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SPECTRAL ANALYSIS IN SPACES OF VECTOR
VALUED FUNCTIONS

YITZHAK WEIT

Spectral analysis properties of L?{R), where if is a separ-
able Hubert space, are investigated. It is proved that spectral
analysis holds for Lf Off) if and only if H is finite-dimensional.
The one-sided analogue of Wiener's theorem for some sub-
groups of the Euclidean motion group, is obtained.

1* Introduction* Let A be a Banach space and F a class of
bounded linear transformations of A into itself. Following [2] we
say that spectral analysis holds for A if every proper closed subspace
of A, invariant under F, is included in a closed maximal invariant
subspace of A.

The case where A is the Banach space of sequences summable
with weights and F is the class of the translation operators was
studied in [2].

We are going to study the problem of spectral analysis with A
being the Banach space L[T{R) of functions defined on R, taking
values in a separable Hubert space H, and F is the class of transla-
tions by the group 12.

Wiener's classical theorem states that spectral analysis holds
for L?(R) where H is one-dimensional.

Our main goal is to show that spectral analysis holds for L?(R),
if and only if, H is finite-dimensional.

In §2 we characterize the minimal w*-closed, translation in-
variant subspaces of L%>(R)9 the dual space of L(T(R).

Spectral analysis in the finite-dimensional case is considered in
§3. In §4 we construct a w*-closed invariant subspace of LZ(R)
which does not contain a nontrivial, minimal, w*-closed, invariant
subspace. One-sided spectral analysis in subgroups of the motion
group, is studied in §5.

For x e ί Π e t ||&|| = (x, x)m denote the norm of x. For feL^R),
let Sp (/) denote the spectrum of /.

2* Minimal invariant subspaces* The minimal invariant w*-
closed subspace of L^{R) are characterized as follows:

THEOREM 1. Let H be a separable Hubert space with the basis
{e»}£=i Then the function feLτd(R), fΦO generates a minimal,
w*-dosed, invariant subspace, if and only if
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(/(»), en) = ane
ίλ* (n = 1, 2,

for some XeR and {aJ~=1 6 i2.

Proo/. Let Λ(x) = (/(*), O /or n = 1, 2, , .
If /*(«) = ane

iλ* then, obviously, the invariant subspace generated
by / is one-dimensional.

To prove the "only if" part, let M denote the w*-closed, in-
variant subspace generated by /, feL£(R). Suppose that λ xe
Sp(/fc), λ2eSp(/m) where mΦk and λx < λ2. Let φeL^R) be such
that Supp φ = [rl9 r2] where rx < λx < r2 < λ2. Let g eLZ(R) be the

f(x — a)φ(a)da. Let /& eLx(R) with Supp h(z(r2t ©o),
such that 1 /m(x)fe(̂ )cίx ^ 0. Then, for ^ 6 L?{R), where (ψ<αθ, em) =
Λ(OJ) and (ψ(a;), en) = 0 for n Φ m, we have

S oo r oo

(g(x — a), ψ(x))dx = \ gjx — a)h(x)dx = 0
— oo J —oo

for all aeR, where gm(x) = (flf»(a?), O On the other hand, we have
(/(»), ψ(x))dx = I fm(x)h(x)dx Φ 0 which implies that ikf is not

— oo J—oo

minimal and the result follows.

3* The finite-dimensional case* Spectral analysis holds for
L?(R)9 where H is finite-dimensional. By duality, this result is a
consequence of the following:

THEOREM 2. Let H be finite-dimensional Hilbert space. Then
every w*-closed, invariant, nontrivial subspace of L£(R) contains
an one-dimensional invariant subspace.

Proof. Let feL*(R) and fn(x) = (f(x), en) (n = 1, 2, ••-,#) where
WίU is a basis of H. We may assume that f Φ 0 and 0 e Sp (/). Let
M denote the w*-closed, invariant subspace of LZ(R) generated by /.
Let φkeL^R) where Supp φk = [-Ilk, 1/k] φk(0) Φ0 for k = 1, 2,

S oo

/(a? — a)φh(a)da is not identically zero and belongs
to M{k = 1, 2, ••",). Let flrfc>n(a?) = (^, en) for & = 1, 2, - , and n =
1,2-..,iV.

There exist an integer i, 1 ̂  i ^ iSΓ, and a subsequence fc{ -> oo
such that

max H^. IUoo = llfl^.ilko

If ^fcz is multiplied by an appropriate function, it will follow that
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| | Λ ί f J |Uoo==l a n d 9^(0) > 1 - j -

By Bernstein's inequality [5, p. 149] we have

M ^ W L ^ ^ Y (z = 1,2, . . - , ) .

Hence,

\9k,ι,j(%) "" 1| ^ —(\χ\ + 1) which

implies that {gkι,j}Γ=i converges uniformly on compact sets to the
constant function 1.

By the ^^-compactness of the unit ball in L^R) there exists a
subsequence of ku which will be denoted again by kl9 such that

ΰkι,n\x) > ΨΛX) n = 1, 2, , iV

where ψ^^LJ^R) and ψj(x) = 1.
Obviously, Sp {ψn) c {0} and by an elementary theorem on spectral

synthesis (see, for instance, [1] or [4] pp. 151 and 181) we deduce

ψn(x) = cn cneC (n = 1, 2, - -, N) .

Hence, the function ψeLZ(R), ψ Φ 0, where (ψ(x), en) = cΛ

(% = 1, 2, , iV) belongs to M which completes the proof of the
theorem.

REMARK 1. We have verified, actually, that the analogue of
Beurling's theorem [1] in spectral analysis of bounded functions on
the real line, holds for L"(R) where H is finite-dimensional.

REMARK 2. Theorem 2 may be, similarly, proved for L^{Rn)
where n > 1 and H is finite-dimensional.

4* The infinite-dimensional case* Spectral analysis does not
hold for L?(R) where H is infinite-dimensional. That is, there
exists a proper closed, translation invariant subspace of L?(R) which
is contained in no maximal, closed, invariant subspace of Lf(R).
We prove the following:

THEOREM 3. Let H be a separable, infinite-dimentional Hilbert
space. There exists a nontrivial, w*-closed, invariant subspace of
Ln(R) which does not contain any one-dimensional, invariant sub-
space.
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For the proof of Theorem 3 we will need the following lemma:

LEMMA 4. Let fx and f% be in LJJR) Π Lλ(R) such that / x is a
constant d in the interval [α, 6],

If φτ, τeΓ, is a net in Lλ{R) such that

w*

C / W X O "" (i l 2 )

where a < λ < b, then we have

Proof. We may assume that Supp φτ £ [α, 6] for every τ eΓ.
w*

Hence f^φτ — dφτ for any τeΓ. Suppose that d Φ 0. Then φτ-+
(ajd)eux and

If d = 0, then / * ^ r = 0 for any τ e Γ and we have αx = 0. This
completes the proof of the lemma.

For h ^ 0, q > p let Th,Ptq(x) be the function:

Q-P

h

3h

- ( * - : 2 1
< — P + — Q

o o

1 2
•(α? - q) —p + —

p — q 3 3
0 elsewhere .

The proof of Theorem 3. Let XJjxi) = Thn,Pn,gn(x) satisfy the
following conditions:

( i )

Qn- Pn

h = 1 > Pi — — 1 a n d qx — 2 .

Q

= and kn = Ign (n = 2, 3, ,) .

(iii) For each λ, 0 < λ < 1, t h e r e exists a sequence wfc —> oo y such
t h a t l i m ^ ZWJfe(λ) = oo.

Let gt be t h e sequence defined by

§i(x) = %•(«) (n = 1,2, ••-,) .



SPECTRAL ANALYSIS IN SPACES OF VECTOR VALUED FUNCTIONS 247

Let gn = gt*ψ where ψeL^R), \\ψ\\Lι = 1 and Supp ψ c [0, 1].
By condition (ii) we have HflUU^ ^ 2/n (n = 2,3, •)• Hence there
exists a function feL*(R) such that (f(x)9 en) = gn(x) for w =
1, 2, , where {βΛ}ϊβl is a basis of iϊ.

Suppose that the w*-closed, invariant subspace generated by /
contains an one-dimensional invariant subspace. That is, there exist
a net φτ, τ eΓ, φre L^R) and a real number μ such that

w*
( 1 ) (βr. *Φr)(x) —^ ane*f (n = 1, 2, . . . , )

where {αn}?=1eZ2. For every #„ we have Sp(flrn)c[0, 1]. Hence, we
may assume that μ e (0, 1).

F r o m (1) w e h a v e gt * (ψ * φτ)-> ane
ίμx (n = l,2, •••,).

By (iii) there exists a sequence nk-+ °° such that lim*-*, ZΛJb(jtβ) = ©o.
By Lemma 4 we deduce that an = ajίjiμ) (n — 1, 2, ,) which
implies that αw = 0 for each %. This completes the proof of the
theorem.

5* Spectral analysis in subgroups of the motion group* In
[5] it was verified that the one-sided analogue of Wiener's theorem
fails to hold for the motion group. However, we will prove that
the one-sided Wiener's theorem holds for the subgroup Mκ where

ί\0 1/ -& j
(See also [3].)

By duality, this result is a consequence of the following:

THEOREM 4. Every w*-closed, right invariant, nontrivial sub-
space of LJME) contains an irreducible {minimal) right invariant,
nontrivial subspace.

Proof. Let/6 V,f=£θ, where F i s a w*-closed, right invariant
subspace of LJJΛ^). The subspace V contains all functions g such
that g{eikθ,z)=f{ei{k+m)θ,z-weikθ) where meZ and weC. For a
suitable r eZ the function

k+m)θ, z)e-irmθ = eirk0 KYxf{eimθ, z)e~imθ = eirk°P{z)
m=0

is nonzero and belongs to V. Let Ps(z) = P{euz) for s = 0, 1, ,
K—l. Then by Theorem 2 and Remark 2 (P8 are looked upon as the
coordinates of a function in LS>(R2) where H is iΓ-dimensional), there
exist ψn eL,(R2) (n = 1, 2, •••,), λ e C and as e C (s = 0, 1, , K - 1)
where ΣfJΌ11 as | > 0, such that
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( 3 )

(Here, for z&eC, (zlf z2) = x1xΐ+y1yΐ where zt = xΛiyu z2 =
Let *„(£) - Σί.5,1 *.(«-'"£) Λ = 1, 2, f . Obviously, χ.(f) - χ.(β« »f)
for s = 0, 1, •• ,K-1. Then, by (3), we have

4 ) ( P(z - ξ)ln(ξ)dξ — Σ 1

Hence, by (2), the function

\ P{Z - ξ)Xn(ξ)dξ

belongs to V for each n. Finally, by (4), the function QeLJJiίκ)
where Q(eikθ

9 z) = eirk0 Σf^1 ase
i{e~isθλ>z) belongs to V. Arguing as in

[5], it can be verified that the w*-closed, right invariant subspace
generated by Q irreducible. This completes the proof.
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