SPECTRAL ANALYSIS IN SPACES OF VECTOR VALUED FUNCTIONS

YITZHAK WEIT

Spectral analysis properties of $L_1^{\scriptscriptstyle H}(R)$, where H is a separable Hilbert space, are investigated. It is proved that spectral analysis holds for $L_1^{\scriptscriptstyle H}(R)$ if and only if H is finite-dimensional. The one-sided analogue of Wiener's theorem for some subgroups of the Euclidean motion group, is obtained.

1. Introduction. Let A be a Banach space and F a class of bounded linear transformations of A into itself. Following [2] we say that spectral analysis holds for A if every proper closed subspace of A, invariant under F, is included in a closed maximal invariant subspace of A.

The case where A is the Banach space of sequences summable with weights and F is the class of the translation operators was studied in [2].

We are going to study the problem of spectral analysis with A being the Banach space $L_i^{\prime\prime}(R)$ of functions defined on R, taking values in a separable Hilbert space H, and F is the class of translations by the group R.

Wiener's classical theorem states that spectral analysis holds for $L_1^H(\mathbf{R})$ where H is one-dimensional.

Our main goal is to show that spectral analysis holds for $L_1^H(\mathbf{R})$, if and only if, H is finite-dimensional.

In §2 we characterize the minimal w^* -closed, translation invariant subspaces of $L^{\scriptscriptstyle H}_{\infty}(\mathbf{R})$, the dual space of $L^{\scriptscriptstyle H}_1(\mathbf{R})$.

Spectral analysis in the finite-dimensional case is considered in §3. In §4 we construct a w^* -closed invariant subspace of $L^{\pi}_{\infty}(\mathbf{R})$ which does not contain a nontrivial, minimal, w^* -closed, invariant subspace. One-sided spectral analysis in subgroups of the motion group, is studied in §5.

For $x \in H$ let $||x|| = (x, x)^{1/2}$ denote the norm of x. For $f \in L_{\infty}(\mathbf{R})$, let Sp(f) denote the spectrum of f.

2. Minimal invariant subspaces. The minimal invariant w^* closed subspace of $L^{II}_{\infty}(\mathbf{R})$ are characterized as follows:

THEOREM 1. Let H be a separable Hilbert space with the basis $\{e_n\}_{n=1}^{\infty}$. Then the function $f \in L_{\infty}^{H}(\mathbf{R})$, $f \neq 0$ generates a minimal, w^* -closed, invariant subspace, if and only if

$$(f(x), e_n) = a_n e^{i\lambda x}$$
 $(n = 1, 2, \dots,)$

for some $\lambda \in \mathbf{R}$ and $\{a_n\}_{n=1}^{\infty} \in l_2$.

Proof. Let $f_n(x) = (f(x), e_n)$ for $n = 1, 2, \dots, .$

If $f_n(x) = a_n e^{i\lambda x}$ then, obviously, the invariant subspace generated by f is one-dimensional.

To prove the "only if" part, let M denote the w^* -closed, invariant subspace generated by $f, f \in L^m_{\infty}(\mathbf{R})$. Suppose that $\lambda_1 \in$ $\operatorname{Sp}(f_k), \lambda_2 \in \operatorname{Sp}(f_m)$ where $m \neq k$ and $\lambda_1 < \lambda_2$. Let $\phi \in L_1(\mathbf{R})$ be such that $\operatorname{Supp} \hat{\phi} = [r_1, r_2]$ where $r_1 < \lambda_1 < r_2 < \lambda_2$. Let $g \in L^m_{\infty}(\mathbf{R})$ be the function $g(x) = \int_{-\infty}^{\infty} f(x-\alpha)\phi(\alpha)d\alpha$. Let $h \in L_1(\mathbf{R})$ with $\operatorname{Supp} \hat{h} \subset (r_2, \infty)$, such that $\int_{-\infty}^{\infty} f_m(x)h(x)dx \neq 0$. Then, for $\psi \in L_1^H(\mathbf{R})$, where $(\psi(x), e_m) =$ h(x) and $(\psi(x), e_n) = 0$ for $n \neq m$, we have

$$\int_{-\infty}^{\infty} (g(x-\alpha), \psi(x)) dx = \int_{-\infty}^{\infty} g_m(x-\alpha) h(x) dx = 0$$

for all $\alpha \in \mathbf{R}$, where $g_m(x) = (g_m(x), e_m)$. On the other hand, we have $\int_{-\infty}^{\infty} (f(x), \psi(x)) dx = \int_{-\infty}^{\infty} f_m(x)h(x) dx \neq 0$ which implies that M is not minimal and the result follows.

3. The finite-dimensional case. Spectral analysis holds for $L_1^H(\mathbf{R})$, where H is finite-dimensional. By duality, this result is a consequence of the following:

THEOREM 2. Let H be finite-dimensional Hilbert space. Then every w^{*}-closed, invariant, nontrivial subspace of $L^{\scriptscriptstyle H}_{\scriptscriptstyle \infty}(\mathbf{R})$ contains an one-dimensional invariant subspace.

Proof. Let $f \in L^{\infty}_{\infty}(\mathbf{R})$ and $f_n(x) = (f(x), e_n)$ $(n = 1, 2, \dots, N)$ where $\{e_n\}_{n=1}^N$ is a basis of H. We may assume that $f_1 \neq 0$ and $0 \in \text{Sp}(f_1)$. Let M denote the w^* -closed, invariant subspace of $L^H_{\infty}(\mathbf{R})$ generated by f. Let $\phi_k \in L_1(\mathbf{R})$ where $\text{Supp } \hat{\phi}_k = [-1/k, 1/k] \ \hat{\phi}_k(0) \neq 0$ for $k = 1, 2, \dots$. Hence, $g_k(x) = \int_{-\infty}^{\infty} f(x - \alpha)\phi_k(\alpha)d\alpha$ is not identically zero and belongs to $M(k = 1, 2, \dots, N)$. Let $g_{k,n}(x) = (g_k, e_n)$ for $k = 1, 2, \dots$, and $n = 1, 2 \dots, N$.

There exist an integer j, $1 \leq j \leq N$, and a subsequence $k_l \rightarrow \infty$ such that

$$\max_{1 \le n \le N} ||g_{k_l,n}||_{L_{\infty}} = ||g_{k_l,j}||_{L_{\infty}}.$$

If $\hat{\phi}_{k_l}$ is multiplied by an appropriate function, it will follow that

$$||g_{k_l,j}||_{L_{\infty}} = 1 \quad ext{and} \quad g_{k_l,j}(0) > 1 - rac{1}{k_l} \; .$$

By Bernstein's inequality [5, p. 149] we have

$$||g'_{k_l,j}||_{L_{\infty}} \leq \frac{1}{k_l} \qquad (l = 1, 2, \dots,).$$

Hence,

$$|g_{k,l,j}(x)-1| \leq rac{1}{k_l}(|x|+1)$$
 which

implies that $\{g_{k_l,j}\}_{l=1}^{\infty}$ converges uniformly on compact sets to the constant function 1.

By the w^{*}-compactness of the unit ball in $L_{\infty}(\mathbf{R})$ there exists a subsequence of k_i , which will be denoted again by k_i , such that

$$g_{k_l,n}(x) \xrightarrow{w^*}_l \psi_n(x) \qquad n = 1, 2, \cdots, N$$

where $\psi_n \in L_{\infty}(\mathbf{R})$ and $\psi_j(x) \equiv 1$.

Obviously, Sp $(\psi_n) \subset \{0\}$ and by an elementary theorem on spectral synthesis (see, for instance, [1] or [4] pp. 151 and 181) we deduce

$$\psi_n(x) = c_n \qquad c_n \in C \qquad (n = 1, 2, \dots, N)$$
.

Hence, the function $\psi \in L_{\infty}^{H}(\mathbf{R})$, $\psi \neq 0$, where $(\psi(x), e_n) = c_n$ $(n = 1, 2, \dots, N)$ belongs to M which completes the proof of the theorem.

REMARK 1. We have verified, actually, that the analogue of Beurling's theorem [1] in spectral analysis of bounded functions on the real line, holds for $L_{\infty}^{H}(\mathbf{R})$ where H is finite-dimensional.

REMARK 2. Theorem 2 may be, similarly, proved for $L^{H}_{\infty}(\mathbb{R}^{n})$ where n > 1 and H is finite-dimensional.

4. The infinite-dimensional case. Spectral analysis does not hold for $L_1^H(\mathbf{R})$ where H is infinite-dimensional. That is, there exists a proper closed, translation invariant subspace of $L_1^H(\mathbf{R})$ which is contained in no maximal, closed, invariant subspace of $L_1^H(\mathbf{R})$. We prove the following:

THEOREM 3. Let H be a separable, infinite-dimensional Hilbert space. There exists a nontrivial, w^* -closed, invariant subspace of $L^{\scriptscriptstyle H}_{\infty}(\mathbf{R})$ which does not contain any one-dimensional, invariant subspace.

YITZHAK WEIT

For the proof of Theorem 3 we will need the following lemma:

LEMMA 4. Let f_1 and f_2 be in $L_{\infty}(\mathbf{R}) \cap L_1(\mathbf{R})$ such that \hat{f}_1 is a constant d in the interval [a, b].

If ϕ_{τ} , $\tau \in \Gamma$, is a net in $L_1(\mathbf{R})$ such that

$$(f_i * \phi_\tau)(x) \xrightarrow{w^*} a_i e^{i\lambda x} \qquad (i = 1, 2)$$

where $a < \lambda < b$, then we have

$$a_1 f_2(\lambda) = a_2 d$$
.

Proof. We may assume that $\operatorname{Supp} \hat{\phi}_{\tau} \subseteq [a, b]$ for every $\tau \in \Gamma$. Hence $f_1 * \phi_{\tau} = d\phi_{\tau}$ for any $\tau \in \Gamma$. Suppose that $d \neq 0$. Then $\phi_{\tau} \xrightarrow{w^*} (a_1/d)e^{i\lambda x}$ and

$$f_2 * \phi_\tau \xrightarrow{w^*} \frac{a_1}{d} \hat{f}_2(\lambda) e^{i\lambda x}$$
.

If d = 0, then $f * \phi_{\tau} = 0$ for any $\tau \in \Gamma$ and we have $a_1 = 0$. This completes the proof of the lemma.

For $h \ge 0$, q > p let $T_{h,p,q}(x)$ be the function:

$$T_{h,p,q}(x) = \begin{cases} \frac{3h}{q-p}(x-p) & p \leq x < \frac{2}{3}p + \frac{1}{3}q \\ h & \frac{2}{3}p + \frac{1}{3}q \leq x < \frac{1}{3}p + \frac{2}{3}q \\ \frac{3h}{p-q}(x-q) & \frac{1}{3}p + \frac{2}{3}q \leq x < q \\ 0 & \text{elsewhere }. \end{cases}$$

The proof of Theorem 3. Let $\chi_n(x) = T_{h_n, p_n, q_n}(x)$ satisfy the following conditions:

(i) $h_1 = 1$, $p_1 = -1$ and $q_1 = 2$.

(ii)
$$q_n - p_n = \frac{3}{n \lg n}$$
 and $h_n = \lg n$ $(n = 2, 3, \dots,)$.

(iii) For each λ , $0 < \lambda < 1$, there exists a sequence $n_k \to \infty$, such that $\lim_{k\to\infty} \chi_{n_k}(\lambda) = \infty$.

Let g_n^* be the sequence defined by

$$\hat{g}_n^*(x) = \chi_n(x)$$
 $(n = 1, 2, \dots,)$.

Let $g_n = g_n^* * \psi$ where $\psi \in L_1(R)$, $||\psi||_{L_1} = 1$ and $\operatorname{Supp} \hat{\psi} \subset [0, 1]$. By condition (ii) we have $||g_n||_{L_{\infty}} \leq 2/n$ $(n = 2, 3, \cdots)$. Hence there exists a function $f \in L_{\infty}^H(R)$ such that $(f(x), e_n) = g_n(x)$ for $n = 1, 2, \cdots$, where $\{e_n\}_{n=1}^{\infty}$ is a basis of H.

Suppose that the w^* -closed, invariant subspace generated by f contains an one-dimensional invariant subspace. That is, there exist a net ϕ_{τ} , $\tau \in \Gamma$, $\phi_r \in L_1(\mathbf{R})$ and a real number μ such that

(1)
$$(g_n * \phi_\tau)(x) \xrightarrow{w^*} a_n e^{i\mu x} \quad (n = 1, 2, \dots,)$$

where $\{a_n\}_{n=1}^{\infty} \in l_2$. For every g_n we have $\operatorname{Sp}(g_n) \subset [0, 1]$. Hence, we may assume that $\mu \in (0, 1)$.

From (1) we have $g_n^* * (\psi * \phi_\tau) \xrightarrow{w^*}{\tau} a_n e^{i\mu x}$ $(n = 1, 2, \dots,).$

By (iii) there exists a sequence $n_k \to \infty$ such that $\lim_{k \to \infty} \chi_{n_k}(\mu) = \infty$. By Lemma 4 we deduce that $a_n = a_1 \chi_n(\mu)$ $(n = 1, 2, \dots)$ which implies that $a_n = 0$ for each n. This completes the proof of the theorem.

5. Spectral analysis in subgroups of the motion group. In [5] it was verified that the one-sided analogue of Wiener's theorem fails to hold for the motion group. However, we will prove that the one-sided Wiener's theorem holds for the subgroup M_{κ} where

$$M_{K}=\left\{egin{pmatrix} e^{ik heta} & z\ 0 & 1 \end{pmatrix}: heta=rac{2\pi}{K},\ k=0,\,1,\,2,\,\cdots,\,K-1,\ z\in C
ight\} \ .$$
 (See also [3].)

By duality, this result is a consequence of the following:

THEOREM 4. Every w^{*}-closed, right invariant, nontrivial subspace of $L_{\infty}(M_{\kappa})$ contains an irreducible (minimal) right invariant, nontrivial subspace.

Proof. Let $f \in V$, $f \neq 0$, where V is a w^* -closed, right invariant subspace of $L_{\infty}(M_K)$. The subspace V contains all functions g such that $g(e^{ik\theta}, z) = f(e^{i(k+m)\theta}, z - we^{ik\theta})$ where $m \in \mathbb{Z}$ and $w \in C$. For a suitable $r \in \mathbb{Z}$ the function

$$(2) \qquad \sum_{m=0}^{K-1} f(e^{i(k+m)\theta}, z)e^{-irm\theta} = e^{irk\theta} \sum_{m=0}^{K-1} f(e^{im\theta}, z)e^{-im\theta} = e^{irk\theta} P(z)$$

is nonzero and belongs to V. Let $P_s(z) = P(e^{is}z)$ for $s = 0, 1, \dots, K-1$. Then by Theorem 2 and Remark 2 (P_s are looked upon as the coordinates of a function in $L^H_{\infty}(\mathbf{R}^2)$ where H is K-dimensional), there exist $\psi_n \in L_1(\mathbf{R}^2)$ $(n = 1, 2, \dots)$, $\lambda \in C$ and $a_s \in C$ $(s = 0, 1, \dots, K-1)$ where $\sum_{s=0}^{K-1} |a_s| > 0$, such that

YITZHAK WEIT

(3)
$$\int_{\mathbb{R}^2} P_s(z-\xi)\psi_n(\xi) \xrightarrow{w^*} a_s e^{i(\lambda,z)} .$$

(Here, for $z_1z_2 \in C$, $(z_1, z_2) = x_1x_2 + y_1y_2$ where $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.) Let $\chi_n(\xi) = \sum_{s=0}^{K-1} \psi_n(e^{-is\theta}\xi)$ $n = 1, 2, \dots$, Obviously, $\chi_n(\xi) = \chi_n(e^{is\theta}\xi)$ for $s = 0, 1, \dots, K-1$. Then, by (3), we have

$$(4) \qquad \qquad \int_{\mathbb{R}^2} P(z-\xi) \chi_n(\xi) d\xi \xrightarrow{w^*} \sum_{s=0}^{K-1} a_s e^{i(e^{-is\theta_{\lambda,z}})}$$

Hence, by (2), the function

$$e^{irk heta}\int_{R^2}P(z-\xi e^{ik heta})\chi_n(\xi)d\xi=e^{irk heta}\int_{R^2}P(z-\xi)\chi_n(\xi)d\xi$$

belongs to V for each n. Finally, by (4), the function $Q \in L_{\infty}(M_K)$ where $Q(e^{ik\theta}, z) = e^{i\tau k\theta} \sum_{s=0}^{K-1} a_s e^{i(e^{-is\theta}\lambda,z)}$ belongs to V. Arguing as in [5], it can be verified that the w^* -closed, right invariant subspace generated by Q irreducible. This completes the proof.

References

1. A. Beurling, Un théorème sur les fonctions bornees et uniformement continues sur l'axe reel, Acta Mathematica, 77 (1945), 127-136.

2. Y. Domar, Spectral analysis in spaces of sequences summable with weights, J. Functional Analysis, 5 (1970), 1-13.

3. H. Leptin, On one-sided harmonic analysis in non-commutative locally compact groups, J. Reine und Angew. Math., **306** (1979), 122-153.

4. L. Loomis, Abstract Harmonic Analysis, Van Nostrand, New York, 1953.

5. Y. Meyer, Algebraic Numbers and Harmonic Analysis, North Holland, Amsterdam, 1972.

6. Y. Weit, On the one-sided Wiener's theorem for the motion group, Ann. of Math., **111** (1980), 415-422.

Received July 11, 1979.

University of Haifa Haifa, Israel

248