J. Math. Anal., to appear.
3. - An N-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems, preprint.
4. P. Halmos, Finite-Dimensional Vector Spaces, Van Nostrand Reinhold Co., New York.
5. P. Hartman and A. Wintner, On disconjugate differential systems, Canad. J. Math., 8 (1956), 72-81.
6. P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.
7. A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosciences, 28 (1976), 221-236.
8. M. Morse, A generalization of the Sturm separation and comparison theorems in n-space, Math. Ann., 103 (1930), 52-69.
9. K. Schmitt and H. L. Smith, Positive solutions and conjugate points for systems of differential equations, preprint.
10. J. S. Vandergraft, Spectral properties of matrices which have invariant cones, Siam J. Appl. Math., 16, No. 6, (November 1968).

Received July 15, 1977 and in revised form April 21, 1980.
Arizona State University
Tempe, AZ 85281

