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ANALYTIC iί-SPACES, CAMPBELL-HAUSDORFF
FORMULA, AND ALTERNATIVE ALGEBRAS

J. P. HOLMES AND A. A. SAGLE

Analytic //-spaces are shown to be local analytic loops
(satisfying the cancellation laws). Then power associative local
analytic loops are investigated and these are shown to be ex-
actly the class to which a local loop belongs if there is a choice
of coordinate system, /, for which the multiplication obeys
V(sx9 tx) — sx + tx. Here x is near 0 in Rn, each of the numbers
5, t and 5 + / is in [0,1] and V is the pulldown of the local
loop multiplication via /. Homomorphism of such local loops
are investigated and the set of such automorphism is shown
to be isomorphic to a certain group of linear maps. Also gen-
eralizing the Lie group-Lie algebra situation, certain anti-com-
mutative algebras are introduced to study these local loops.
Finally these results are applied to local loops whose multipli-
cation is induced by a power associative algebra. A Campbell-
Hausdorff formula is shown to hold when the algebra is alter-
native and is related to the inverse property in the local loop.
A relationship between S7 and simple Malcev algebras is given.

Introduction* As given in [15], an iϊ-space is a set M with
multiplication function m: M x M-^M having an identity element
e. As a variation of this and local groups, the triple (Λf, E, m) is
said to be a local analytic iϊ-space provided M is an analytic mani-
fold, E is an open set of M containing e, and m is an analytic func-
tion from E x E to M satisfying m(e, x) — m(x, e) = x for each x e E.
We show in § 1 that these local analytic Jϊ-spaces satisfy the two-
sided cancellation laws locally so that they are actually local loops
and inverses exist locally.

Suppose (Λf, E, m) is a local analytic iϊ-space and x is in E. Let
x° = e and if x"-1 is in E, let xn = m{x, x1""1). Then (Λf, E, m) is
power associative if and only if for positive integers m, n

m(xn, xm) = xn+m

whenever each of xn and xm is in E and xm+n exists. Power associ-
ative analytic loops include Lie groups as well as seven-sphere S7

with multiplication induced from the Cayley numbers.
In describing the structure of analytic local ίf-spaces it is con-

venient to choose a coordinate system / with domain a neighborhood
of e so that f(e) — 0. There is then a neighborhood D of 0 in Rn

so that the equation

V(f(x), f(y)) -= f(m(x, y))

105
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defines analytic function on V on D x D. The triple (Rn, D, V) is
a local analytic iϊ-space locally isomorphic with (Af, E, m) at e. The
first main result is the following.

THEOREM 0.1. Suppose (Λf, E, m) is a local analytic H-space.
There is a neighborhood C of e in M such that (Λf, C, m\C x C) is
power associative if and only if there is a coordinate system f at
e with f(e) = 0 and a neighborhood D of 0 in Rn such that

m(ΓXtx), f~\sx)) = f~\(t + s)x)

whenever x is in D and each of s, t and s + t is in [ — 1, 1].

In § 1 we prove this theorem and use the resulting "canonical
coordinate" system / for power associative local analytic iϊ-spaces to
study analogues of Lie group-Lie algebra theorems which hold in
this setting. Thus in § 2 we identify homomorphisms and kernels
and show that the group of local automorphisms of (Λf, E, m) is a
matrix group.

In § 3 we apply the previous results to power associative local
analytic iϊ-space with the multiplication being induced from an
algebra with identiy. The results are similar to those for the general
linear group and we concentrate on the analogue of the Campbell-
Hausdorff theorem for Lie groups.

Thus suppose A is a finite dimensional power associative algebra
with identity 1 over the real field. From results in § 1, there is a
neighborhood D of 0 in A and a coordinate function / defined on a
neighborhood of 1 in A so that the multiplication V: D x D —> A
defined by

V(f(x), f(y)) - f(χy)

is analytic and satisfies

V(sx, tx) = (s + t)x

whenever s, t, s + t is in [0, 1] and ||&|| is sufficiently small. (Here
xy is the product in A.)

If V is defined in this way, then the second derivative of V at
(0, 0) is given by

F(2)((0, 0)(x, y), (x, y)) = xy - yx = [x, y] .

We investigate the Taylor's series of V in which the higher order
derivatives Vn for n > 2 can be written in terms of V2 analogous
to the Campbell-Hausdorff theorem.

We obtain that the Taylor's series for V is given by the
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Campbell-Housdorff formula if and only if A is an alternative algebra.
We consider the more general problem as to when V3 can be written
in terms of V2 and obtain algebras quasi-equivalent to an alternative
algebra. This is related to the inverse properties holding in the
local loop. Also we discuss the general problem as to when finitely
many derivatives V\ V2, •••, VN actually determine the Taylor's
series for V.

!• Canonical coordinates* Let (M, E, m) be a local iJ-space as
discussed in the introduction. If h is a homeomorphism from some
neighborhood of e in M onto a neighborhood of 0 in Rn with h(e) = 0
then, h is said to be a coordinate system at e provided that there
is a neighborhood D of 0 in Rn so that the function W defined by
W(h(x), h(y)) = h(m(x, y)) has domain containing D x D. For such a
D the triple iRn, D, W) is a local iϊ-space which is said to be induced
by h. From the definition of W it is clear that h is a local isomor-
phism from (Λf, E, m) to (i?», D, W).

Let || || denote a norm on Rn and if d is a positive number let
R(d) denote the ball centered at 0 with radius d. If T is a linear
transformation from Rn or Rn x Rn to Rn let \T\ denote the operator
norm of T.

We now show that (M, E, m) satisfies local cancellation laws, and
hence that analytic ίf-spaces are local loops.

THEOREM 1.1. If (M, E, m) is a local H-space then a coordinate
system h may be chosen so that for some neighborood Dr of 0 in Rn

the local H-space (Rn, D', V) induced by h satisfies local cancellation
laws. Thus (M, E, m) is a local loop.

Proof. Let / be any coordinate system at e, and let (Rn, D, V)
be induced by /. If y is in D there is x in E such that y = /(#).
Thus V(y, 0) = f(m(x, e)) — fix) = y and similarly F(0, y) = y. If x
is in Rn and hx is in D, then F'(0, 0)(0, x) = limΛ_0 [ V(0, hx) - V(0, 0)]/h =
limh^Ql/h'hx — x. Hence

V\0, 0)(x, y) = V'iO, 0)[(x, 0) + (0, y)] = x + y

using the linearity of the derivative F'(0, 0) on Rn x Rn.
Choose the positive number d so that R(d) is contained in D and

if each of x and y is in R(d), then \V'(x, y) - F'(0, 0)| < 1/4.
Suppose each of x, y and z is in Rid). Then

\\y - z\\ - \\V\x, y)(0, y - «) | | ^ | | [ F ' ( 0 , 0) - F ' ( x , y)](fl, y - z)\\
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Hence (3/4)||y - z\\ £ \\V\x, y)(0, y - z)\\. Thus,

-z\\-\\V(x, y)- V{x,z)\\

S \\V(x, y) - V(x, z) - V'(x, y)(0, y - z)\\

, z + Uy- z)) - V\x, y)](0, y - z)

Each of x, y and z + t(y — z) is in R{d) so this last term is
^ (1/4)||y - z\\, using \V'(x, y) - V'(0, 0)| < 1/4. Hence we have

(1/2)112/ -z\\£\\V{x, y) - V(x,z)\\

and similarly

(l/2)\\y-z\\^\\V(y,x)- V(z, x)\\ .

Thus, a choice of h = (f\f~\R{d))) satisfies the conclusion of
Theorem 1.1.

NOTATION. We shall use "loop" instead of "ίf-space" to emphasize
the local cancellation laws.

A variation of the following result was proved in [5] for C1

power associative loops. We extend it to the analytic case. It is
used to construct the canonical coordinate system of Theorem 0.1.

THEOREM 1.2. Suppose (M, E, m) is a power associative local
loop and (Rn, D, W) is induced from it by some coordinate system.
There are positive numbers r and d such that for each x in R(r),
there is a unique continuous map Tx: [0, 1] —> R(d) satisfying
Tx(0) = 0, Tx(l) = x and W(Tx(s), Tx{t)) = Tx(s + t) whenever each of
s, t and s + t is in [0, 1]. Moreover, the function Tx is analytic
on [0, 1].

The proof uses a differential equations theorem, which we para-
phrase below.

THEOREM 1.3. ((10.7.5) o/[3]). Suppose each of A and B is an
open set in Rn and h: A x B-* Rn is analytic. Then, for each (a, b)
in A x B and each number t0 there is a segment J centered at t0 and
a ball T centered at b such that there is a unique continuous function
u: J X T —> Rn with u(t0, z) = a and ut(t, z) = h(u(t, z), z). Moreover,
u is analytic on J x T.

Proof of 1.2. Define h: D x Rn -> Rn by h(x, z) = W\x, 0)(0, z)
and note that h is linear in the ^-variable. Since W is analytic on
D x D, h is analytic o n ΰ x Rn.
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Using 1.3 we may choose a segment / centered at the number 0
and ball T centered at 0 in Rn with unique continuous u: J x T —> Rn

satisfying u(0, z) = 0 and ut(t, z) = h(u(t, z), z). Moreover u is analy-
tic on J x T. Now choose c in (0, 1) so that c is in J and define
ΰ: [0, 1] x Γ-> i2* by δ(ί, s) = w(ίc, z). Then we have from the defini-
tion of ΰ and the chain rule that ϋ(09 z) — 0 and ύt(t, z) = cut(tc, z) =
/&(%(£, 2), c«), using the linearity of h noted above. Thus, from the
uniqueness part of Theorem 1.3 we have ύ(t, z) — u(t, cz) if t is in
J. Hence, we may assume in our application of Theorem 1.3 that
J and T are chosen with [0, 1] contained in J.

From Theorem 1 of [5] we may choose positive numbers rλ and
d± so that for each x in R(rλ) there is a unique continuous map
Tx: [0, 1] -> Rid,) satisfying Γ,(0) = 0, Γ.(l) - x and W(Tx(t), Tx(s)) -
Tx(s + t) whenever each of s, t and s + t is in [0, 1]. From [6] each
Tx is continuously differentiate. Now using the chain rule,

-j~Tx{s + ί) = Tx(s + t) = W\Tx{t\ Γ,(«))(0, Γί(«))

and hence rx'(i) = h(Tx(t), Γί(0)), using the definition of Λ. Thus from
uniqueness, we have u(t, TΪ(0)) = TJJb) whenever ί is in [0, 1] and
Tί(0) is in the ball Γ.

By Lemma 1 of [5] there is M > 0 such that if x is in R{r^
then HΓβίί)!! ^ M||x| |. Choose r2 > 0 so that if each of x and # is
in R(r2) then |TΓf(O, 0) - W'(x, y)\ < 1/2. Let d = r2/2M. If x is in

then

'(O, 0) -

using ||Γ.(t)|| ^ AΓ||α>|| < r2. Thus ||Γί(0)|| < 2||OJ||.

Hence we may choose r > 0 so that if x is in R(r) then Tx(0)
is in the ball T. Thus for x in .β(r) we have Tx(t) = u(t, Tx(0)) and
since the right side of this equality is analytic in t, Tx is analytic
on [0, 1].

REMARKS. Let G be a Lie group in canonical coordinates so
that the corresponding local multiplication function W is given by
the Campbell-Hausdorff series:

W(x9 y) = x + y + (l/2)[cc, y] + —\x[x, y]] H—
12 1Δ

for x9 y near 0 in the Lie algebra g of G. Then Tx(t) — tx so that
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the function g given by g(x) = Γί(0) (= x) is an analytic diffeomor-
phism at 0. Now in general, we can use the notation of Theorem
1.2 to define a function on the ball R(d) by g(x) = Tx'(0). Then g
can be used to actually obtain a canonical coordinate system on a
power associative local loop. First we show the following result.

THEOREM 1.4. There are neighborhoods A and D2 of 0 in Rn so
that g is an analytic homeomorphism from A onto D2 and (grlA)""1

is analytic on D2.

Proof, Choose u and T as in the Proof of Theorem 1.2. Define
K: Γ-> Rn by K{%) = u(l, z). Note JSΓ(O) - 0 since h(x, 0) = 0. Next

K(z) = u(l, z) = u(0, z) + [dtutit, z) = [dtW'(u(t, z), 0)(0, z) .
Jo Jo

Thus

K\z){x) - \dtW"{u(t, z\ 0)((0, z\ (uz(t, z){x\ 0))
Jo

dtW'(u(t, z), 0)(0, x) .

In particular K'(0)(x) = \ dtW'(0, 0)(0, x) - x.

Since J5L'(0) — /, the identity function on Rn, we may apply the
Inverse Function Theorem [3, Theorem (10.2.5)] and choose neighbor-
hoods Uί and U2 of 0 so that (K | Ux) is an analytic homeomorphism
onto U2 and / = (K\ U^1 is analytic on J72.

From the proof of Theorem 1.2 we may choose d' > 0 so that if
x is in R(d') then 2 (̂0) is in U, and Tx(t) = ^(ί, Γί(0)). Using this,
we have ϋΓ(<70*0) = K(T&0)) = u(l, Tί(fi)) - Γ,(l) = a?. Thus, since /
is the inverse of K\U1 we see /(a?) = Tί(0) = flr(fic), i2(ώ') is contained
in [72, and the choice A = J?(d') and A = f{R{df)) satisfies the con-
clusion of Theorem 1.4.

We now combine Theorems 1.2 and 1.4 to obtain a proof of
Theorem 0.1. Thus we show the existence of a canonical coordinate
system which characterizes power associativity of the corresponding
local multiplication function V by V(sx, tx) = sx + tx.

Proof. Suppose (M, E, m) is a power associative local loop, h is
a coordinate system, and (Rn, D, W) is a local loop induced by h.

Let r, and 2^ be as in the conclusion of Theorem 1.2 with r
chosen in addition, using Theorem 1.4, so that the function
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g: R{r) —> Rn defined by g{x) = Γx'(0) is an analytic homeomorphism
onto a neighborhood Df of 0 and so that g~ι is analytic on D'.

Note that if x is in R(r), s is in [0, 1] and p(t) — Tx(st) for each
t in [0, 1], we have p(t + t') = W(p(t), p(t')) whenever each of ί, ί',
and ί + ί' is in [0, 1]. For this case we also have p(0) — 0 and
p(l) = Tx(t). Moreover, p'(0) = sT^O). Hence, from the uniqueness
part of Theorem 1.2, if T^s) is in R{r) then we have

(1.2) 9(Tx(s)) = ŝ r(x) .

Choose d! > 0 so that if a? is in R(dr) then Γβ(s) is in R(r) for
each a; in [0, 1]. (Lemma 2 [5] again.) Let Dr = h~\R{d')) and define
f:D'->Rn by f(x) = g(h(x)). Choose D" so that the equation
V(f(x), f(y)) = f(m(x, y)) defines F with domain D" x J5". Then using
this and the definition that h is a coordinate system, we have

f(m(x, y)) = g(W(h(x), h{y))) = 7(flr(Λ(»)), g(h(y))) .

Thus F(a;, ?/) = g(W(g-\x), g-\y))). Hence F is analytic on D" x D"
and /is a coordinate system at e. Suppose x is in D". Then ?/ = g~\x)
is in JB(d') and using (1.2) we obtain g{Ty(s)) = sf/(#) = sx for each s
in [0, 1]. Suppose each of s, £ and s + £ is in [0, 1]. Then V(sx, tx) =
F(flr(Γ,(β)), flr(Γ,(ί))) - g(W(Ty(s), Ty{t))) - flr(Γ/s + t)) = (s + ί)a? which
also uses the above equation involving p(t + £') = W(p(f), p(t')).

If ώ > 0 is chosen so that R(d) is contained in D" then d will
satisfy the conclusion of Theorem 0.1 except that we have V(sxf tx) =
(s + t)x only for each of s, t and s + t in [0, 1]. The rest of the
conclusion will follow from (1.5).

DEFINITION A. A coordinate system / with induced loop
(Rn, R{d), V) satisfying the conclusion of Theorem 0.1 is called a
canonical coordinate system for (M, E, m).

In terms of higher derivatives of F we have the following charac-
terization of a power associative local loop.

THEOREM 1.5. Suppose (M, E, m) is a local loop. There is a
neighborhood Er of e in M so that (M, E\ {m\Er x E')) is power
associative if and only if there is a coordinate function f such
that in the induced loop (Rn, D, V), we have the derivatives
F(fc)(0, Q)(sx, tx)k = 0 for each x in Rn and each s, t in R and k <£ 2.

Proof. Suppose (M, E, m) is a local loop and there is a coordinate
system / at e such that for some open D containing 0 the induced
multiplication F satisfies Vk(sxf tx)h = 0 for all x in Rn, numbers s
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and ί, and k ^ 2. (The notation Vk is used for V{k)(0, 0).) Choose
d > 0 so that the Taylor's series for V converges to V on R(d) x ϋί(cϊ)
and R(d) is contained in D. Then

F(sa?, to) = (s + ί)« + f; J-Vk(sx, tx)k = (s + ί)α
2 &!

whenever s, t are in [0, 1] and x is in JB((Z). If Er = f'\R{d)) then
CM, I?', (m|J5" x £")) is power associative.

Conversely if (M, i?', {m\Er x £")) is power associative for some
neighborhood £" of β we may use Theorem 0.1 to choose / so that
the induced local loop (Rn, R{d)y V) satisfies V(sx, tx) — (s + t)x for
appropriate s, t and x. If d is chosen in addition so that the Taylor's
series for V converges to V on R(d)xR(d) we have 0 = Σ ? Vk(sx, tx)k.
This implies Vk(sx, tx)k = 0 for all numbers s, t, and all x in Rn. We
thus have a proof of (1.5) and the sufficiency of power associativity
for the conclusion of 0.1. The necessity follows easily.

There are C°° power associative multiplications on R1 which are
not associative (simply disturb the graph of + so that it cuts the
XY plane in a nonsymmetric curve without disturbing it on
R+ x R+ U R~ x R~). Thus analyticity is a necessary hypothesis
for 0.1.

Next we consider anticommutative algebras associated with a
local loop which are analogous to the Lie algebra of a Lie group.
In § 3 we shall investigate how these algebras determine the Taylor's
series for V analogous to the Campbell-Hausdorff Theorem.

COROLLARY 1.6. Suppose (M, E, m) is a power associative loop
with canonical coordinate representation (Rn, R(d), V).

(a) If a{x, y) = V\(x, 0), (0, y)) then a(x, y) = V\x, y)2/2, and a
is bilinear and anticommutative. Thus a induces the structure of
an algebra on Rn denoted by (Rn, +, a).

(b) // (Rn, D, W) is another loop induced by some coordinate
system on (M, E, m) such that b(x, y) — W\x, y)2/2 is bilinear anti-
commutative, then the algebras (Rn, +,6) and (Rn, +, α) are iso-
morphic.

(c) // (M, E, m) is a Lie group then (Rn, +, a) is its Lie algebra.

Proof. Using the bilinearity of V2 on (Rn x Rn)2 we expand

V2(sx, tx)2 = V\{sx, tx), {sx, tx)]

= V2[(sx, 0) + (0, tx), (ax, 0) + (0, tx)]

= s2V2(x, 0)2 + 2stV2[(x, 0), (0, x)] + tV(0, x)2 .

Since V2(sx, tx)2 = 0 we obtain
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V\x, Of = V\{x, 0), (0, x)] = F2(0, xY = 0 .

Using these we have

γV\x, yf = ±V\(x, y), (x, y)}

= \V\(X, 0) + (0, y), {x, 0) + (0, y)]

= \v\x, 0)2 + V\{x, 0), (0, y)] + i-F2(0, yf
/mi Li

= V2[(x, 0), (0, y)]

= Φ, y)

Clearly a is bilinear and a(x, x) = V2[(x, 0), (0, x)] = 0 so that α is
anticommutative, i.e., a(x, y) = —a(y, x).

Suppose (Rn, D, W) is induced from (Λf, E, m) by coordinate system
h and/is the canonical coordinate system which induces (Rn, R(d), V).
Suppose furthermore that b{x, y) = W\x, yfβ is bilinear anticommu-
tative.

Let g = f' oh~ι on some neighborhood of 0 in Rn. Then g is
analytic and V(g(x), g(y)) = g(W(xf y)) for all (x, y) sufficiently near
(0, 0).

If /, W, and V are expanded in Taylor's series about 0 and (0, 0),
then the above equation yields the following identity

α(βr'(0)(aO, g\0)(y)) ~ g'(0)(b(x, y)) = 2g"(0Xx, y) .

Since the left side of this is anticommutative and the right side
is symmetric we have

a(g\0)(x), g\0)(y)) = g'(0)ψ(x, y)) .

Since h and / are coordinate systems g'(Q) is an isomorphism.
Part (c) is standard Lie theory [13].
Theorem 1.5 suggests the following method of constructing

examples. Suppose for k = 2, 3, ••-, that ak is symmetric ά-linear
on (Rn x Rn)k and satisfies ak(tx, sx)k — 0 for all t and s in R and x
in Rn. Suppose furthermore that there is a positive number c so
that the series V(x, y) = x + y + Σ2 %(#, y)k converges on R(c) x R(e).
Then for some d ^ c, (Rn, R(d), V) is a power associative local loop
for which the identity function is a canonical coordinate system.

2* Homomorphisms and automorphisms* We now examine
homomorphisms and kernels in the loop setting. In the case of Lie
groups, differentiate group homomorphisms are analytic and are in
one-to-one correspondence with Lie algebra homomorphisms. Similar
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results hold for power associative loops, and we enumerate some of
these below.

DEFINITION. Suppose each of (M, E, m) and (P, U, w) is a local
ff-space and h is an analytic function from some neighborhood of e
in M into a neighborhood of the identity element e' in P. h is said
to be a homomorphism if h(e) = e' and there is a neighborhood D of
e such that h(m(x, y)) = w(h(x), h(y)) whenever each of x and y is
in D.

If (P, ί7, w) = CM, E, m) and each of h and fc"1 is a homomorphism
then we say h is an automorphism. Two automorphisms are said
to be equivalent if they agree on some neighborhood of e. This
defines an equivalence relation on the collection of all automorphisms
of (My E, m). Let [h] denote the equivalence class containing the
automorphism h and denote by G the set of all such equivalence
classes. Define *:G x G—>G by [fej*^] = [h1°h^. An easy argu-
ment shows that ((?, *) is a group. Our next theorems give analogues
to the Lie group theorems mentioned above and show that (G, *) is
isomorphic with a matrix group.

THEOREM 2.1. Suppose each of (M, E, m) and (P, U, w) is a power
associative local loop and h is a function from a neighborhood of e
in M to a neighborhood of ef in P which is continuous and satisfies
h(e) = e\ // h is differentiate at e, and there is a neighborhood E
of e so that h(m(xf y)) — w(h(x)f h(y)) whenever each of x and y is in
E, then h is a homomorphism. Moreover im(h) Π U is a local sub-
manifold of P at ef.

Proof. From the definition of homomorphism, it suffices to show
h is analytic. Thus choose canonical coordinate functions / and g
for (M, E, m) and (P, C7, w) respectively which induce local loops
(Rn, D, V) and (Rm, F, W). Let N be a neighborhood of e in M such
that if x is in f(N) then j(x) = g{h{f~\x))) exists. It is easy to see
that j satisfies j(V(x, y)) = W(j(x), j(y)) whenever each of x and y
is sufficiently close to 0 in Rn. Since h is differentiate at e we have
that j is differentiable at 0.

Since each of / and g is a canonical coordinate function ψe have
from the uniqueness part of Theorem 1.2 that j(tx) = tj(x) for all x
sufficiently close to 0 and all t in [0, 1]. Differentiating both sides of
this equation with respect to t and setting t = 0, we obtain j(x) =
j\0)(x) for all x in some neighborhood of 0; thus j is analytic on N.
It then follows from the definition of j that h is analytic on N.
Moreover, since, near e', the image of h = g~\im(j)) we have im(h)
is a local submanifold of P at e'.
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COROLLARY 2.2. If h is a homomorphism from (M, E, m) to
(P, U, w) then {with j defined as above) j is linear and j(Vk(x, y)k) —
Wk(j(x), j(y))k whenever each of x and y is in Rn and k is a positive
integer.

Proof. It is immediate from the Proof of Theorem 2.1 that j
is the restriction of the linear map j'(0). Since j is a homomorphism
from (J?Λ, D, V) to (Rm, F, W) we have

( \ Jr\ */ X—' / ~i Π • \ T7~k/ \ li '

1 \ 1

= i(F(a;, y)) = W(j(x

= ±(l/kl)W\j(x),j(y))".
1

The rest of the conclusion of the corollary follows from this equality.

Thus analogous to the Lie group case where a homomorphism
of Lie groups induces a homomorphism of Lie algebras, this corollary
shows that a homomorphism of local loops induces a homomorphism
of the multi-linear systems (j?*, Vk) to (Rm, Wk). The next result
shows the converse.

THEOREM 2.3. If j : Rk-> Rm is continuous and j(Vk(x, y)k) =
Wk(j(x), j(y))k for each positive integer h, then there is a neighbor-
hood Q of 0 in Rn so that if h(x) = g~\j(f{x))) for all x in f~\Q)
then h is a homomorphism of (M, E, m) to (P, U, w).

Proof j(x + y) = j{Vι(x, y)) = W\j{x), j(y)) = j(x) + j(y). Since
j is continuous, it follows from this that j is linear. Using j is
linear and the hypothesis, we see

if each of x and y is sufficiently near 0. It is easy then to see from
the definition of h that h is a homomorphism.

THEOREM 2.4. The group (G, *) is isomorphic with a closed sub-
group of GL(Rn), the group of invertible linear transformations of
Rn.
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Proof. Suppose each of hλ and h2 is an automorphism of (Λf, E, m)
and hx is equivalent to h2. Let jt(x) — f(hi(f~\x))) for i = 1, 2, and
a? sufficiently close to 0. By Corollary 2.2 j i is the restriction of a
linear transformation and let j t denote this linear transformation.
Since hx and h2 agree on a neighborhood of e, j \ and j 2 coincide on
a neighborhood of 0 and hence, by linearity, j x = j 2 .

Thus, we may define the function F: G -> GL{Rn) by F([h]) =
(f°hof-1Y(0). By the preceding argument, F is well defined. Using
the notation of Corollary 2.2 for j — fQhof-\ we see that j = /(O).
Consequently if F(\h^\) = F([h2])9 then j \ — j2 and therefore [fej = [λ2].
Thus F is one-to-one. Next, from Theorem 2.3, the map T is in
the image of F if and only if T(V\x, y)k) = Ffc(Tx, ?V)fc for all x
and ]/ in Rn and all positive k. It follows that the image of F is
closed in GL(Rn).

If each of [h] and [#] is in G, then F([Λ] * [g]) = F([fe o ^]) =
[/ o (Λ o g) o /-i]'(0) = [(/ o fc o /-I) o (/ o g o /-)]'(0) = (/ o h o /-)'(0) o

(/ ° ίir ° /"O'CO) = -F(|>]) ° ̂ ([ί^]). Thus F is an isomorphism onto Im (F).
The next theorems identify all possible homomorphisms defined

on a power associative local loop.

THEOREM 2.5. Suppose each of (Rn, D, V) and (Rm, E, W) is a
power associative local loop in canonical coordinates, and j : D—>E
is a homomorphism. Then there is a linear transformation T from
Rn to Rm such that{T\D) = j and for each k — 1, 2, .. we have
T(Vk[(xu yd, , (xk, yk)]) = W*[(Txu Tyx\ .., (Txk, Tyk)] whenever
each of xlf , xk, yl9 , yk is in Rn.

Proof Since (Rn, D, V) and (Rm, E, W) are in canonical coordi-
nates, we may choose the maps / and g in the Proof of Theorem 2.1
to be the identity maps. Consequently, from that proof, T is i'(0).
Prom Corollary 1.3 we have T(V\x, y)k) = W\Tx, Tyf whenever
k ^ 1 and each of x and y is in Rn. Let g(x, y) = T{V\x, y)k).
Prom the chain rule, g is analytic. If each of x, y, xx and y1 is in
Rn then

g\x, y)(xu y,) = Km (l/h)[g(x + hxlf y + hyt) - g(x, y)]
hO

= lim(l/Λ)fΣ (k)h'T(VXx, y)k-(xlt yj) - T{V\x, yf)

s
4-1, (xlt
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A continuation of these calculations yields

g\x, y)[(xί9 yx\ , (xk9 yk)] = k\ TVk[(xlf Vl), . - ., (xk9 yk)] .

A similar calculation shows

9k(x, y)[{xίf 2/i), , fe, Vk)] = fc! Wk[(Txlf TyJ, . , (Txk, Tyk)] .

COROLLARY 2.6. Let L = T~\{0}) be the kernel ofT. If each of
xt — Xi and yi — y[ is in L for i = 1,2, , k then Vk[(xlf yj, ,
(«*, Vk)] - V*[(xί, 2/ί), - , (a?ί, i/i)] is in L.

Proof T(Vk[(x19 yd, , (xk, »*)]) - T

Wk[{Tx[, Ty[), . , ( T < Γ»ί)] - Γ F ^ [ « »ί), - -, « yl)].

A converse to this is the following theorem.

THEOREM 2.7. Suppose (Rn, D, V) is a power associative local
loop in canonical coordinates. Suppose L is a linear subspace of
Rn so that if each of x{ — x\ and yi — y[ is in L for i = 1, 2, , k
then Vk[(xlf yλ\ . . . , (xk, yk)] - Vk[{x[, y[), . . . , (xkf yk)] is in L. Then
there is a power associative local loop (Rm, E, W) in canonical co-
ordinates and a linear transformation T: Rn —> Rm so that for some
neighborhood Dr of 0 in Rn we have (T\Df) is a local loop homomor-
phism from (Rk, D, V) to (Rm, E, W). Moreover L = T~\{0}).

Proof. Let W = (Rn/L) be the linear coset space corresponding

to the subspace L of Rn and π: Rn —> Rn be the natural projection

map defined by π(x) = x + L.

If k = 1,2, and each of xt and yt is in Rn for i = 1, 2, . , k

let F"& be defined on (R» x ^ ) f c by

n f e + L, ̂  + L), , (xk + L,yk + L)]

= πVk[(xl9 yd, •••, fe, 2/Λ)]

It is clear from our hypothesis on L that Vk is well defined and

clear from Vk's definition that it is yfc-linear and symmetric.

If x is in Rn let \\x + L\\ = inf {||«|||a; - « is in L}. This defines

a norm on iϋ% and for that norm we have \\πx\\ ̂  | |x | | .

Choose D'f a neighborhood of 0 in Rn so that the Taylor's series
for V converges absolutely to V on D' x D\ Since π is linear and
onto, π is an open map. Thus D = π(D') is open in Rn and contains
π(0). Suppose each of x + L and 7/ + L is in D. Choose xr and y'
so that each of x' and T/' is in D' and ττ^; = x + L and TΓT/' = y + L.
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Then

±(l/kl)\\Vk(x + L,y + L)k\\ ^±(l/k\)\\πVk(x\ y')k\\
1 1

^ Σ (l/fc Olives', i/OI l < °°
1

Thus the series V(πx, πy) = ΣΓ (llkl)Vk(πx, πy)k converges absolutely
to an analytic function V on D x D. Also ~Vk is the fcth derivative
of V at (L, L) and F*(sττ#, to:)fc = πFfc(s£, txf = ττ(O) - 0 in i F when-
ever πa? is in "B* and A; ̂  2. Thus by Theorem 1.5, (IT, 5, F) is a
power associative local loop and V(πx, πy) = ^F(», #).

From elementary linear algebra, the dimension of Rn is n —
dim (L) = m. Choose S to be a linear isomorphism from iϋ% onto J?w

and let Γ = So^. Let E = S(D) and define If on # x # by
W(Sπx, Sπy) = SF(πx, πy). Clearly (# w , JS;, T7) is the local loop sought
in the conclusion of Theorem 2.7 and T is the correct linear trans-
formation, since TV(x,y) = SπV(x, y) = SF(x, #) = TF(Sττ̂ , STΓI/) =
W(Tx, Ty) for α;, ί/eΰ'.

REMARKS. Let G be a Lie group so that its multiplication, in
terms of canonical coordinates, is given by V(x, y). From the
Campbell-Hausdorff Theorem [13] we have

V(x, y) = χ + y + \[χ, y] + ± Y^ψΛt

where V\x, yf = [x, y] is the multiplication on the Lie algebra g of
G. Also each Vk(xf y)k is a homogeneous polynomial in the Lie
subalgebra of a g generated by x and y. Thus if j is an automorphism
of the Lie algebra g, we automatically have V\jx, jy)k — jVk(x, y)k.
Thus by Theorem 2.3 (or directly), j induces a local automorphism
of G; see [13].

In § 3 we shall investigate local loops so that the derivatives
V\xf y)k for k >̂ 3 are determined by a(x, y) = V2(x, yf and the cor-
responding anti-commutative algebra (Rn, +, a). The corresponding
nonassociative local loops are closely related to the Cayley numbers
and the sphere S7.

The results of Theorems 2.5, 2.6 and 2.7 are also related to
"ideals" as in the case of Lie algebras and Lie groups. Thus using
the notation of Corollary 2.6, let L be the kernel of the homomor-
phism T (where (T\D) = j). Then for the anti-commutative multipli-
cation a given above, we have for xeL and yeRn
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Ta(x, y) - TV\{x, 0), (0, y)}

= W\{Tx, 0), (0, Ty))

= W\(0, 0), (0, Ty)]

= 0 .

Consequently a(x, y)&L and since a(x, y) = —a(y, x), we see L is an
ideal in the algebra (Rn, +, a). Thus, as expected, these calculations
show we have generalizations of normal subgroups and ideals as
kernels of homomorphisms.

These results, those of § 3 and the Campbell-Hausdorff Theorem
lead to the following general problem: What conditions on the local
loop (M, E, m) and the coordinate function h imply there exists an
integer N so that the terms Vk(x, y)k for k <̂  N determine the terms
Vn(x, y)n for n > N and consequently determine the corresponding
multiplication function V. By "determine" we mean that for every
x, y e Rn, Vn(x, y)n for n > N is the subsystem of the algebraic
structure (Rn; V\ V\ , VN) generated by x and y.

3* Alternative algebras and the Campbell-Hausdorίϊ Theorem*
In this section we discuss iZ-spaces induced by nonassociative algebras
and prove results analogous to those for the general linear group,
GL(n), its Lie algebra, gl(ri), and the Campbell-Hausdorff formula.

Suppose (A, +, ) is a finite dimensional power associative algebra
over the real field with identity element 1. Let || || be a norm on
A. Since is bilinear it is analytic and (A, A, •) is a power associ-
ative local loop. Since A is power associative, we can define the
exponential function £ on A by E(x) = ΣS° (l/k\)xk. This series
converges absolutely on A and we will show in this section that
the function V defined on a neghborhood of (0, 0) in A x A by
E(V(x, y)) = E(x)Έ(y) is induced by a canonical coordinate represen-
tation for (A, A} .)•

Let Vk = F(fc)(0, 0) and choose D a neighborhood of 0 in A so
that V(x, y) = ΣΓ (1/&!) V\x9 y)k converges on D x D.

As in the case for GL(n) we can consider the power series
expansion for E(V(x, y)) and multiply the series E{x)Έ{y) in the
algebra A. Since E(V(x, y)) = E{x)Έ{y) in A, we then equate terms
of the same degree to obtain various formulas for the terms Vk(x, y)h.
In particular,

V\x, y)2 = x - y - y x = \x, y]

for each (x, y) in A x A and later in this section we use differenti-
ation to compute more of these terms. Now if A is associative
then the Campbell-Hausdorff theorem says for k ^ 2 that Vk{x, y)k
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is a specific homogeneous polynomial of degree k in the [ , ] multi-
plication. It is easy to see that this is also the case if (A, +, •) is
alternative which we do in Theorem 3.1. In this section we explore
the consequences of assuming that F 3 is a homogeneous polynomial
of degree 3 in the [ , ] product and obtain some sufficient conditions
for (A, + , •) or its complexification to be quasi-equivalent with an
alernative algebra.

Suppose (A, +, ) is a finite dimensional power associative algebra
over the real field with identity element 1 and || || is a norm on A.
Since is bilinear there is a number m so that ||& y| | < m| |#| | ||7/||
for all x9 y in A. It follows that for each x in A that \\xn\\ ^
m ^ p l l * for n = 1, 2, . . . . Hence the power series E(x) = Σo°° (l/k\)xk

converges absolutely on A.
For each positive integer k and each x in A let Pk(x) be the

linear transformation on A defined by

Pk(%)(y) = χ(χ ( χ - y ) • . . ) + » ( » • • • ( v - x ) •) +

+ y(x . . . (α?.cc) . . . )

where each summand has one y and k — 1 a 's. In particular,

Pi(v)(v) = V and P2(x)(y) = xy + yx .

Note ||P*(αO(y)|| ̂  Λm^ll&IMIyll and hence the series Σr(l/*!)P*(aO
converges absolutely in the space of linear transformations on A
with operator norm.

Since the multiplication function on A is bilinear it is analytic.
Hence the fcth power function fk: x —> xk, which is well defined by
power associativity, is analytic on A. Using some arithmetic and
the choice of m we obtain for x and y in A and k a positive integer,

\χk - yk - Pk(χ)(χ - y)\\

£ (2* - (fc + l))m-ι\\y - a ? | | » - m a x { | | α ? | | , \\y -

Thus, if fk(x) = xk then f&x) = Pk(x). It follows from the standard
theorem for term by term differentiation of convergent sequences
of functions that E\x) = ΣiT (Vkl)Pk(x).

Let m(xf y) — x-y. An easy calculation shows m\xf y)(a, b) ~
a-y + x-b and hence m\x, l)(0, z) — x-z. If u(t, z) — E(tz) then
u(0f z) = 1 and

ut(fi, z) = ί?'(
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Thus, making allowances for having identity element 1 instead of
0, we have from the Proof of Theorem 1.2

E(tx) E(sx) = E((t + s)x)

for all x sufficiently near 0 and all numbers s, t in some segment
centered at 0.

Since u(l, z) — E{z) it follows from Theorem 1.4 that there are
neighborhoods A and D2 of 0 and 1 respectively so that (i?| A) is a
homeomorphism onto D2 and the logarithm function L = (E\D^)~1 is
analytic on D2. Choose a positive number d so that the function V
defined by E(V(x, y)) = E(x)E(y) is defined on R(d) x R(d) and has
absolutely convergent Taylor's series there. L is canonical coordinate
function constructed in Theorem 1.5 and V is the canonical coordinate
representation for (A, A, •) near the identity element 1 which is
given by V(x, y) = L(E(x)Έ(y)) as in the case of GL(n).

An algebra (A, + , •) is said to be alternative provided that
(x, x, y) = (y, x, x) — 0 whenever each of x and y is in A. Here
(x, y, z) — {xy)z — x{yz) is the "associator function." From [14], any
power associative algebra satisfies

(x, x, y) + (x, y, x) + (y, χfχ) = 0 ,

so if (A, +, •) is alternative we have also that (x9 y, x) = 0. Again
from [14] if (A, +, •) is alternative then A(x, y), the subalgera of
A generated by x, y and 1, is associative.

THEOREM 3.1. // {A, +, •) is alternative and V is the canonical
coordinate representation for constructed in the preceding para-
graphs , then V2 determines V in the sense that Vk, for k > 2, is
the specific homogeneous polynomial in the V2 multiplication on A
given by the conclusion of the Campbell-Hausdorjf theorem.

Proof. Suppose each of x and y is in A. Since A(x, y) is associ-
ative, the Champbell-Hausdorff theorem holds for A(x, y).

As before, define the function E on A(x, y) by E{z) = χ~ (l/kl)zk,
and let W be defined on an appropriate neighborhood of (0, 0) in
A(x, y) x A(x, y) by E(W(zu z2)) = E{zι)Έ{z2). From our previous
argument, W is a canonical coordinate representation of the multipli-
cation on A(x, y). From the definition of W we have W ~ (V\ dom (W)).

From the definition of the derivative we have Vh(x, y)k — Wk{x, y)k

for each positive integer k. Thus, from the fact that the Campbell-
Hausdorff formula holds for W we have that it holds for V.

Conversely, we shall see below that if the explicit formula for
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Vk given in the Campbell-Hausdorff theorem holds for (A, +, -) in
the power associative case then {A, +, .) must be alternative.

Toward this result we compute several terms of the Taylor's
series for V. This can be done by the multiplication of power series
as indicated before, or by computing derivatives as follows. Thus,
let g(x, y) — E(V(x, y)) = E(x)Έ(y). We compute the derivatives
g\x, y) for ί — 1, 2, and 3.

From the chain rule we have

ΰXx, V)(a, b) = E\V{x, y))(V\xf y)(a, b))

and from the product rule

g\x, y)(a, b) = E\x){a) E{y) + E(x) E\y)(b) .

Recall, if h(x, y) = g\x, y)(a, b) then g2(x, y)(a, bf =• h\x, y)(a, 6).
Thus, from the product rule and the chain rule

9\x, V)(a, bf = E\V{x, y))(V\x, y)(a, δ))2

+ E\V(xf y))(V\x, y)(a, δ)2)

and recalling the notat ion (z)k = (z, •••,«) w i t h z occurring k t imes,

g\x, y)(a, bf = E\x){af.E{y) + 2E\x){a).E\y)(b)

+ E(x) E\y)(bγ .

Similarly,

9\x, V)(a, by - E\V{X, y))(V\x, y){a, b)f

+ ZE\V{x, y))(V\x, y)(a, 6), V\x, y)(a, 6)2)

+ E\V{x, y))tV\x, y)(a, bf)

and

g\x, y)(a, bf = E%x)(aγ.E(y) + ZE\x){af • E\y)Q>)

+ ZE\x){a)-E\y)(bf + E(x).

We wish to evaluate the preceding derivatives at (0, 0) so to do
this we compute E\0)(x, y).

, V) - limllh{E\hy){x)~ E\0)(x))
h-*0

= lim i/h(± (hk-w.)Pk{y){χ) - x)
Λ->0 \ 1 /

= lim (4-P,(y)(a;) + h Σ (h»-*/k! )Pk(y)(x))
h-+Q \ 2 3 /

= -ζ-fry + vχ) -
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Putting (x, y) = (0, 0) in the expression for g\x, y)(a, by and using
E\0){x)k = xk we have

(3.2) F'(0, 0)(α, b) = a + b

(3.3) (a + 6)2 + F2(0, 0)(α, δ)2 - α2 + 2αδ + δ2

(3.4) (α + b)5 + (3/2)[(α + δ). F2(0, 0)(α, δ)2 + F2(0, 0)(α, δ)2 (α + 6)]

+ F3(0, 0)(α, δ)3 = α3 + 3α2δ + 3αδ2 + δ3 .

From (3.3), F2(0, 0)(α, δ)2 = αδ - δα. Substituting this in (3.4) and
computing yields

2F3(0, 0)(α, δ)3 - 6α2δ - 5a(ab) + α(6α) - 3(αδ)α - 26α2 + 3(δα)α

+ 4ab2 - 5b(ab) + 6(δα) - 3(αδ)δ + 3(δα)δ .

To arrange this in more comprehensible form let [a, δ] = V\a, δ)2 =
ab — ba and recall the power associative identity [14]; (α, α, δ) +
(α, δ, α) + (δ, α, α) = 0.

Using this notation the above expression becomes

(3.5) F3(0, 0)(α, by = F3(α, δ)3

= 4(α, α, δ) + 2(6, α, α) + i-[ α , [α, δ]]

- 2(δ, δ, α) ~ 4(α, δ, δ) + \[b, [δ, α]] .

We summarize these calculations as follows.

THEOREM 3.6. Suppose {A, + , •) is a power associative algebra
with identity 1 and V is the canonical coordinate representation of
(A, A, .) induced by the exponential function E. Then with the nota-
tion (x, 0)r(0, y)s = ((x, 0), . , (x, 0), (0, y), -•', (0, y)) with (x, 0) occurr-
ing r times and (0, y) occurring s times, we have

(3.7) v\χ, y) = χ + y

(3.8) V\x, y)2 = [x, 2/] = £2/ - τ/x

(3.9) V\x, 0)2(0, i/) - 4/3(a, x, y) + 2/3(7/, x, x) + l/6[», [«, y]]

(3.10) F3(?/, 0)(0, a;)2 = ~^(x, x, y) ~ ±(y, x, x) + -^[x[x, y]] .
ό ό b

Proof. The first two of these are immediate from our calcula-
tions. To see (3.9) and (3.10) we observe from (3.5) that
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lfβtVXtx, sy)3 = ίJ4(sf x, y) + 2(y, x, x) + i-[a?, [x, y]]}

, ?/, x) - 4(α, ί/, ί/) + j^[y, [», a?]]} ,

if each of s and t is a number. But from Theorem 1.5 and the fact
that Vs is symmetric trilinear we have also that

l/stV3(tx, syf = StV\x, 0)2(0, y) + 3sF3(z, 0)(0, τ/)2 .

The remainder of Theorem 3.6 is immediate from these two
formulas.

COROLLARY 3.11. (A, +, •) is alternative if and only if
V\x, 0)2(0, y) = V\y, 0)(0, xf = (l/6)[s, [a?, »]].

Proof. If (A, +, •) is alternative, the expressions V3 are im-
mediate from Theorem 3.6 and (x, x, y) = (j/, OJ, a?) = 0.

If we have the indicated expressions for V3 then from Theorem
3.6 we have

2(x, x, y) + (yf x, x) = 0 and -(#, a?, #) - 2(i/, x, x) = 0 .

The only solution to this system is (a?, a?, #) = (yf x, x) = 0 so that
(A, +, .) is alternative.

We now investigate some of the consequences of V2 determining
V3. Thus assume V\x, y)3 may be written as a polynomial expression
in terms of F 2 . Since V\x, y)2 = [x, y] we shall investigate the
hypothesis H: There are real numbers a and b such that

V\x, y)3 = 8α[«, [x, y]] + 86[», [», a?]] .

Conditions which imply hypothesis H are discussed in Theorem 3.31.
Since V\x, y)3 = SV3[(x, 0)2, (0, »)] + ?>V3[(x, 0), (0, i/)2] we see that

H implies

V3[{x, 0)3, (0, y)] = α[a?, [a?, »]] and

/, 0), (0, X)2] = 6[ίc, [a?f »]] .

In view of Theorem 3.6 this is the same as saying the power associ-
ative algebra (A, +, •) satisfies the identities

(3.12) (x, x, v) = (a + A - i.)[s f [*, y]]

(3.13) (as, 2/, a;) - ±-(b - a)[x, [x, y]]
Δ
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(3.14) (y, x, a) = (-6 - - | + ±)[x, [x, y]] .

Since undetermined a, b enter into the identities for A, we take up
the slack by considering quasi-equivalent algebras.

DEFINITION. Let A be an algebra and let u, v be numbers so
that u + v — 1 and u — v Φ 0. Let A0 denote the algebra with vector
space A and multiplication x°y = uxy + vyx. A is said to be quasi-
equivalent to an algebra B in case there are numbers u, v so that
A0 — B as algebras.

We shall now consider the possibility that if A satisfies hypothesis
H, then it is quasi-equivalent to an alternative algebra. Denoting
(x ° y) © z — x o (y o z) by (x, 3/, SC)° an easy calculation shows

O, y, x)° = (u- v)(x, y, x)

= 0 - u)φ, [x, i/]]

(a?, a?, 2/)° = u(x, x, y) - v(y, x, x) + uv[x, [x, y]]

rv + uv)[x, [x, y]]

where p = a + 6/2 - 1/4, g = (l/2)(δ - a) and r = - δ - α/2 + 1/4.
Also note that if A is power associative, so is A0.

If A0 is to be alternative, then noting u Φ v we must have
a = 6 or [x, [cc, ?/]] = 0 for all #, ?/ in A. In the second case A is
alternative if A satisfies H. Thus we now consider a case when
α = b.

LEMMA 3.15. If A is a power associative algebra which satisfies
condition H and if A contains an idempotent e not in the center
of A, then a = b. In this case A0 satisfies (x, y, x)° = 0 for all x, y
in A\

Proof Suppose the idempotent e of A is not in the center of
A, Define the linear transformation T on A by T(x) = (l/2)(ea? + xe).
Then from [14, p. 131] T satisfies 2Γ3 - 3Γ2 + T = 0 and consequently
T has the three simple characteristic roots 0, 1, 1/2. Thus A has the
direct sum Peirce decomposition

where At = {x: T(x) = iίc} for i = 0, 1, 1/2. From [14, p. 131] it fol-
lows that x 6 At for i = 0, 1 if and only if ex = xe — ix. Also x e A1/2

if and only if xe + ex = x.
As in Lie algebras, let ade be defined on A by

αde(ίc) = [β, #] = eα? — xe .
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If x is in Ao or Alf then ade(x) = 0. Since e is not in the center of
A we must have some x1/2 in Aιn so that ade(xm) Φ 0 and consequently
Am is not the zero subspace.

Choose y in Am with y Φ 0. Then using identity (3.12) with
x = e and ey + ye = y we obtain

p(ade)\y) = (e, e, #)

= ey — e(ey)

= ey — e(y — #e)

Similarly using identity (3.14) with x = e we obtain

r(ade)\y) = (y, e, β)

= (l/

= (1/

= —

But

(ade)\y) = ade(ey - |/e)

= e(βi/) - e(i/e) - (ei/)e + (ye)e

= e(y — i/e) — e{ye) — (ei/)e + (y — ey)e

= ey — 2e(ye) — 2(ey)e + ye

= y- 2p(ade)\y) + 2r(ade)2(y) .

Consequently (1 + 2p — 2r)(αdβ)2(τ/) = y ^ 0 since we have assumed
y Φ 0 in A1/2. Thus we may conclude that 1 + 2p — 2r = 3a + 3b Φ 0
and using the direct sum A = Ao + Ax + A1/2 we see (αcίe)2 has a
matrix of the form

where λ = 1/(1 + 2p - 2r). Thus trace (αde)2 ^ 0.
Now defining endomorphisms L and J? on A by L(x) = eα; and

jϊ(a ) = xβ we see from identity (3.13),

(RL - LR){x) - (β, a?, e) - —(6 - α)(αde)2(α^)

so that RL- LR = (l/2)(δ - a)(ade)\ Since trace (JKL ~ LΛ) = 0 and
trace (αde)2 ^ 0 we obtain b — a = 0 which proves the lemma.

THEOREM 3.16. Lei A 6β α power associative algebra which
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satisfies condition H. If A contains an idempotent e which is not
in the center of A, then A or the complexification of A is quasi-
equivalent to an alternative algebra.

Proof. From Lemma 3.15 we have (x, y, x) — 0 and consequently
(x, y, x)° — 0 for any u, v used to define A°. Thus to make A0 alter-
native it suffices to choose u and v to make ( r, x, y)° = 0. This uses
again the identity (x, x, y)° + (x, y, x)° + (y, x, x)° = 0, since A0 is also
power associative.

We do this as follows. Since (x, x, y)° = (p + uv)[x, [x, y]] with
u + v — 1 it suffices to choose u so that

0 = p + u(l — u) — p + u — u2 .

From the lemma, a = 6 Φ 0 and therefore p = (3/2)α — 1/4. Thus the
discriminant of the quadratic equation is 6α. So if α is positive we
may choose u = l/2±(l/2)τ/6α to obtain the conclusion.

If a is negative we use the complexification Ac = C x A of A.
Thus .Atf can be regarded as formal linear combinations x + iy for
x,yeA and ΐ = l/—1. Next since A is power associative, so is Ac.
From identities (3.12), (3.13), (3.14) we replace x by x + z and simplify
to obtain the identities

(3.17) (x, z, y) + (z, x, y) = p[x, \z, y\\ -f p[z, [x, y]]

(3.18) (x, y, z) + (z, y, x) = q[x, [z, y}] + q[z, [x, y]]

(3.19) (y, x, z) -r (ί/, z, x) = r[x, [z, y]] + r\z, [x, y]]

where p, q, r are as before. Using these, a straightforwad calcu-
lation shows Ar also satisfies the identities (3.12), (3.13), (3.14) which
define A. Thus for Ar we also have (x, y, xf = 0 in AQ

C. By choosing
u = l/2±(l/2)V/βα in C we obtain (x, x, y)° = 0 in A°c so that (A°c, +, °)
is alternative.

As previously noted when A is alternative, a local loop induced
by the multiplication in A satisfies the Campbell-Hausdorff Theorem.
The above theorem shows that if a Campbell-Hausdorff Theorem holds
—or actually just the dependency of F ( 3 ) on V(2), then the idempotent
condition implies A is essentially alternative. We now replace the
idempotent condition with that of semi-simplicity to obtain additional
results.

LEMMA 3.20. Let I be an ideal of (A, + , •)• Then Γ = I (as
sets) is an ideal of (A, + , °). Conversely, if F is an ideal of (A, -f, o)
then I is an ideal of (A, +, •)•
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Proof. Let x e I and y eA, then since xy, yxel we see that
from the definition of x©y that χoy and yox are in /. Thus / is
also an ideal of A0.

Conversely, if 1° is an ideal of A0, then since quasi-equivalence
is symmetric, / is an ideal of A.

Using the previous notation (x, y, zf and [x, yf = x ° y — y ° x in
A0 we note

[x, yf = (u - v)[x, y] and [x, [x, yff = (u - vf[xf [x, y]] .

Thus let -A be a power associative algebra satisfying condition H.
Then A satisfies equations (3.12), (3.13), (3.14) and, with p, q, r as
before, we see A0 satisfies similar identities

(*, x, yf = Pκ-rv + uv[χf {

(u — vf

{x, v, xy = —^—[x, [x, vYΪ
u — v

(y, z, xy = (ru-pv-uv)^ { y]oγ

(u — vf

where u + v = 1, u — v =£ 0. We now choose u, v such that

0 = ru — pv — uv

= u2 + (r + p — ΐ)u — p .

Thus if 2p — 2r + 1 Φ 0, then u Φ 1/2 and for v = 1 — u Φ u we see
A0 satisfies

(3.21) (y, x, x)° - 0

(3.22) (x, x, yf = \[x, [x, y]']°

where λ = (pu — rv + uv)/(u — vf — (p + r)/(2u — 1) using u + v — 1,
u Φ 1/2 and ru — pu — uv = 0.

Algebras satisfying these identities were considered in [4] from
which we use the following results. Let M be the subspace of A
spanned by the associators of the form (x, x9 y) and (x, y, x) for all
x, y eA. Then M is an ideal of A such that M2 — 0. Consequently
if A is simple or, more generally, semi-simple (i.e., a direct sum of
simple ideals), then M = 0 and therefore A is alternative. Using
the fact that our algebra A0 and its complexification (Acf satisfies
these identities (note the proof of Theorem 3.16) we use Lemma 3.20
to obtain the following result.

THEOREM 3.23. Let A be a power associative over the real num-
bers such that A or Ac is semi-simple. If the algebra A0 satisfies
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the identities (3.21) and (3.22) above, then A0 is a semi-simple alter-
native algebra.

REMARKS. Using Theorems 3.16 and 3.20 we can obtain further
information about the original algebra A depending on the two cases
λ Φ 0 or λ = 0 for λ given in equation (3.22).

Case λ Φ 0 implies from [4] that A0 is a direct sum of associa-
tive, commutative integral domains. Since A0 is finite dimensional,
this implies A0 is a direct sum of fields isomorphic to the reals or
complex numbers [14]. Since A0 is commutative with χoy = uxy +
vyx, we see xy — χoy and (x, y, z) = (x, y, z)° = 0. Consequently A

is commutative and associative. Thus A is a direct sum of fields
isomorphic to the real or complex numbers and V(x, y) — x + y.

Case λ = 0 implies

0 = λ = (p + r)/2u - 1

using the formula following equation (3.22). Thus p = —r and from
the definition of p and r (preceding Lemma 3.15) we see a = b. Thus
using equations (3.12), (3.13), (3.14) the original power associative alge-
bra A satisfies

(x, y, x) = 0 and (x, x, y) = —[x, [x, y]\

where p = (3/2)α — 1/4 and u2 — u — p — 0. (We can assume p Φ 0
using Corollary 3.11.) Algebras satisfying these identities are studied
in [7] and they need not be alternative.

From Theorem 3.23 the algebra A0 is alternative. Consequently
for the induced local loop (Rn, D, V°) we have V° given by
E\x)oE\y) =E\V\x,y)) where E° is the exponential map in A0.
But since the powers in A and A0 are equal, E(x) = E\x) and
therefore

E(V\x, y)) = uE(x)E(y) + vE{y{Ex)

= uE(V(x, y)) + vE(y(y, x)) .

From this we obtain a formula for the original V(x, y) in terms of
V\x, y) and consequently in terms of the Campbell-HausdorfF formula
by E(V(x, y)) = (u/(u - v))E{V\x, y)) + (y/(v - u))E(V°(y, x)).

In the case that the original semi-simple algebra is alternative,
A — Ax φ 0 A% as a direct sum of simple associative algebras or
simple 8-dimensional Cay ley algebras. If some At is the 8-dimensional
Cayley numbers, then the invertible elements of At form a Moufang
loop and consequently induces a local loop (Di9 Vτ). The anti-commu-
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tative algebra induced by Vl(x, yf is the 8-dimensional Malcev algebra
AT (i.e., the vector space At with multiplication [xif y%]). If R denotes
the real numbers, then the algebra A~ has the one-dimensional center
Rl. The simple 7-dimensional anti-commutative algebra A~/R1 is
the "tangent algebra" to the 7-sphere S7, in At consisting of all those
vectors of norm one [10].

We now summarize the general results as follows.

THEOREM 3.24. Let A be a power associative algebra with 1 so
that A or Ac is semi-simple. Let (Rn, D, V) be the canonical coordi-
nate representation of (A, A, •) as before. Then hypothesis H holds
if and only if A is quasi-equivalent to a semi-simple alternative
algebra.

Proof If hypothesis H holds for (Rn, D, V) then A is quasi-
equivalent to an algebra A0 satisfying equations (3.21) and (3.22).
Thus by Theorem 3.23, we obtain the desired conclusion.

Conversely, if A is quasi-equivalent to an alternative algebra
A0, then using the equations preceding Lemma 3.15 we obtain

0 = (x, y, x)° = (u - v)(x, y, x)

so that (x, y, x) — 0. Using this and A is power associative we have

(x, x, y) + (y, x, x) = 0 .

Consequently,

0 - {x, x, y)°

= u(x, x, y) - v(y, x, x) + uv[x, [x, y]]

= (u + v)(x, x, y) + uv[x, [x, y]]

= (x, χ9 y) + uv[χ, [x, y]] .

Thus from equation (3.9) and the above formulas we obtain

V\x, 0)2(0, y) - - i fo x> V) + 4 ^ ' x> χ) + Ύ[x> [x> y]]

ό ό o

= |-(«,», v) + -Tffo ίχ> »Ώ
o b

=
 (T " f uv

6 3

= a[x, [x, y]]

where 3α = 1/6 - (2β)uv. Similarly

) [ x > [x>
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V\x, 0)(0, yf = b[y, [y, x]]

so that hypothesis H is satisfied.
We now investigate conditions on a power associative local loop

so that it satisfies "hypothesis H". Thus we have seen that if the
canonical coordinate multiplication function V satisfies hypothesis H
and if the local loop multiplication is induced from an algebra A,
then A is essentially an alternative algebra. Next note that an
alternative division algebra A also satisfies the inverse property
identities

χ-\xy) = y = (yx)x~ι

for all nonzero x, y in A; see [1, 2, 8]. We shall make a similar
assumption on a local power associative loop and observe that hy-
pothesis H is satisfied.

Thus let (Rn, D, V) be a local power associative loop in canonical
coordinates. Then using V(sx, tx) — (s -f t)x we see that the local
inverse of x is —x and the inverse property identities become

(3.25) V(-x, V(x, y)) = y = V(V(y, x), -x) .

We shall assume this holds for the local loop and show this implies
hypothesis H as stated in Theorem 3.31 and Corollary 3.32.

As before let

V(x, y) = x + y + a(x9 y) + ± Σ^ψJUL
k ft !

where we have seen a(x, y) — (l/2)V\x, yf satisfies a(x9 y) — —a(y, x)
and in general for s, t in R and k ^ 2,

Vk(sx, tx)k - 0 .

This implies for k ~ 3 that

0 = ZV3[(sx, 0)2, (0, tx)] + ZV\{sx, 0), (0, txf]

- Z8*tV\(x, 0)2, (0, x)] + Z8t*V*[(x, 0), (0, x)2]

which implies

(3.26) V\{x, 0)2, (0, x)] = 0 and V'\{x, 0), (0, xf[ = 0 .

Next we expand equation (3.25) into its Taylor's series up to terms
of order 3 to obtain

y = V(χ, V(-x, y))

= x + V(-x, y) + a(x, V[-x, y)) + V%x, V(-x, y)f + • • •
3!
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α(x, -x + y + α(-x, y)

3! 3!

This implies

and using multi-linearity to expand the right side of this equation,
we obtain

3! a(x, a(x, y)) = 3F3[(-x, 0)\ (0, y)] + 3F3[(-x, 0), (0, yf]

+ 3F3[(x, 0)\ (0, -x + y)] + 2V*[(x, 0), (0, -x + yf]

= 3F3[(x, 0)2, (0, y)] - 3Fs[(x, 0), (0, yf]

- ZV3[(x, 0)2, (0, x)] + 3F3[(x, 0)2, (0, y)]

+ 3F3[(x, 0), (0, -x + y), (0, -x + y)]

= 6F3[(x, 0)\ (0, y)] - QV\{x, 0), (0, x), (0, y)]

using equations (3.26). Therefore

(3.27) α(x, a(x, y)) = V%{x, 0)2, (0, y)} - V*[(x, 0), (0, x), (0, y)] .

Similarly expanding y = V(V(y, —x), x) we obtain

(3.28) a(a(y, x), x) =; V3[(y, 0), (0, xf] - V3[(y, 0), (x, 0), (0, x)] .

Next in (3.26) we replace x by x + y and use multi-linearity to obtain

0 = V\{x + y, 0)2, (0, x + y)}

= V\{x, 0)2, (0, x)] + V\{x, 0)2, (0, y)}

+ 2F3[(x, 0), (y, 0), (0, x)] + 2V\{x, 0), (y, 0), (0, y)]

+ V\{y, ϋ)\ (0, x)] + V\{y, 0)2, (0, y)] .

Now using (3.26) and considering terms of the same degree in x and
y, we obtain

(3.29) V*[(x, 0)2, (0, y)] + 2V*[(y, 0), (x, 0), (0, x)] = 0 .

Using the other equation in (3.26) we similarly obtain

(3.30) Vs[(y, 0), (0, x)2] + 2F3[(x, 0), (0, x), (0, y)] = 0 .

Substituting (3.29) into (3.28) and (3.30) into (3.27) and using anti-
commutativity, we obtain
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a(x, a(x, y)) = V*[(y, 0), (0, xf) + \v%x, 0)2, (0, y)} and
Δ

a(x, a(x, y)) = ±~V*[{y, 0), (0, xf] + V>[(x, Of, (0, y)] .
Δ

These can be regarded as a system of equations in the F 3 and have
solution

V\{x, 0)2, (0, y)] = -f α(x, a(x, y)) and
o

Vs[(y, 0), (0, xf} = \a{x, a(x, y)) .

Denoting a(x, y) - (l/2)F2(x, yf = (l/2)[x, y] this gives

V\x, 0)2(0, tf) - V\y, 0)(0, ̂ )2 - -|.[ίc, [x, y]] .

With the above equations, we obtain from Corollary 3.11 and the
definition of "hypothesis H" the following result.

THEOREM 3.31. Let (Rn, D, V) be a local power associative loop
given in canonical coordinates. Suppose the inverse properties (3.25)
are satisfied. Then hypothesis H is satisfied. In case the local loop
(Rn, D, V) is induced by a power associative algebra A, then A is
alternative.

Combining previous results with those in [1, 2] gives the following.

COROLLARY 3.32. Let the local loop (Rn, D, V) given in canonical
coordinates be induced by a power associative algebra A. Then A
is alternative if and only if the Campbell-Hausdorff formula holds
for V if and only if (Rn, D, V) satisfies the inverse property identities.
Thus in this case the first two derivatives of V at (0, 0) determine
the Taylor9s series for V and the corresponding local loop is a local
Moufang loop.
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